差分干涉雷达测量技术中水汽延迟改正方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,我国灾害频发,地震、地面沉降、滑坡、泥石流等,严重威胁到人民群众的生命财产安全。为保证可持续发展战略的顺利实施和建立以人为本的和谐社会,我国持续在全国范围内实施了地质灾害大调查以及防治项目。InSAR作为一种大范围内灾害监测的有效手段在地质灾害调查中发挥了重要的作用。然而由于大气水汽的存在,当雷达信号穿过大气层时,会导致信号传播路径的延迟和以及传播速度的减缓,使得我们的观测相位具有一个附加的延迟量,即大气延迟相位,从而影响了InSAR的监测精度,限制了其在滑坡、危岩体等高精度形变监测要求灾害中的应用。尤其是满足高速经济发展需要的地铁、高铁建设,更是迫切需要获取大范围内地铁、高铁沿线高精度的地表形变信息,因此研究如何改正InSAR中大气延迟误差提高大范围InSAR的监测精度,不仅对拓展InSAR应用范围和监测能力具有重要意义,而且也是积极发挥InSAR在地质灾害大调查及经济建设中重要作用所面临的一个急需解决的问题!
     本文针对InSAR中大气延迟问题,从两方面展开了大气延迟改正理论和方法的研究,即基于外部数据MODIS、GPS、ECMWF等的大气延迟改正的理论方法研究,和基于SAR影像自身的大气延迟改正方法研究。详细讨论了各种数据改正SAR影像中大气延迟的基本理论和方法,并提出了相关新算法,通过对各类方法的实例研究得到了一些有益结论。
     通过研究,本文取得了以下主要成果及创新:
     1)针对MODIS水汽反演算法受各种反射误差的影响而使得MODIS反演水汽值存在误差的问题,本文利用西安地区的GPS和MODIS晴空数据,研究了MODIS水汽产品的误差纠正模型,同时还研究建立了湿延迟ZWD与可降水汽值PWV之间的转换关系与系数。研究指出由MODIS获取的水汽值比GPS水汽值要大,两者间约存在1.127倍的关系且与高程无关;考虑了季节性变化的转换系数精度较高,针对西安地区值夏季采用6.0,冬季采用6.52较为合适。
     2)研究了利用MODIS水汽改正InSAR中大气延迟相位的方法,针对云污染情况下的像素插值问题进行了讨论,通过不同情况的大气延迟改正实例,证明了MODIS纠正大气延迟的能力和程度,同时指出当大气状态变化较大时,用MODIS数据改正甚至会引入观测误差,因此利用MODIS数据改正D-InSAR结果须谨慎。
     3)针对利用GPS改正InSAR中大气延迟相位中的空间插值问题,本文提出了顾及地形影响的GPS湿延迟插值算法和顾及地形因素的Kriging插值新算法(IKriging),研究表明,本文提出的两种插值新算法相比传统的Kriging和IDW插值方法,更能够反映地形对大气分布的影响,且更能够反映大气的细节信息。同时本文提出的IKriging方法,还可使用于多影响因素的插值应用。
     4)ECMWF数据用于InSAR大气延迟改正面临其空间分辨率和时间分辨率过低的限制,本文针对其空间分辨率较低的缺点,研究建立了基于边界层伸缩模型SBLM的ECMWF空间加密的模型算法,推导了相关公式,并编制了相应的软件。利用欧洲大陆夏季连续两个月5600多个采样点的GPS水汽和地表温度、气压数据对模型进行验证,结果表明SBLM计算得到的PWV、P和T与GPS PWV以及地面观测气压、温度之间相关系数分别高达0.94、0.99和0.95,模型精度分别为2.38mm、2.97hpa和2.42K。对SBLM特性研究表明,相对于纬度,高程变化的对模型精度影响更大。将SBLM模型应用于太原盆地两对条幅干涉相位的大气延迟改正,发现ECMWF可以改正结果中部分地形相关延迟相位和长波相位,纠正幅度分别达28%和43%。
     5)针对无可用外部数据情况的大气延迟改正,本文提出了单幅差分干涉图中的大气纠正算法,并用Akaike信息准则研究了地形相关湿延迟的模型显著水平,指出相比于线性模型,指数函数模型更符合差分延迟相位与地形回归关系。为避免噪声对差分延迟相位与地形回归模型的影响,本文提出了分段中位数(SMM)特征点选取方法,简化并精化了回归模型。该方法用于实际数据的大气延迟纠正实验表明,改正效果明显,改正幅度达到70%以上。在没有任何外部数据辅助数据用于大气延迟相位改正时,该法为单幅干涉图的大气相位改正提供了思路。
     6)首次研究和评价了InSAR时间序列分析方法中分离大气相位的可靠性及改正效果。研究表明InSAR时间序列分析方法分离出大气延迟相位与高程具有一定的相关性,符合大气延迟在空间上的分布特征。研究指出大气延迟改正前后,形变量最大改正幅度可达10mm,且对分离大气进行改正后的形变序列结果相对平滑。PS-InSAR和SBAS-InSAR大气延迟改正后的形变结果具有较高的一致性,两种结果的平均不符值在5mm以内。总体而言,基于多幅SAR影像长时间序列分析方法大气延迟相位改正前后的形变趋势基本一致,说明InSAR时间序列分析方法对大气延迟相位具有很好的抑制作用。
In recent years, geological disasters frequently occurred in our country, such asearthquake, ground subsidence, landslides, debris flows and so on, which have caused aserious threats to people's life and property security. In order to ensure the smoothimplementation of the sustainable development strategy and establish people-orientedharmonious society, a series of geological disaster investigation and prevention projectshave been carried out in our country. As an effective tool in a wide range of geologicaldisaster survey and monitoring, InSAR plays an important role. However, due to theexistence of water vapor, the radar signal will get propagation path delay and propagationspeed slow down when it through the atmosphere. those will lead an additional delay valuesin our observation phase, i.e. atmospheric delay phase, which affects the accuracy of theInSAR technology and limits its application in the landslide, dangerous rock massdeformation monitoring and so on. Especially with the subway and high-speed railconstruction meeting the rapid economic development needs, it is an urgent need to acquirea large range of high precision surface deformation information around subway andhigh-speed rail line. So study on how to correct the atmospheric delay error and improve thelarge-scale InSAR monitoring accuracy has great significance not only to expand InSARapplication fileds and monitoring ability, but also to geological hazard survey and economicconstruction.
     For atmospheric delay error, two kinds of the atmospheric delay correction methodshave been studied in this paper, namely based on SAR image themself methed and based onexternal data method, such as using MODIS, GPS, ECMWF data. The principle and methodof two kinds of the atmospheric delay correction methods have been described in n detail.and some new algorithms have been recommended. Some useful conclusions have beenobtained basing on the case study of all kinds of methods.
     Through the study, this paper made the following main achievements and innovation:
     1) For the problem that the MODIS water vapor retrieval algorithm is affected byvarious reflection errors, the MODIS water vapor error correction model has been studiedby using GPS and cloud free MODIS data cover xian area. The conversion coefficient between zenith wet delay and precipitable water vapor value has been studied. The studiesshow that MODIS water vapor value larger than GPS water vapor value about1.127times,which there is no relation with the elevation. The conversion coefficient considering theseasonal changes has a high precision. For Xi'an area the conversion coefficient is6.0insummer and6.52in winter.
     2) The atmospheric delay correction method by using MODIS water vapor has beenstudied. The interpolation problem for the cloud of pollution pixels are discussed, and theatmospheric delay correction ability and extend have been proved by the correctionexamples. At the same time, this paper points out that under the conditions of atmospherechanges greatly, using MODIS data to correct even will introduce observation error, sousing MODIS image for correction of D-InSAR results must be cautious.
     3) For the problem of space interpolation by using GPS to correct atmospheric delay,GPS wet delay interpolation algorithm considering topographic effects and new algorithmKriging interpolation lgorithm considering terrain factors are proposed. Studies show thattwo kinds of interpolation methods proposed in this paper can reflect the topography effecton atmospheric distribution and detail information better than that of the traditional Kriginginterpolation method and IDW. At the same time, the proposed IKriging method can also beused for multiple factors influencing interpolation.
     4) For atmospheric delay correction by using ECMWF data, low spatial resolution andtime resolution are two important limited factors. For the disadvantage of the ECMWF datawith lower spatial resolution, the strected boundary layer model (SBLM) has been studied andcarried out, and the corresponding software is compiled. When they are compared to morethan5600sampling points GPS and surface temperature, pressure data for two months insummer of Europe, the results showed that the correlation coefficients between the SBLMcalculated PWV, P and T and true values were as high as0.94,0.99and0.95, the precision ofthe model were2.38mm and2.97hpa and2.42K. Study on SBLM characteristics showedthat the precision of the model were more affected by elevation change than the latitude.When SBLM was used to correct two pairs tripe SAR interferograms atmospheric delaycorrection cover taiyuan basin, part of the terrain related delay phase and long wave phasewere corrected, and the correction of amplitude were up to28%and43%respectively.
     5) When there is no available external data for the atmospheric delay correction, theatmospheric correction algorithm for single differential interferograms were presented. Thesignificant level of terrain correlation wet delay model were studied by Akaike informationcriterion, which shows that exponential model is more consistent with differential delayphase and topography regression relationship compared with linear model. In order to avoidthe effect of noise on the differential delay phase and topography regression model, theSection Median Method (SMM) is presented, which simplified and refined the regressionmodel. The method is used for the actual data of the atmospheric delay correction showsthat the correction effect is very obvious and up to70%. The method provides a train ofthought for single interferogram atmospheric delay phase correction when the absence ofany external data for atmospheric delay phase correction.
     6) The reliability of the atmospheric phase separated from InSAR time series analysismethod and the correction effect are researched and evaluated for the first time in this paper.The study shows that there are certain relationship between the atmospheric phase separatedfrom InSAR time series analysis method and height, which is consistent with the spacedistribution feature atmospheric delay.The study shows that the maximum correction ratecan reach up to10mm before and after the atmospheric delay correction, and the resultsshow more smooth after the atmospheric correction than that befor. The results has highconsistency between PS-InSAR and SBAS-InSAR after the atmospheric delay correction,and the average discrepant values is within5mm. The deformation trend of the resultsbefore and after the atmospheric delay correction is basically the same. The methods ofInSAR time series analysishas a very good inhibitory effect on the atmospheric delay phase.
引文
[1].陈俊勇.地基GPS遥感大气水汽含量的误差分析[J].测绘学报,1998,27(2):113-118.
    [2].单新建,柳稼航,马超.2001年昆仑山口西8.1级地震同震形变场特征的初步分析[J].地震学报,2004,26(5):474~480
    [3].单新建,屈春燕,宋小刚等.汶川Ms8.0级地震InSAR同震形变场观测与研究.地球物理学报,2009,52(2):496-504.
    [4].葛大庆,王艳,郭小方等,利于短基线差分干涉纹图集监测地表形变场[J],大地测量与地球动力学,28(20):61-66,2008.
    [5].侯建国,杨成生,张勤,蒋光伟,王宏宇, GPS可降水汽与MODIS可降水汽回归性分析[J].地理与地理信息科学,2010.3,26(2):42-45
    [6].侯建国,张勤,杨成生.InSAR技术及其在地质灾害中的应用[J],测绘与空间地理信息,2007.12,30(6):28-30
    [7].季灵运,王庆良,崔笃信,杨成生.SAR卫星轨道数据精度对Doris获取DEM精度的影响研究,《测绘科学》,2009.9,34(5):57-59
    [8].季灵运.InSAR相位解缠算法比较与评价研究[D].西安:长安大学硕士学位论文,2007
    [9].姜立鹏,覃志豪,谢雯.针对MODIS近红外数据反演大气水汽含量研究[J].国土资源遥感,2006,69(3):5-8.
    [10].李建国,毛节泰,等.使用全球定位系统遥感水汽分布原理和中国东部地区加权“平均温度”的回归分析[J].气象学报,1999,157(3):283~293.
    [11].李树德,袁仁茂.大同地裂缝灾害形成机理.北京大学学报(自然科学版)[J],2002,38(1):104-108
    [12].李陶,重复轨道星载SAR差分干涉测量监测地表形变研究,武汉大学博士学位论文,2004.
    [13].廖明生,林珲.雷达干涉测量——原理与信号处理基础[M].北京:测绘出版社,2003
    [14].刘国祥,丁晓利,陈永奇,等.使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场.科学通报.2001,46(14):1224-1228
    [15].刘国祥,丁晓利,李志林,等.星载SAR复数图像的配准[J].测绘学报.2001,30(1):60-66
    [16].刘基余,李征航,王跃虎等.全球定位系统原理及其应用[M].北京:测绘出版社,1999.
    [17].刘湘南,黄方,王平,GIS空间分析原理与方法,科学出版社,2008,北京
    [18].刘玉海,陈志新,牛富俊.大同市地面沉降特征及地下水开采的环境地质效应.中国地质灾害与防治学报[J].1998,9(2):155-160.
    [19].卢妁,黄思训,何锡玉.利用MODIS近红外水汽通道资料反演大气水汽含量[J].气象水文装备,2006(3):14-17.
    [20].吕继峰.大同市地下水开采对地裂缝活动的影响[J].内江科技,2004(3):79-80
    [21].穆冬.干涉SAR的基线干损和极限基线分析[J].现代雷达,2003,25(7):4-6.
    [22].欧吉坤.GPS测量的中性大气折射改正的研究.测绘学报,1998,27(1):31-36
    [23].曲建光.GPS遥感气象要素的理论与应用研究[D].湖北:武汉大学,2005.
    [24].任建国,龚卫国,焦向菊.山西大同市地裂缝的分布特征及其发展趋势[J].山西地震.2004,118(3):39-42
    [25].舒宁.雷达影像干涉测量原理[M].武汉大学出版社,2003:1-100
    [26].宋淑丽,朱文耀,廖新浩.地基GPS气象学研究的主要问题及最新进展[J].地球科学进展,2004,19(2):250-259
    [27].宋小刚.基于GPS和MODIS得ASAR数据干涉测量中大气改正方法研究[D],武汉大学博士学位论文,2008.
    [28].汤晓涛. INSAR数据处理的基线估计和影像自动概略配准[J].解放军测绘学院学报,1999(4),260-262
    [29].汪鲁才,王耀南,毛建旭.基于相关匹配和最大谱图像配准相结合的InSAR复图像配准方法[J].测绘学报.2003,32(4):320-324
    [30].王超,刘智,张红等.张北-尚义地震同震形变场雷达差分干涉测量[J].科学通报,2000,45(23):2550-2555
    [31].王超,张红,刘智.星载合成孔径雷达干涉测量[M].北京:科学版出社,2002
    [32].王伟民,孙晓敏,张仁华,等.地物反射光谱对MODIS近红外通道水汽反演影响的模拟分析[J].遥感学报,2005(1):8-15.
    [33].王小亚,朱文耀,严豪健等.地面GPS探测大气可降水量的初步结果[J].大气科学,1999,23(5):605-612.
    [34].王勇.地基GPS网气象应用研究[D].中国科学院测量与地球物理研究所,2006.
    [35].王正权,地统计学及在生态学中的应用[M],北京:科学出版社,1999
    [36].魏钟铨.合成孔径雷达卫星[M].科学出版社,2001.239-245.
    [37].吴立新,高均海,葛大庆,等.工矿区地表沉陷D-InSAR监测试验研究.东北大学学报.2005,26(8):778-781
    [38].许才军,王江林.线性最小方差估计用于SAR干涉图大气延迟改正.武汉大学学报(信息科学版),32(9):757-760,2007.
    [39].袁孝康.星载合成孔径雷达导论[M].国防工业出版社,2003.221~23
    [40].昝雅玲.大同市区地下水开采与地裂缝形成的关系[J].中国煤田地质,2006,18(6):26-29.
    [41].杨成生,张勤,赵超英,朱武,王亚男,王宏宇.基于MODIS和GPS的D-InSAR大气延迟改正[J].大地测量与地球动力学,2010,30(3):127-131.
    [42].杨成生,张勤,赵超英,王宏,王亚男.基于地形和GPS观测的SAR干涉图大气延迟估计[J].大地测量与地球动力学,2011.2,31(1):142-146.
    [43].曾琪明,解学通.基于谱运算的复相关函数法在干涉复图像配准中的应用[J].测绘学报.2004,33(2):127-131
    [44].张澄波.综合孔径雷达——原理,系统分析与应用[M].北京:科学出版社,1989
    [45].张勤,赵超英,丁晓利,陈永奇,王利,黄观文,杨成生,丁晓光,马静.利用insar与GPS研究西安现今地面沉降与地裂缝时空演化特征,地球物理学报,2009.5,52(5):1214-1222
    [46].张诗玉,干涉图大气效应校正方法研究及InSAR在天津地面沉降监测中的应用[D],武汉大学博士学位论文,2009.
    [47].张双成,地基GPS遥感水汽空间分布技术与应用,武汉大学博士学位论文,2009.
    [48].章红平.利用地基GPS数据估计大气可降水分[D].湖北:武汉大学,2003.
    [49].赵超英,张勤,丁晓利,瞿伟.基于InSAR技术的西安活动地裂缝定位试验研究[J].武汉大学学报.信息科学版,2009b,34(7):809-813
    [50].赵超英,张勤,丁晓利,彭建兵,杨成生. InSAR技术用于西安地区1992-1993年间活动地裂缝的定位研究[J].地球物理学进展.2009a(3):1122~1127
    [51].赵玲,梁宏,崔彩霞.乌鲁木齐地基GPS数据的解算和应用[J].干旱区研究,2006,23(4).
    [52].郑芳,马德宝,裴怀宁.干涉合成孔径雷达基线要素估计[J].遥感信息,2005.3,7-9.
    [53]. ARGUS, D.F., HEFLIN, M.B., PELTZER, G., CRAMPE, F. and WEBB, F.H.,2005, Interseismic strain accumulation and anthropogenic motion in metropolitan LosAngeles. Journal of Geophysical Research,110, B04401, doi:10.1029/2003JB002934.
    [54]. Askne J, Nordius H.Estimation of tropospheric delay for microwaves from surfaceweather data[J].Radio Sci,1987,22:379-386.
    [55]. Baby, H., P. Gole, and J.A. Lavergnat, Model for tropospheric excess path length ofradio waves from surface meteorological measurements, Radio Science,22,1023-1038,1988.
    [56]. BAWDEN, G.W., THATCHER,W., STEIN, R.S., HUDNUT, K.W. and PELTZER,G.,2001, Tectonic contraction across Los Angeles after removal of groundwaterpumping effects. Nature,412, pp.812–815.
    [57]. Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface DeformationMonitoring Based on Small Baseline Differential SAR Interferograms [J]. IEEE Trans.Geosci. Remote Sensing,2002,40(11):2375-2383.
    [58]. Bevis M S, Chiswell B S. Mapping zenith wet delays onto perceptible water [J].J.Appl.Meteor.1994,33:379~386.
    [59]. Bevis M, Businger S, Herring T A, C. Rocken, R. Anthes, and R. Ware. GPSmeteorology: romote sensing of atmospheric water vapor using the global positioningsystem [J]. JGR,1992,97(D14):15787~15801.
    [60]. Bevis,M.,S.Businger,S.Chiswell,T.Herring,R.Anthes,C.Rocken,and R.Ware, GPSmeteorology: mapping zenith wet delays onto precipitable water,Journal of AppliedMeteorology,33,379-386,1994.
    [61]. Bock, Y.; Williams, S. Integrated Satellite Interferometry in Southern California.EOS1997,78(29),293,299-300.
    [62]. Bonforte, A. Ferretti, A. Prati, C.; Puglisi, G. Rocca, F. Calibration of atmosphericeffects on SAR interferograms by GPS and local atmosphere models: first results. J.Atmos. Terr. Phys.2001,63,1343-1357.
    [63]. Born,M.and Wilf,E.,Electromagnetic Theory of Propagation Interference andDiffraction of Light,Pergamon Press.New York,1980
    [64]. Briole P., Massonnet D., and Delacourt C., Post-eruptive deformation associatedwith the1986-1987and1989lava flows of Etna detected by radar interferometry [J].Geophys. Res. Lett,24(1):37-40,1997.
    [65]. Chao-ying Zhao, Qin Zhang, Chengsheng Yang, Weibao Zou. Integration ofMODIS data and Short Baseline Subset(SBAS) technique for land subsidencemonitoring in Datong,China.Journal of Geodynamics,2010, In Press, Available online11November2010.
    [66]. Colesanti C, Ferretti A, Prati C, et al. Monitoring Landslides and Tectonic Motionwith the Permanent Scatterers Technique[J]. Eng Geology,2003,68(1~2):3~14.
    [67]. David T. Sandwell, Lydie Sichoix, Duncan Agnew et al. Near real-time radarinterferometry of the Mw7.1Hector Mine Earthquake [J]. Geophysical Research Letter,2000,27(19):3101-3104
    [68]. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E., and Elgered, G. Geodesybyradio interferometry: Effects of atmospheric modeling errors on estimates of baselinelength. Radio Science,20(6),1593-1607,1985.
    [69]. Davis, J.L., G. Elgered, A.E. Niell, and C.E. Kuehn, Ground-based measurement ofgradients in the "wet" radio refractivity of air, Radio Science,28(6),1003,1993.
    [70]. Davis, J.L., T.A. Herring, I.I. Shapiro, A.E.E. Rogers, and G. Elgered, Geodesy byradio interferometry: Effects of atmospheric modeling errors on estimates of baselinelength, Radio Science,20,1593-1607,1985.
    [71]. Elgered, G., Tropospheric radio path delay from ground-based microwaveradiometry, in Atmospheric Remote Sensing by Microwave Radiometry, edited by M.Janssen, pp.215-258, John Wiley, New York,1993.
    [72]. Emardson, T.R., and J.M. Johansson, Spatial interpolation of the atmospheric watervapor content between sites in a ground-based GPS network, Geophysical ResearchLetters,25(17),3347-3350,1998.
    [73]. Farr, T.G. The Shuttle Radar Topography Mission. Rev. Geophys.,45(2), RG2004.(10.1029/2005RG000183.)(2007)
    [74]. Farr, T.G., M. Kobrick. Shuttle Radar Topography Mission produces a wealth ofdata [J].Amer. Geophys. Union Eos,583-585,2000.
    [75]. Fayaz Onn.Modeling water vapor using GPS with application to mitigating InSARatmospheric distortions.Stanford university,2006.
    [76]. Feigl, K.L., A. Sergent, D. Jacq. Estimation of an earthquake focal mechanismfrom a satellite radar interferogram: Application to the December4,1992Landersaftershock [J]. Geophysical Research Letters,1995,22:1037-1040
    [77]. Ferretti A, P rati C, Rocca F. Permanent Scatterers in SAR Interferometry〔J〕.IEEE TGARS,2001,39(1):8~20.
    [78]. Ferretti A, P ratiC, Rocca F. Non2linear Subsidence Rate Estimation U singPermanent Scatterers in D ifferential SAR Interferometry [J]. IEEE TGARS,2000,38(5):2202~2212.
    [79]. Ferretti.A, Colesanti C., Perissin D., et al. Evaluating the Effect of the ObsevationTime on the Distribution of SAR Permanent Scatters[R].Fringe Workshop,Frascati, Italy,2003.
    [80]. Ferretti.A, Perissin D., Prati.C.et al. On the physical nature of SAR PermanentScatterers[R]. In: URSI Commission F Symposium. Ispra, Italy:2005.06.
    [81]. Ferretti.A, Prati C., Rocca F. Permanent scatterers in SAR interferometry[C]. IEEETransactions on Geoscience and Remote Sensing.39(1):8¨C20,2001.
    [82]. Foster, J.; Brooks, B.; Cherubini, T.; Shacat, C.; Businger, S.; Werner C. Mitigatingatmospheric noise for InSAR using a high resolution weather model. Geophys. Res. Lett.2006,33, L16304.
    [83]. Fruneau, B. and F.Sarti, Detection of ground subsidence in the city of Paris usingradar interferometry: isolation of deformation from atmospheric artifacts usingcorrelation. Geophysical research Letters, Vol.27, pp.3981-3984,2000.
    [84]. Fujiwara, S., P.A. Rosen, M. Tobita, and M. Murakami, Crustal deformationmeasurements using repeat-pass JERS1synthetic aperture radar interferometry near theIzu Peninsula, Japan, Journal of Geophysical Research,103(B2),2411-2426,1998.
    [85]. Galina Dick,Gerd Gendt,Christoph Reigber.Operational Water Vapor Estimation ina Dense German Network. IGS1999Technical Report,1999:375-384liquid water retrievals from airborne imaging spectrometer data, Journal of GeophysicalResearch,95,3549-3564,1990.
    [87]. Gao, B.C., and Y.J. Kaufman, ATBD-MOD-05: The MODIS near-IR water vaporalgorithm (available online at: http://ltpwww.gsfc.nasa.gov/MODISAtmosphere/_docs/atbd_mod03.pdf), pp.25,1998.
    [88]. Gao, B.C., and Y.J. Kaufman, Water vapor retrievals using Moderate ResolutionImaging Spectroradiometer (MODIS) near-infrared channels, Journal of GeophysicalResearch,108(D13),4389, doi:10.1029/2002JD003023,2003.
    [89]. Gao, B.-C.; Kaufman, Y.J. Water vapor retrievals using Moderate ResolutionImaging
    [90]. Gao,B., A.F.H. Goetz, E.R.Westwater, J.E.Conel, R.O.Green. Possible near-IRchannels for remote sensing precipitable water vapor from geostationary satelliteplatforms [J]. App1Meteorol,1993,32:179l-1801
    [91]. Ge L, Han S, Rizos C. The Double Interpolation and Double Prediction (DIDP)Approach for INSAR and GPS Integration. IAPRS, XXXIII,2000.
    [92]. Ge M, Calais E, Haase J. Reducing the Satellite Orbit Error Effects in NearRealTime GPS Zenith Tropospheric Delay Estimation for Meteorology [J]. GeophysicsResearch Letters,2000,27:1915-1918
    [93]. Ge, L., S. Han, and C. Rizos, Interpolation of GPS Results IncorporatingGeophysical and InSAR Information, Int. Symp. on GPS-Application to Earth Sciences&Interaction with Other Space Geodetic Techniques,18-22October, Tsukuba, Japan,1999.
    [94]. Godson, W.L., Atmospheric Radiation (Current Investigations and Problems),Technical Note No8, WMO No38, pp.32,1955.
    [95]. Goldstein R.M. Atmospheric limitations to repeat-track radar interferometry[J].Geophy. Res. Lett.22:2517-2520,1995.
    [96]. Goldstein R.M., Engehardt H., Kamb B.et al. Satellite radar interferometry formonitoring ice sheet motion: Application to an Antarctic stream [J]. Science,262:1525-1530,1993.
    [97]. Graham L.C. Synthetic interferometer radar for topographic mapping[A].Proceedings of the IEEE.1974,62(6):763-768
    [98]. Gray, A.L., Mattar, K.E., and G., Influence of Ionosoheric Electron densityfluctuations on satellite radar Interferometry, Geophysical Research Letters,27(10):1451-1454,2000.
    [99]. Hagemann, S., L. Bengtsson, and G. Gendt, On the determination of atmosphericwater vapor from GPS measurements, Journal of Geophysical Research,108(D21),4678,doi:10.1029/2002JD003235,2003.
    [100]. Hall M.P.M.,Barclay,L.W. and Hewitt,M.T.,eds.,Propagation of Radiowaves,TheInstitution of Electrical Engineers,London,2001
    [101]. Hanssen R.F., Weckwerth T.M., Zebker H.A., et al. High-Resolution Water VaporMapping from Interferometric Radar Measurements [J]. Science.1999,283:1297-1299
    [102]. Hanssen R.H. Radar Interferometry-Data Interpretation and Error Analysis [M].Netherlands: Kluwer Academic Publishers,2001.
    [103]. Hanssen, R.Feijt, A. A first quantitative evaluation of atmospheric effects on SARinterferometry. Fringe96’ Workshop on ERS SAR Interferometry,30Sep.-2Oct., Zurich,Switzerland,277-282,1996.
    [104]. Hanssen, R.H. Radar Atmospheric Heterogeneities in ERS Tandem SARInterferometry [M]. Delft, the Netherlands: Delft University Press,1998.
    [105]. Henk Klein Baltink,Hans van der Marel,Andre G A van der Hoeven.Integratedatmospheric water vapor estimates from a regional GPS network[J].Journal ofGeophysical Research,2002,107,10.1029/2000JD000094.
    [106]. Ifadis, I.M., and P. Savvaidis, Space to earth geodetic observations: Approachingthe atmospheric effect, Physics and Chemistry of the Earth, Part A: Solid Earth andGeodesy,26(3),195-200,2001.
    [107]. Ifadis, I.M., and P. Savvaidis, The accurate prediction of the zenith atmosphericdelay as a factor of accuracy on delay modeling at low elevation angles, in Proceedingsof International Symposium on "Geodetic, Photogrammetric and Satellite Technologies-Development and Integrated Application", pp.36-55, Sofia,2001.
    [108]. Ikehara, M.E., Galloway, D.L., Fielding. et al. InSAR imagery reveals seasonal andalignment in Santa Clara Valley, California [abs.]: EOS (supplement) Transactions[J],American Geophysical Union, no.45,1998, November10, p. F37
    [109]. Infoterra. http://www.infoterra.de/tandem-x-satellite,2010.
    [110]. Ireneusz Baran, Mike Stewart, and Sten Claessens. A New Functional Model forDetermining Minimum and Maximum Detectable Deformation Gradient Resolved bySatellite Radar Interferometry. IEEE TRANSACTIONS ON GEOSCIENCE ANDREMOTE SENSING,2005,43(4):675-682
    [111]. Kaufman,GAO B C. Remote sensing of water vapor in the near IR from EOSMOD IS [J]. IEEE. Transactions on Geo sciences and Remote Sensing,1992,30(5):8712884.
    [112]. Kaufman,Y.J, B.C. Gao. Remote sensing of water vapor in the near IR fromEOS/MODIS. IEEE Tmns Geosci Remote Sens,1993,30:871-884
    [113]. Kingmd,Menzelwp,Kaufman, et al. Cloud and aerosol properties, precipitablewater, and profiles of temperature and water vapor from MOD IS [J]. IEEE Transactionson Geoscience and Remote Sensing,2002,41(2):4422458.
    [114]. Klobuchar,J.A.,Ionospheric effects on GPS,in Global Positioning System:Theoryand Applications(VolumeI),edited by B.W.Parkinson,and J.J.SpilkerJr.,pp.485-515,American Institute of Aeronautics and Astronautics,Washington,DC,1996.
    [115]. LANARI, R., LUNDGREN, P., MANZO, M. and CASU, F.,2004, Satellite radarinterferometry time series analysis of surface deformation for Los Angeles, California.Geophysical Research Letters,31, L23613, doi:10.1029/2004GL021294.
    [116]. Lancaster P, Salkauskas K. Curve and surface fitting: An introduction. AcademicPress, London-Orlando,1986.
    [117]. Li, Z. H.; Muller, J. P.; Cross, P.; Albert, P.; Fischer, J.; Bennartz, R. Assessment ofthe potential of MERIS near-infrared water vapour products to correct ASARinterferometric measurements.Int. J. Remote Sens.2006,27,349-365.
    [118]. Li, Z. W. Ding, X.L. Liu, G.X. Modeling Atmospheric Effects on InSAR withMeteorological and Continuous GPS Observations: Algorithms and Some Test results. J.Atmos. Terr. Phys.2004,66,907-917.
    [119]. Li, Z.H.; Fielding, E.J.; Cross, P.; Muller, J.-P. Interferometric synthetic apertureradar atmospheric correction: GPS topography-dependent turbulence model, J. Geophys.Res.2006,111, B02404, doi:10.1029/2005JB003711.
    [120]. Li, Z.H.; Fielding, E.J.; Cross, P.; Muller, J.P. Interferometric synthetic apertureradar atmospheric correction: Medium Resolution Imaging Spectrometer and AdvancedSynthetic Aperture Radar integration. Geophys. Res. Lett.2006,33, L06816.
    [121]. Li, Z.H.; Muller, J.P.; Cross, P. Tropospheric correction techniques in repeat-passSAR interferometry. Proceedings of the FRINGE2003workshop, ESA ESRIN, Frascati,Italy,1-5, December2003.
    [122]. Li, Z.H.; Muller, J.-P.; Cross, P.; Fielding, E.J. Interferometric synthetic apertureradar (InSAR) atmospheric correction: GPS, Moderate Resolution ImagingSpectroradiometer (MODIS), and InSAR integration, J. Geophys. Res.2005,110,B03410.
    [123]. Liang Chang, Xiufeng He.InSAR atmospheric distortions mitigation:GPSobservations and NCEP FNL data.Journal of Atmospheric and Solar-TerrestrialPhysics,Available online12November2010
    [124]. Liebe, H.J., T. Manabe, and G.A. Hufford, Millimeter-wave attenuation and delayrates due to fog/cloud conditions, IEEE Transactions on Antennas and Propagation,37(12),1617-1623,1989.
    [125]. Lin Q., Vesecky J.F., Zebker H.A. New approaches in interferometric SAR dataprocessing [J]. IEEE Transactions on Geoscience and Remote Sensing.1992,30(3):560-567
    [126]. Liu, G.X., Ding, X.L. et al. Pre-and co-seismic ground deformations of the1999Chi-Chi, Taiwan earthquake, measured with SAR interferometry [J]. Computers andGeosciences,2004,30:333-343
    [127]. Liu, Y. Remote Sensing of Water Vapor Content Using GPS Data in Hong KongRegion. Ph.D dissertation, Hung Hom, Hong Kong Polytechnic University,1999.
    [128]. Liu, Y., Remote sensing of atmospheric water vapor using GPS data in the HongKong region, PhD thesis, The Hong Kong Polytechnic University, Hong Kong,2000.
    [129]. Lu Z, Patrick M, Fielding EJ, Trautwein C (2003) Lava volume from the1997eruption of Okmok volcano, Alaska, estimated from spaceborne and airborneinterferometric synthetic aperture radar [J]. IEEE Trans Geosci. Remote Sens.2003,41:1428-1436.
    [130]. Lu, Z. and DANSKIN, W.R.,2001, InSAR analysis of natural recharge to definestructure of a ground-water basin, San Bernardino, California. Geophysical ResearchLetters,28, pp.2661–2664.
    [131]. Lyons, S., and D. Sandwell, Fault creep along the southern San Andreas frominterferometric synthetic aperture radar, permanent scatterers, and stacking, Journal ofGeophysical Research,108(B1),2047, doi:10.1029/2002JB001831,2003.
    [132]. MacMillan D.S.,Atmospheric gradients form very long baseline interferometryobservations,Geophys.Res.Lett,1995,22(9):1041一1044
    [133]. Massonnet, D., Briol P., et al. Deflation of Mount Etna Monitored by space borneradar interferometry [J]. Nature,375:567-570,1995.
    [134]. Massonnet, D., K. Feigl, M. Rossi, et al. Radar interferometric mapping ofdeformation in the year after the Landers earthquake [J]. Nature,1994,369:227-230
    [135]. Massonnet, D., M. Rossi, C. Carmona, et al.The displacement field of the LandersEarthquake mapped by radar interferometry [J]. Nature,1993,364(8):138–142
    [136]. Mendes, V.B., Modeling the neutral-atmosphere propagation delay in radiometricspace techniques, PhD thesis, University of New Brunswick, Fredericton, NewBrunswick, Canada,1999.
    [137]. Mouginis P.J., Rowland S.K., GarbeilH. Slopes of western Galapagos volcanoesfrom airborne interferometric radar [J]. Geophys.Res. Lett,23,3767-3770,1996.
    [138]. Niell, A.E., Global mapping functions for the atmospheric delay at radiowavelengths, Journal of Geophysical Research,101,3227-3246,1996.
    [139]. Niell, A.E., Improved atmospheric mapping functions for VLBI and GPS, EarthPlantets Space,52,699-702,2000.
    [140]. Niell, A.E., Preliminary evaluation of atmospheric mapping functions based onnumerical weather models,Physics and Chemistry of the Earth, Part A: Solid Earth andGeodesy,26(6-8),475-480,2001.
    [141]. Puysségur, B.; Michel, R.; Avouac, J.-P. Tropospheric phase delay ininterferometric synthetic aperture radar estimated from meteorological model andmultispectral imagery. J. Geophys. Res.2007,112, B05419.
    [142]. Rigo, A., and D. Massonet, Investigating the1996Pyrenean earthquake (France)with SAR Interferograms heavily distorted by atmosphere, Geophysical ResearchLetters,26(21),3217-3220,1999.
    [143]. Rosen P.A., Henseley S., Zebker, et al. Surface deformation and coherencemeasurements from SIR-C radar interferometry [J].Geophys. Res.101,23109-23125,1996.
    [144]. Sandwell,D.T., and E. Price, Sums and differences of interferograms: Imaging thetroposphere[C]. Eos Trans. AGU,78(46), Fall Meet. Suppl., F144,1997.
    [145]. Sandwell,D.T., and E. Price.Phase gradient approach to stackingInterferograms.[J].Journal of Geophysical Research,103(B12):30183-30204,1998.
    [146]. Sasstamoinen, J. Atmospheric Correction for the Troposphere and Stratosphere inRadio Ranging of Satellites [R]. Geophysics monograph15,3rd Int.SympUse ofArtificial Satellites for Geodesy, AGU,247-251,1972.
    [147]. Small D. Generate of Digital Elevation Models through Spaceborne SARInterferometry [D]. Ph.D.thesis.1997:17-22
    [148]. Solheim, F.S., J. Vivekanandan, R.H. Ware, and C. Rocken, Propagation delaysinduced in GPS signals by dry air, water vapor, hydrometeors and other particulates,Journal of Geophysical Research,104,9663-9670,1999.
    [149]. Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res.2003,108,4389-4398.
    [150]. Tarayre, H., and D. Massonnet, Atmospheric propagation heterogeneities revealedby ERS-1interferometry, Geophysical Research Letters,23(9),989-992,1996.
    [151]. Thayer,G.D.,An improved equation for the radio refractive index of air,RadioScience,9,803-807,1974.
    [152]. University Corporation for Atmopsheric Research,2000.http://www.meted.ucar.edu/nwp/9cu1/ic2/frameset.htm?opentopic(2) VerticalCoordinates.
    [153]. Usai S. A Least Squares Database App roach for SAR Interferometric Data [J].IEEE Trans. Geosci. Remote Sensing,2003,41(4):753-760.
    [154]. Usai,S. A new approach for long term monitoring of deformations by differentialSAR interferometry. PhD thesis, Delft University of Technology.2001.
    [155]. Vertical Coordinates,http://www.dca.ufcg.edu.br/mna/Anexo-MNA-modulo02b.pdf
    [156]. Vincent Mrstik,Glenn Vard31aricum,Jr.,Gerard CardiUo etc.Terrain heightmeasurement accuracy of interferometric synthetic aperture radars[J].IEEE Trans,1996,32(1):88~97.
    [157]. WATSON, K.M., BOCK, Y. and SANDWELL, D.T.,2002, Satellite interferometricobservations of displacements associated with seasonal groundwater in the Los Angelesbasin. Journal of Geophysical Research,107,2074, doi:10.1029/2001JB000470.
    [158]. Webley, P.W. Atmospheric water vapor correction to InSAR surface motionmeasurements on mountains: Case Study on Mount Etna. Ph.D dissertation, Reading,University of Reading, UK,2003.
    [159]. Webley, P.W. Bingley, R.M. Dodson, A.H. Wadge, G. Waugh, S.J. James, I.N.Atmospheric water vapor correction to InSAR surface motion measurements onmountains: results from a dense GPS network on Mount Etna. Phys. Chem. Earth.2002,27,363-370.
    [160]. Webley, P.W. Wadge, G. James, I.N. Determining radio wave delay bynon-hydrostatic atmospheric modeling of water vapour over mountains. Phys. Chem.Earth.2004,29,139-148.
    [161]. Webley, P.W.; Wadge, G.; James, I.N. Determining radio wave delay bynon-hydrostatic
    [162]. Williams S, Bock Y, Pang P. Integrated Satellite Interferometry: T roposphericNoise, GPS Estimates and Implications for Interferometric Synthetic Aperture RadarProducts[J]. Geophys Res,1998,103(B11):27051~27067.
    [163]. Williams, S., Y. Bock, and P. Fang. Integrated satellite interferometry: Tropospherenoise, GPS estimates, and implications for synthetic aperture radar products [J]. Journalof Geophysical Research,103(B11):27051-27067,1998.
    [164]. Woods, Austin,1998: ECMWF-Forecasting by Computer.http://www.ecmwf.int/research/fc by_computer.html: European Centre forMedium-Range Weather Forecasts (ECMWF).
    [165]. Xiao-li Ding, Zhi-wei Li, Jian-jun Zhu, Guang-cai Feng and Jiang-ping Long.Atmospheric Effects on InSAR Measurements and Their Mitigation. Sensors,2008,8,5426-5448. DOI:10.3390/s8095426
    [166]. Yang CS, Zhang Q, Zhao CY et al., Surface Subsidence and Ground FissuresActivity Monitoring Based on D-InSAR:A Case of Datong City, The5th GRSS/ISPRSWorkshop on Data Fusion And Remote Sensing over Urban Areas (URBAN2009).Shanghai, China,20-22, May,2009.
    [167]. Yang CS, Zhang Q, Zhao CY, Ji LY, Zhu W.Study of mine collapse monitoring byD-InSAR. Mining Science and Technology.2010,20:0696–0700
    [168]. Yuan, L. R. Anthes, R. Ware. Sensing climate change using the Global PositioningSystem [J]. J. Geophys. Res.1993,98:14952~14973.
    [169]. Zebker H.A., Goldstein R.M. Topographic mapping from interferometric syntheticaperture radar observations [J]. J. Geophys. Res.1986,91(B5):4993-4999
    [170]. Zebker, H. A., P. A. Rosen, and S. Hensley. Atmospheric Effects in InterferometricSynthetic Aperture Radar Surface Deformation and Topographic maps [J]. J. Geophys.Res., B4,102(7547-7563),1997.
    [171]. Zebker, H. A., P. A. Rosen, R. M. Goldstein et al. On the derivation of coseismicdisplacement fields using differential radar interferometry: The Landers Earthquake[J].Journal of Geophysical Research,1994b,99(B10),19617–19634
    [172]. Zebker, H.A., C.L. Werner, P.A.Rosen and S. Hensley, Accuracy of topographicmaps derived from RES-1interferometric radar. IEEE Transactions on Geoscience andRemote Sensing, Vol.32, pp.823-836,1994a.
    [173]. Zhao CY, Zhang Q, Ding XL, Lu Z, Yang CS, Qi XM. Monitoring of landsubsidence and ground fissures in Xian, China2005-2006: mapped by SARinterferometry, Environmental Geology, DOI10.1007/s00254-008-1654-9
    [174]. Zhenhong Li. Correction of Atmospheric Water Vapour Effects on Repeat-PassSAR Interferometry Using GPS, MODIS and MERIS Data [D]. University of London,2005
    [175]. Zhiwei LI. Modeling Atnospheric Effects on Repeat-pass InSAR Measurements
    [D]. The Hong Kong Polytechnic University, Hong Kong,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700