管道车在不同导流条长度条件下运移的水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪以来,随着我国经济规模进一步扩大,工业化不断推进,城市化步伐加快,消费结构逐步升级,资源供需矛盾越来越大,人们对交通运输的速度和质量都提出了更高的要求。
     筒装料管道水力输送作为一项新型的物料管道输送技术,是一种洁净环保高效的水力输送方式,具有纯料输送、没有脱水工序而占地少和无污染、能耗小、固体和液体物料均可输送、用水少等优点。该输送方式不同于传统的浆体管道水力输送,又和普通的型料平直流管道水力输送有很大区别,是一种新兴的极有前途的科学技术,具有广阔的应用前景,因此对筒装料管道水力输送的研究具有重大的理论价值和实际意义。
     本论文由国家自然科学基金项目“筒装料管道水力输送的水力特性研究”(50579044)资助,采用模型试验与理论研究相结合的技术路线,分析了管道车在不同导流条长度条件下运移的水力特性,研究的主要内容及成果如下:
     1.分析管道车运动过程中管道车导流条长度与管道车平均速度的关系。分析了在同一荷载,同一流量下,导流条长度对管道车平均速度的影响现象及原因。从总体上看,随着导流条长度的增加,管道车的轴向运行速度呈现逐渐增大的趋势。
     2.分析了不同导流条长度、相同荷载、相同流量情况下,管道沿程压力分布情况。从整体来看,测压管分布曲线沿程降低,只是变化幅度不同。测压管水头随着离进水口的距离的增加而减小,即离进水口的距离越远,压力值越小。
     3.分析了不同导流条长度、相同荷载、相同流量情况下,管道车运行时的局部压力分布情况。清水时,该局部管道内壁面压力是沿程均匀下降的;初时刻,该断面附近压力较清水时有一轻微的上升;车至时,附近压力又有所增大,但在该断面处,压力明显下降,下降影响范围和车身长度相一致;末时刻,该断面附近压力又有进一步上升。
     4.分析了不同导流条长度、相同荷载、相同流量情况下管道车能耗情况及导流条长度对管道车能耗的影响。在不同的导流条长度下管道车的能耗都存在相同的变化趋势,即随着导流条长度的增大,能耗减小的变化规律。
     5.分析了不同导流条长度下管道车输送效率情况及导流条长度对管道车输送效率的影响。在不同的导流条长度下管道车的能耗都存在相同的变化趋势,即随着导流条长度的增大,输送效率提高的变化规律。
     6.在一定的假设前提下,建立了管道车在平直管段平稳运行时的简易数学模型,推导出管道车轴向运行速度的公式,并与试验数据进行对比验证。
     本文研究结果对管道水力输送理论的进一步研究具有一定的参考价值,对于改进管道运输技术具有重要的现实意义,同时也为以后工业化应用提供了参考。
In the 21st centry, with the further expansion of the scale of economy, industrialization progresses, the progress of urbanization accelerating, the upgrading of consumption structure, the growing resources contradiction between supply and demand, people have put forward higher requirements for the speed and quality of transportation.
     The hydraulic transportation of tube-contained raw material (“TRM”for short) by hydraulic pipe is a clean and high efficient method, which can transport both solid material and liquid material and which has the merits of transporting pure material, taking less room ,no pollution ,no dehydrating procedure with less energy and less water. This method of hydraulic transportation is different with traditional slurry pipeline transportation and common material-log pipeline transportation. The TRM by hydraulic pipe is a rising technology which will be applied widely to industry in the future,the research has great theoretical and practical significance.
     The thesis, which was based on national science fund project“The Research on Hydraulic Characteristics Transported by Tube Charging Pipes”(50579044), adopted the research method of combining theoretical analyses and model experiments and conducted experimental research on hydraulic characteristics of migration of piped carriage under different placed length . The research findings were as follows:
     1. Analysis of the relations of the guide vanes with different placed length and the vehicle speed. Under the same load and current capacity,the guide vanes placed length is an important factor that affects the pipeline vehicle average velocity. In general,under the the same load and current capacity,the speed of pipe vehicle is increasing with the guide vanes placed length increased.
     2. Analysis of the pressure distribution along the pipeline with different placed length under the same load and current capacity. As a whole, the distribution curves of the piezometric tubes decreased along the path and the change range was different. The water leads of the pizometric tubes decreased as its distance to the intake increased.
     3. Analysis of the partial pressure distribution with different placed length under the same load and current capacity.when there was only clean water in the pipeline, the pressure at local pipeline declined evenly along the way;when the vehicle began to move, there was a slight increase of the pressure in the vicinity of that section, compared with when there was only clean water in the pipeline; When the vehicle arrived at that cross-section,pressure in the vicinity increased as well, but at the section office, the pressure decreased, the affected areas is consistent with the length of the vehicle. When the vehicle was about to pass out the pipe, the pressure near that cross-section increased further again.
     4. Analysis of the relations of the guide vanes with different placed length and the vehicle’s energy consumption under the same load and current capacity. The vehicle’s energy consumption exist the same trend under the guide vanes with different placed length, with the placed length increases, the energy consumption appeared in decreasing variation.
     5. Analysis of the relations of the guide vanes with different placed length and the vehicle’s transport efficiency. The vehicle’s transport efficiency exist the same trend under the guide vanes with different placed length, with the placed length increases, the transport efficiency increased.
     6. In certain assumptions, simple mathematical model has been established when the vehicle was running smoothly in straight pipeline, obtaining the expression of average speed of the pipe vehicle and compared with the experimental data.
     This thesis was of great value to the further research of hydraulic permeability pipe transport and of practical significance to the improving of pipe transportation technique. The study also will offer reference for industrial applications in the future.
引文
[1]张兴荣.管道水力输送,北京:中国水利水电出版社,1998.
    [2]李飞,李永业,孙西欢.管道水力输送研究进展及工业应用[J].山西水利,2008,(2):46-54.
    [3]林洪,周敬宣,段金明.气力管道输送在垃圾收运领域的应用研究[J].环境保护科学,2006,32(4):36-38.
    [4]马保松,曾聪.世界管道物流运输的发展现状及关键技术分析[J],世界科技研究与发展,2004,26(6):48-52.
    [5]陈宜民,杨辉.漫谈气力输送系统[J],力学与实践,2004,(26):92-93.
    [6]韩亚威.气力容器式管道输送技术的发展[J],宁夏机械,2008,(2):41-42,45.
    [7]林愉,王福吉.型料输送管道试验系统的设计研究[J],流体机械,2000,(12):729-733.
    [8] HenryLiu,ThomasR Marrero.Coallog pipeline syste mandme thodofoperation[P],US Patent:4946317,1990.
    [9] Henry Liu, Thomas R. Marrero. Coal log pipeline technology : an overview[J]. Powder Technology 94,1997.
    [10] Liu H. Design and operation considerations of hydraulic capsule pipeline. Proceedings 50th International Lecture Course on Multiphase Flow, Japan, 1992:26- 50.
    [11]林愉,王福吉.型料输送管道系统中注入装置的设计研究[J],中国机械工程,2002,13(11):950-952.
    [12]林愉.煤柱在水力输送管道内的流动性状[J].南方冶金学院学报,1997,18(1):18-23.
    [13]林愉,陶燕.水平同心型料管道输送的数学模型[J],化工矿物与加工,2001,(10)
    [14]张晓东,樊建伟,阎庆绂,李元宗.柱状型煤水力管道输送试验研究系统,太原理工大学学报,2003,34(6):651-652,657.
    [15]阎庆绂,张晓东,武利生.煤锭管道输送的平均能耗[J],水力采煤与管道运输,2003,(3):11-14
    [16]林愉,杨庆煊,唐军.煤浆管道水头损失与煤颗粒ζ电位关系的研究[J].煤炭科学技术, 2005, 33(3) .
    [17]全炳欣,李永业.型料管道输送研究概述[J].山西水利,2007,(4):87-95.
    [28]王邵周.粒状物料的浆体管道输送[M].北京:海洋出版社,1998.
    [19]费祥俊.浆体与粒状物料输送水力学,北京,清华大学出版社,1994.
    [20] E.J瓦斯普等.固体物料的浆体管道输送,水利出版社,1980.
    [21]钱宁,万兆惠.泥沙动力学,北京,科学出版社,1983.
    [22]佟庆理.两相流理论基础,北京,冶金出版社,1982.
    [23]华景生,万兆惠.宾汉浆液在管路中输送时的阻力,泥沙研究,1990,(2):31-37.
    [24]戴继岚,钱宁.粒径分布和细颗粒含量对两相管流水力特性的影响,泥沙研究,1982 (1).
    [25]杨金艳,金英豪,姚香.浆体管道输送有关技术的试验研究[J].矿业工程,2009, 7(3):66-68.
    [26]钱桂花,曹晰.浆体管道输送设备实用选型手册[M ].冶金工业出版社,1995.
    [27]杨盘铭,张晋生,祝庆昌.尖山铁矿长距离铁精矿浆管道输送技术的实践[J].矿业工程,2003,1(1):69-70.
    [28]郭振世,王醒,贺选民,陈永刚,张红梅,贺金刚.金堆城尾矿输送系统节能技术设计研究与实践[J].中国钼业,2006,30(2):10-14.
    [29]李妍妍.梅山铁矿尾矿浓缩系统技术改造[J].金属矿山,2006,(12):75-77.
    [30]江梅.黄麦岭磷化工程尾矿输送系统改造[J]. IM &P化工矿物与加工,2006,(5):38-40.
    [31]刘训才.浆体长距离输送管道的管理和维护[J]. IM &P化工矿物与加工,2003, (3):27-29.
    [32]邹伟生,袁海燕,罗绍卓.长距离管道输送发展现状及在矿山的应用前景[J].金属材料与冶金工程,2009,37(1):57-60.
    [33]吴湘福.矿浆管道输送技术的发展与展望[J].金属矿山,2000,(6):1-7,17
    [34]李炎炎,张耀平,姚应峰.真空管道运输系统管道模型结构分析与实验内容[J].河北交通科技,2008,5(1):10-13,33.
    [35]石悦.未来交通运输工具———真空管道运输系统的构想与展望[J].内蒙古公路与运输,2008,(5):44-48.
    [36]张耀平.真空管道运输——真空产业发展的新机遇[J].真空,2006,43(2):56-59.
    [37]张耀平,于晓东.真空管道运输安全问题成因分析[J].交通运输工程与信息学报,2006,4(3):57-63.
    [38]孙西欢,李永业,阎庆绂.筒装料管道水力输送管道车起动条件的试验研究[C].第二十届全国水动力学研讨会论文集.北京:海洋出版社,2007:425-431.
    [39]全炳新.管道水力输送中料筒起动试验初步研究[D].太原:太原理工大学,2007.
    [40]路明.导流条安放角对筒装道水力输送特性料管影响的试验研究[D].太原:太原理工大学,2007.
    [41]董显伦.管道车运移水力特性的初步试验研究[D].太原:太原理工大学,2007.
    [42]童学卫.不同荷载条件下筒装料管道水力输送水力特性的试验研究[D].太原:太原理工大学,2008.
    [43]李飞.不同径长比条件下筒装料管道水力输送水力特性试验研究[D].太原:太原理工大学,2008.
    [44]靳文宇.管道车在不同导流条安放角条件下运移的水力特性研究[D].太原:太原理工大学,2009.
    [45]李永业,孙西欢,延耀兴.管道车不同荷重时筒装料管道水力输送特性[J]农业机械学报,2008,100-104.
    [46]李永业,孙西欢,阎庆绂.不同导流条安放角条件下的筒装料管道水力输送试验研究[J]水动力学研究与进展A辑,2008,96-99.
    [47]熊鳌魁,魏庆鼎.一种强螺旋流现象的数值试验研究[ J] .空气动力学学报, 2001,19( 1) :83- 90.
    [48]张开泉,刘焕芳.涡管分水排沙规律的研究及其工程应用[ J] .泥沙研究,1991( 4) :1- 11.
    [49]刘焕芳,张开泉.水电站引水渠上涡管排沙式沉沙池试验研究[ J] .水电站设计,1997,13( 2) :55- 60.
    [50]王庆祥.螺旋流的形成和排沙效果试验[ J] .人民黄河, 1987( 5) :12- 17.
    [51]王庆祥,李养志,程永华等.螺旋流排沙的试验研究和应用[ J] .泥沙研究,1990( 2) :63- 70.
    [52]陈仰吾,郭天恩,高恩恩.涡管流管道排除水库泥沙的机理研究[ J] .水利水电技术, 1993( 2) :53- 56.
    [53]毛野.涡管排沙研究进展[ J] .水利水电科技进展,1998,18( 5) :1- 5.
    [54]张开泉,刘焕芳.涡管排沙式沉沙池[ J] .西北水资源与水工程,1999,10( 3) :22- 26.
    [55]唐毅,吴持恭,周著.排沙漏斗三维涡流水流结构[ J] .水利学报,1999( 4) :55- 59.
    [56]周著,唐毅,吴持恭.带悬板排沙漏斗三维流场测试[ J] .八一农学院学报,1995,18( 3) :6- 10.
    [57]侯杰,王顺久,周著等.全沙排沙漏斗浑水流场特性及输沙规律[ J] .泥沙研究,2000( 6) :63- 67.
    [58]周著,侯杰,邱秀云等.漏斗式全沙排沙技术研究与应用[ J] .中国三峡建设,2004( 5) :55- 56.
    [59]孙西欢,孙雪岚,赵运革等.圆管螺旋流局部起旋器与出口段流速分布[ J] .太原理工大学学报,2003, 34( 2) : 122- 125.
    [60]张羽,张仙娥,彭龙生.圆管螺旋流输沙特性试验研究[ J] .泥沙研究,2005( 2) : 34- 38.
    [61]孙西欢,阎庆绂,武鹏林等.圆管螺旋流起旋器结构参数与阻力研究[ J] .流体机械,2000, 28( 10) :7- 9.
    [62]兰雅梅,孙西欢,霍德敏.圆管螺旋流的三维数值模拟[ J] .太原理工大学学报,2001, 32( 3) :255- 259.
    [63]彭龙生,张羽,任万森.螺旋流输移匀粒的能耗[ J] .太原理工大学学报,1998,29( 6) :565- 567.
    [64]褚良银,吴持恭等.水力旋流器湍流结构控制与能耗降减[ J] .化工学报,1998,49( 6) : 760- 763.
    [65]徐继润,罗茜.水力旋流器流场理论[M] .北京:科学出版社,1998.
    [66]褚良银,陈文梅等.水力旋流器.北京:化学工业出版社,1998.
    [67]阎庆绂,陈仰吾,高恩恩等.离心泵入口旋流的试验研究[ J] .农业机械学报,1992,23( 1) :45- 51.
    [68]陈红生,朱祖超,王乐勤.固液两相流离心泵磨损机理和叶轮的设计[ J] .水利学报, 1998,( 8) :67- 71.
    [69]施卫东,汪永志,沙毅等.旋流泵内部流动的研究[ J] .农业机械学报,2006,37( 1) :67- 70.
    [70]戴光清,李建明,陈文梅.水力旋流器湍流场数值模拟[ J] .化工学报,1997,48( 1) :123- 126.
    [71]赵立新,蒋明虎,孙德智.水力旋流器流场分析与测试[ J] .化工机械,2005,32( 3) :139- 142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700