处理养殖废水集成工艺与条件优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国规模化养殖的发展,猪场废水的大量排放带来的环境污染越来越严重,猪场废水具有高COD、高碳氮比、高SS和高N、P含量等特点,猪场废水中BOD5/C0D大于0.4,具有较强的可生化性,但仅依靠单一的处理工艺很难满足猪场废水的污染治理。本研究以新郑市雏鹰农牧股份有限公司生猪出口基地养殖废水处理工程为研究对象,本着降低处理成本以及资源化回收的要求,提出改进UASB+磷酸铵镁沉淀法(MAP)+膜生物反应器(MBR)+人工湿地(SFCW)组合工艺处理猪场废水,通过对各个反应器的启动调试及运行,确定了该组合工艺的最佳运行参数,并对集成工艺进行了组合优化,并核算最优基建与运行成本,得出不同情况下处理猪场废水的最佳组合工艺以及处理效果,研究结果表明:
     (1)本研究选择以氯化镁和磷酸三钠补充镁源和磷源回收猪场废水中的氨氮,在以回收猪场废水中部分氨氮、调节废水中碳氮磷比例使之适用于生物处理工艺为目的条件下,确定了该工艺在处理猪场废水时的最佳Mg:N:P摩尔比为1.2:1:0.9,经回收后的水中氨氮含量维持在170mg/L左右,pH维持在8.5左右。回收的鸟粪石N含量约4.1%,P205含量约40.77%,MgO含量约15.85%,是一种高品质缓释性肥料。有效地解决了MAP工艺与MBR工艺的衔接问题,简化了操作步骤。
     (2)年出栏300-800头猪的小型养殖场每日约产生8m3污水采用"UASB+MBR+人工湿地”组合工艺处理养殖废水具有费用低和效果好的优势;在冲洗猪舍用水较多和饲养员生活用水增多的夏季,污水氨氮浓度偏低,也可以使用该组合工艺去除。当处理的污水量较大时,采用‘'UASB+MAP+MBR+人工湿地”组合工艺处理养殖废水能取得良好效果,该组合工艺适合猪场采用干清粪方式所产生的猪场废水,具有处理量大,抗负荷能力强,回收高品质缓释型肥料的特点,为养猪场往种养结合方向发展提供了支持。
With the development of large-scale cultivation in our country, the environmental pollution results from the emission of large number of swine wastewater became increasingly worse. Swine wastewater, which charactered with high COD, high ratio of carbon and nitrogen, high SS and rich in N, P nutrition, in which the ratio of BOD5and COD is greater than0.4, therefore has strong biodegradability. However, the single treatment process at present cannot meet the requirement of pollution control for swine wastewater. In this study,we took the cultivation wastewater treatment project of pig export base, which belongs to Chu Ying farming Corporation lies in Xin zheng City as the research object. Holding the purpose of reducing the cost of the process and recycling the resource, we put forward a combined process that consists of improved UASB, Magnesium Ammonium Phosphate (MAP) precipitation, Membrane Bioreactor (MBR) and Subsurface Flow Constructed Wetland (SFCW) to process the swine wastewater. In the course of starting, debugging and running for each reactor, we finished the determination of the the optimum operating parameters of the combined process and the combinatorial optimization for integration process, besides, we had accounted the optimal infrastructure and operating costs and came up with the best combined process and its treatment results for the swine wastewater under different circumstances. The results showed that:
     (1) To recycle the ammonia in the swine wastewater, magnesium chloride and trisodium phosphate was chosen as supplementary of magnesium source and phosphorus source, respectively.On the purpose of recovering part of the ammonia in swine wastewater and adjusting the proportion of carbon,nitrogen and phosphorus in wastewater to make it applicable to the biological treatment process,we have determined the parameters of the process as below:The optimum molar ratio of magnesium,nitrogen and phosphorus is1.2:1:0.9, the content of ammonia in the recovered water was maintained at about170mg/L and the pH was maintained at about8.5.
     The recovered struvite has a content of4.1%for nitrogen,40.77%for phosphorus pentoxide and15.85%for magnesia,which is a high-quality slow-release fertilizer,solving the problem of linking up for MAP process and MBR process effectively and simplifying the operating procedures.
     (2) In the summer when the washing water for pigsty and domestic water for the breeders increased, the mixing sewage generated in the process of14breeders feeding280pigs,in which the concentration of ammonia is less than300mg/L,using "UASB+MBR+SFCW" combined process to process the swine wastewater has the advantage of low cost and good effect. However, it cannot meet the requirements for the work of large amount of wastewater, as well as high concentration. To meet the high requirements for handling capacity, the " UASB+MAP+MBR+SFCW " combined process can achieve good results. This combined process is suitable for the processing of swine wastewater generated by the cultivation that using dry desludging mothod. It took the advantage of large handling capacity, strong anti-load capacity and can recycle high-quality slow-release fertilizer compared with the "UASB+MBR+SFCW" process.
引文
[1]田宁宁,王凯军,李宝林,等.畜禽养殖场粪污的治理技术[J].中国给水排水,2002,18(2):71-73.
    [2]郭会勇,朱帅.规模化是我国生猪养殖业发展趋势[N].中国畜牧兽医报.
    [3]张志强,刘学.我国畜禽养殖污染现状及治理对策研究[J].科技信息,2010(29):384,386.
    [4]王克科,赵颖,江传杰,等.畜禽养殖业废水处理方法[J].河南畜牧兽医,2005,26(6):15-17.
    [5]于金莲,阎宁.畜禽养殖废水处理方法探讨[J].给水排水,2000,26(9):44-46.
    [6]苏敏婷,易康,蔡盛,等.猪场废水处理技术研究与应用[J].江西畜牧兽医杂志,2010(4):4-6.
    [7]刘荣章,王子齐.台湾养猪业污染防治措施[J].台湾农业情况,1991(2).
    [8]林代炎,翁伯琦,钱午巧.FZ-12固液分离机在规模化猪场污水中的应用效果[J].农业工程学报,2005,21(10):184-186.
    [9]Garcia M C, Szogi A A, Vanotti M B, et al. Enhanced solid-liquid separation of dairy manure with natural flocculants[J]. Bioresource Technology,2009,100(22):5417-5423.
    [10]李云,张建萍,张无敌,等.猪粪污固液分离处理对能源回收的影响[J].中国沼气,2008,26(3):26-28,36.
    [11]金珠理达,王顺利,邹荣松,等.猪粪堆肥快速发酵菌剂及工艺控制参数初步研究[J].农业环境科学学报,2010,29(3):586-591.
    [12]杨国义,夏钟文,李芳柏,等.不同填充料对猪粪堆肥腐熟过程的影响[J].土壤肥料,2003(3):29-33.
    [13]杨柏松,关正军.畜禽粪便固液分离研究[J].农机化研究,2010,32(2):223-225,229.
    [14]张帅,李军,陈瑜.加载絮凝沉淀工艺在水处理中的应用[J].给水排水,2009,35(z1):274-278.
    [15]周琪,林涛,谢丽,等.污水处理生物絮体絮凝沉淀机理分析的综述[J].同济大学学报(自然科学版),2009,37(1):78-83.
    [16]中野淳,林治宪.最新的排水处理技术高负荷厌氧处理技术和高速凝聚沉淀技术[J].中华纸业,2009,30(12):105-108.
    [17]Lew B, Lustig I, Beliavski M, et al. An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates [J]. Bioresource Technology,2011,102(7):4921-4924.
    [18]黄正文,余波.猪场废水厌氧处理技术研究[J].成都大学学报(自然科学版),2010,29(4):287-289,292.
    [19]尤子敬.厌氧处理技术的发展与展望[J].辽宁化工,2009,38(12):929-931.
    [20]李旭东,杨芸.废水生物处理新技术[J].精细与专用化学品,2002,10(17):19-21,6.
    [21]刘树才,朱金雷,张秀捷,等.厌氧生物滤池+生物接触氧化组合工艺处理地表微污染 水技术研究[J].北京水务,2010(2):4-6.
    [22]钱易,王凤芹.常温下厌氧生物滤池处理生活污水的试验研究[J].给水排水,1994(1):24-27.
    [23]刘唯伟.微电解厌氧生物滤池法处理猪场厌氧废液的试验研究[D].华中农业大学,2006.
    [24]王海会,董春娟.微氧环境两级膨胀颗粒污泥床反应器处理焦化废水[J].化工环保,2010,30(3):234-237.
    [25]董春娟,刘晓,赵庆良,等.膨胀颗粒污泥床反应器处理啤酒废水[J].化工环保,2008,28(6):478-481.
    [26]谭超,张军,何容信,等.城市污水厌氧处理技术研究进展[J].环境科学与管理,2007,32(10):94-96.
    [27]杨健,王夙,张利群.上流式厌氧污泥床快速启动污泥颗粒化试验[J].同济大学学报(自然科学版),2008,36(3):350-355.
    [28]崔玲,牛凤奇.UASB在废水处理中的应用及其影响因素[J].广西轻工业,2007,23(4):80-81.
    [29]殷承启,洪建国.上流式厌氧污泥床处理造纸工业废水的研究[J].南京林业大学学报(自然科学版),2004,28(5):41-44.
    [30]El-Kamah H, Mahmoud M, Tawfik A. Performance of down-flow hanging sponge (DHS) reactor coupled with up-flow anaerobic sludge blanket (UASB) reactor for treatment of onion dehydration wastewater[J]. Bioresource Technology,2011,102(14):7029-7035.
    [31]Ye J, Mu Y, Cheng X, et al. Treatment of fresh leachate with high-strength organics and calcium from municipal solid waste incineration plant using UASB reactor[J]. Bioresource Technology,2011,102(9):5498-5503.
    [32]李清雪,耿媛,李改翠,等.ABR-好氧组合工艺对农村生活污水处理效果研究[J].给水排水,2010,36(z1):135-138.
    [33]冼超彦,周兴求.ABR作为产甲烷反应器的两相厌氧工艺的启动特性[J].工业用水与废水,2010,41(1):72-75,79.
    [34]龙映臣,毕芳,杨英.ABR-生物接触氧化工艺处理制药废水[J].广东化工,2007,34(11):98-100.
    [35]芦家娟,王毅力,赵洪涛,等.ABR反应器的启动及颗粒污泥特征的研究[J].环境化学,2007,26(1):10-16.
    [36]张寿通,郭海燕,费庆志,等.斜板式ABR水力特性及生活污水的处理[J].环境化学,2009,28(4):492-496.
    [37]周华.ABR工程设计的要点分析[J].给水排水,2009,35(z2):226-230.
    [38]陈磊,孙磊."ABR+SBR"工艺处理硝基氯苯和对氨基苯酚废水的中试研究[J].广东化工,2011(08).
    [39]李建政,倪佳,郑国臣,等.有机负荷对ABR系统运行特征及效能的影响[J].哈尔滨工业大学学报,2011(08).
    [40]王欣,李清雪,魏玲玲,等.厌氧折流板反应器(ABR)的低负荷启动研究[J].河北建筑 科技学院学报(自然科学版),2006,23(4):42-44.
    [41]杨玉楠,胡训杰,石强,等.ABR处理淀粉废水的反应规律研究[J].给水排水,2006,32(10):57-61.
    [42]黄继国,高文翰,董莉莉,等.ABR-生物接触氧化工艺处理低碳氮比生活污水试验[J].吉林大学学报(地球科学版),2010,40(5):1163-1169.
    [43]张忠波,陈吕军,胡纪萃.IC反应器技术的发展[J].环境污染与防治,2000,22(3):39-41.
    [44]刘广亮.郑州大学,2007.
    [45]周莉莉,季民.IC反应器处理制药废水的颗粒污泥驯化和快速启动[J].中国环境科学,2010,30(6):758-762.
    [46]贺延龄.废水厌氧处理技术的新进展——IC反应器在造纸工业上的应用[J].纸和造纸,2001(6):45-48.
    [47]黄治平.IC反应器处理猪场废水试验研究[D].中国农业科学研究院中国农业科学院,2004.
    [48]雷电,王东晖,王珍珍.污水自然生物处理组合技术研究进展[J].科技情报开发与经济,2005,15(5):167-169.
    [49]王小兵.浅谈序批式活性污泥法[J].广东化工,2004,31(1):50-52,49.
    [50]李培睿,李宗义,王鸿磊,等.序批式活性污泥法(SBR)[J].河南师范大学学报(自然科学版),2003,31(3):72-75.
    [51]何耘,刘成.序批式活性污泥法(SBR)的研究综述[J].安徽建筑工业学院学报(自然科学版),(1).
    [52]苏晓丽,刘汉湖,鲁璐,等.序批式活性污泥法处理染料废水[J].工业水处理,2008,28(3):39-42.
    [53]卢翠文.活性污泥法中进废水应具备的基本条件[J].科技信息,2010(7):369.
    [54]段焱.活性污泥法复合悬挂填料处理畜禽废水研究[D].四川农业大学,2010.
    [55]王志海,魏宏斌,贾志宇,等.活性污泥法处理甲醛废水的试验研究[J].中国给水排水,2009,25(1):86-88.
    [56]孙玉琴,徐碧华,郑剑敏,等.生物接触氧化法处理污水应用研究[J].交通部上海船舶运输科学研究所学报,1992(2):54-63.
    [57]赵贤慧.生物接触氧化法及其研究进展[J].工业安全与环保,2010,36(9):26-28.
    [58]章清琳,丛海兵.间歇曝气生物接触氧化法处理微污染水实验研究[J].环境科技,2011,24(2):4-6.
    [59]蒋侃,马放,孙铁珩,等.电气石强化生物接触氧化法处理石化废水[J].环境科学,2009,30(6):1669-1673.
    [60]崔福义,张兵,唐利.曝气生物滤池技术研究与应用进展[J].环境污染治理技术与设备,2005,6(10):1-7.
    [61]刘剑.曝气生物滤池脱氮工艺与过程控制研究[D].湘潭大学,2005.
    [62]于衍真,冯岩,韩雯雯,等.水渣填料曝气生物滤池去除氨氮特性研究[J].中国给水排水,2007,23(19):40-43.
    [63]李柏林.稻壳填料曝气生物滤池处理生活污水的实验研究[D].武汉理工大学,2007.
    [64]Fan Yao Bo W J S. Treatment of a dyeing wastewater from a woolen mill using an A/O membrane bioreactor[J]. Environmen talSciences,2000,12(3):344-348.
    [65]宋志伟,张芙蓉,曲直.A/O和A-2/O工艺对膜生物反应器处理焦化废水影响的研究[J].环境工程学报,2009,3(12):2198-2202.
    [66]牛明芬,李卓坪,张迪,等.A/O反应器处理养殖场废水[J].沈阳建筑大学学报(自然科学版),2011,27(1):140-145.
    [67]alvarez J A, Becares E. Seasonal decomposition of Typha latifolia in a free-water surface constructed wetland[J]. Ecological Engineering,2006,28(2):99-105.
    [68]Passoni M, Morari F, Salvato M, et al. Medium-term evolution of soil properties in a constructed surface flow wetland with fluctuating hydroperiod in North Eastern Italy [J]. Desalination,2009,246(1-3):215-225.
    [69]Yates C R, Prasher S O. Phosphorus reduction from agricultural runoff in a pilot-scale surface-flow constructed wetland[J]. Ecological Engineering,2009,35(12):1693-1701.
    [70]Iamchaturapatr J, Yi S W, Rhee J S. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering,2007,29(3):287-293.
    [71]Matamoros V, Garcia J, Bayona J M. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent[J]. Water Research,2008,42(3):653-660.
    [72]Tao W, Hall K J, Duff S J B. Performance evaluation and effects of hydraulic retention time and mass loading rate on treatment of woodwaste leachate in surface-flow constructed wetlands[J]. Ecological Engineering,2006,26(3):252-265.
    [73]叶建锋,徐祖信,李怀玉.垂直潜流人工湿地堵塞机制:堵塞成因及堵塞物积累规律[J].环境科学,2008,29(6):1508-1512.
    [74]李松,王为东,强志民,等.自动增氧型垂直流人工湿地处理农村生活污水试验研究[J].农业环境科学学报,2010,29(8):1566-1570.
    [75]Wang R, Korboulewsky N, Prudent P, et al. Can vertical-flow wetland systems treat high concentrated sludge from a food industry? A mesocosm experiment testing three plant species[J]. Ecological Engineering,2009,35(2):230-237.
    [76]J. V. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater[J]. Ecological Engineering,2009,35(1):1-17.
    [77]Vymazal J, Kropfelova L. Removal of organics in constructed wetlands with horizontal sub-surface flow:A review of the field experience[J]. Science of The Total Environment,2009,407(13):3911-3922.
    [78]Babatunde A O, Zhao Y Q, O' Neill M, et al. Constructed wetlands for environmental pollution control:A review of developments, research and practice in Ireland[J]. Environment International,2008,34(1):116-126.
    [79]Jan V. Long-term performance of constructed wetlands with horizontal sub-surface flow:Ten case studies from the Czech Republic[J], Ecological Engineering,2011,37(1):54-63.
    [80]Naz M, Uyanik S, Yesilnacar M I, et al. Side-by-side comparison of horizontal subsurface flow and free water surface flow constructed wetlands and artificial neural network (ANN) modelling approach[J]. Ecological Engineering,2009,35(8):1255-1263.
    [81]Suzuki K, Tanaka Y, Osada T, et al. Removal of phosphate, magnesium and calcium from swine wastewater through crystallization enhanced by aeration[J]. Water Research,2002,36(12):2991-2998.
    [82]Hanhoun M, Montastruc L, Azzaro-Pantel C, et al. Temperature impact assessment on struvite solubility product:A thermodynamic modeling approach[J]. Chemical Engineering Journal,2011,167(1):50-58.
    [83]Chauhan C K, Joshi M J. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals[J]. Journal of Crystal Growth,(0).
    [84]Song Y, Qiu G, Yuan P, et al. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions[J]. Journal of Hazardous Materials,2011,190(1-3):140-149.
    [85]Liu Y, Kwag J, Kim J, et al. Recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater [J]. Desalination,2011,277(1-3):364-369.
    [86]鲍小丹,叶志隆,马建华,等.鸟粪石法回收养猪废水中磷时pH对沉淀物组分的影响[J].环境科学,2011,32(9):2598-2603.
    [87]邓良伟.水解—SBR工艺处理规模化猪场粪污研究[J].中国给水排水,2001,17(3):8-11.
    [88]万金保,陈琳,吴永明,等.IOC-SBBR-人工湿地组合工艺在猪场废水处理中的应用[J].给水排水,2011,37(7):47-51.
    [89]邵丕红.城市污水高效厌氧处理技术研究[D].中国地质大学(北京),2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700