基于有限元与动态仿真的陶瓷过滤机结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题基于有限元分析与动态仿真技术,利用ANSYS软件及ADAMS软件提供的优化模块对安徽铜都特种环保设备有限公司研制的TT型陶瓷过滤机结构进行优化设计。
     首先针对陶瓷过滤机搅拌机构存在的问题,综合优化理论及搅拌原理分析了搅拌机构的运动学参数对搅拌性能的影响,利用ADAMS软件对搅拌机构进行优化。在ADAMS中生成搅拌机构的仿真模型,进行运动学与动力学仿真。在此基础上,以搅拌架在搅拌过程中获得较大的搅拌速度和机构的最小传动角最大为优化的分目标函数,以曲柄摇杆机构的位置尺寸参数为设计变量,利用ADAMS软件的优化模块实现了陶瓷过滤机双曲柄摇杆机构的双目标优化。最后,在有限元分析软件ANSYS中建立陶瓷过滤机支撑机架的有限元模型,对其进行静力分析,并利用ANSYS的优化模块对支撑机架进行优化设计。以支撑机架的总体积为最小为优化目标,对支撑机架尺寸参数的优化进行了初步的探讨。
     陶瓷过滤机搅拌机构的动态仿真及优化结果表明,通过ADAMS软件15次迭代优化能够使搅拌架的最大角速度提升23.67%,机构的最小传动角增大了7.62%,使搅拌机构的搅拌速度和传力性能得到改善,提高了陶瓷过滤机搅拌机构的搅拌效率。通过对陶瓷过滤机支撑机架的有限元分析及优化,发现优化后的结构可节省约43%的原材料,为陶瓷过滤机支撑机架的设计提供了指导作用。
     本课题结合陶瓷过滤机实际工况解决了陶瓷过滤机的结构设计中存在的问题,获得了合理的、经济性高的机械结构。表明基于有限元分析及动态仿真的结构优化设计技术可以在提高产品的设计质量、降低开发与生产制造成本及提高产品在市场上的竞争能力等方面发挥重要作用。
Based on Finite Element Analysis and Dynamic Simulation Technology, this paper focuses on optimizing the structure of TT-type ceramic filter developed by Anhui Tongdu Special Environmental Facilities Co., Ltd. by the means of optimization module provided by ANSYS software and ADAMS software.
     Firstly, based on problems found in the agitating mechanism of ceramic filter, the agitator performance affected by kinematic parameter of agitating mechanism is analyzed incorporating optimization theory and stirring principle, and agitating mechanism is optimized by ADAMS. Simulation model of agitating mechanism is generated in ADAMS to conduct kinematics and kinetics simulation. Furthermore, taken the maximum angular velocity of the agitator and the minimum transmission angle of the mechanism as the target function for optimization, and the position dimension parameters of crank-rocker mechanism as design variable, the optimization configuration of crank-rocker mechanism in ceramic filter is achieved by ADAMS optimization model. Lastly, finite element model of the supporting stand in ceramic filter is built in ANSYS, the finite element analysis software, to conduct static analysis and optimize the design of the supporting stand by ANSYS optimization module. Taken the total volume of the supporting stand being minimum as the optimization target, a preliminary discussion on the optimization of dimension parameters of the supporting stand is carried out in this paper.
     The dynamic simulation and optimization results of the agitation mechanism of ceramic filter showed that the maximum angular velocity of the agitator can be raised by 30.3 percent by the means of 15-times ADAMS iterative optimization and the minimum transmission angle of the mechanism can be raised by 9.6 percent. Through the finite element analysis and optimization of the supporting stand of ceramic filter, it is found that the optimized structure is able to save around 43 percent of raw materials, which can provide guidance for the design of the supporting stand of ceramic filter.
     Incorporating the actual working conditions of ceramic filter, the thesis solved problems found in the structure design of ceramic filter and obtained a mechanical structure which is reasonable and economical. It is stated that the Structure Optimization Design based on Finite Element Analysis and Dynamic Simulation can play an important role in the improvement of products' design quality, decrease of development and production costs and enhancement of market competitiveness.
引文
[1]张高进,王陵. TT型特种(陶瓷)过滤机的研究与应用[J].黄金,2002,第23卷第1期:22-26
    [2]刘传国,孙功伟. TT型特种陶瓷过滤机在山东金创股份有限公司的应用[J].矿业快报,2007,第12期:68-69
    [3]严荥.硫精矿应用国产TT系列陶瓷过滤机的脱水试验及生产实践[J].化工矿物与加工,2007,第10期:7-8
    [4]刘传国,孙功伟. TT型特种陶瓷过滤机在山东金创股份有限公司的应用[J].矿业快报, 2007, (12):68-69
    [5]张太春. TT型陶瓷过滤机在选矿生产中的应用[J].矿山机械, 2001, (10) :52-53
    [6] Schmit,L.A. Structural design by systematic synthesis[C], Proc. 2nd Conference on Electronic Computation, ASCE, New York, 1960, pp. 105-122.
    [7]王科社.机械优化设计[M].北京,国防工业出版社,2007
    [8] Michell A.G.M..The Limits of Economy of Materials in Frame-structures[J].Philosophical Magazine, 1904, 8(17): 589-597.
    [9] Vanderplaats, G.N. Numerical Optimization Techniques for Engineering Design: with Applications[D]. McGraw-Hill, 1984.
    [10] Fox, R.L. Constraint surface normals for structural synthesis techniques[J].AIAA Journal, 1965, 3(8), 1517-1518.
    [11] Haftka, R.T. & Kamat, M.P. Elements of Structural Optimization[D]. Martinus Nijhoff, The Hague, 1985.
    [12] Gellatly, R.A., Berke, L. & Gibson, W. The use of optimality criteria in automated structural design[C]. Presented at the 3rd Conference on Matrix Methods in Structural Mechanics, Wright-Patterson Air Forces Base, Ohio, October 1971.
    [13] Venkayya, V.B. Design of optimum structures[C]. Presented at the Conference on Computer Oriented Analysis of Shell Structures. Palo Alto, California, August 1970.
    [14] Prager, W. & Taylor, J.E. Problems of optimal structural design[J]. Journal of Applied Mechanics, 1985, gs(1), 102-106.
    [15] Prager, W. & Shield, R.T. Optimal design of multi-purpose structures[J]. Journal of Solids and Structures, 1968, 4, 469-475.
    [16] Fleury, C. & Sander, G. Relations between optimality criteria and mathematical programming[C]. Proc. Symposium on Applications of Computer Methods in Engineering, University of Southern California, Los Angeles, California, August 1977, pp. 507-520.
    [17] Schmit, L.A. & Miura, H. Approximation concepts for efficient structural synthesis[J]. NASA CR-2552, 1976.
    [18] Schmit, L.A. Structural synthesis--its genesis and development[J]. AIAA Journal, 1981, 19(10), 1249-1263.
    [19] Bofang, Z. Shape optimization of arch dams[J]. Water Power and Dam Construction, March 1987, 43-51.
    [20] NS Khot, L Berke, VB Venkayya. Comparison of optimality criteria algorithms for minimum weight design of Structures[C]. Structural Dynamics and Materials Conference, 1978, 182- 189
    [21] L.A.Sehmit,C.Fleury. Structural Synthesis by Combining Approximation Concepts and Dual Methods[J]. J.AIAA.1980,18(10):1252-1260
    [22] Lorenz T. Biegler, Ignacio E. Grossmann. Retrospective on optimization[J]. Computers & Chemical Engineering, Volume 28, Issue 8, 15 July 2004, 1169-1192
    [23]钱令希.我国结构优化设计现况[J].力学进展, 1982,第3期:229-237
    [24]翁晓红,涂书栋,肖荣清.基于ADAMS的热室压铸机机铰优化设计[J].武汉大学学报(工学版) ,2005,第38卷第2期:106-109
    [25]李宁,原思聪,王发展等.基于ADAMS的液压锚杆钻机工作机构仿真与优化[J].建筑机械,2006,04(上半月刊):69-71
    [26]宋梅利,范元勋,祖莉.基于ADAMS的六连杆冲压机构的仿真优化设计[J].南京理工大学学报,2006,第30卷第3期:285-287
    [27]肖力军,李仁发.基于ADAMS的汽车底盘仿真及悬架系统性能优化[J].系统仿真学报,2006,第18卷第7期:2007-2010
    [28]王桂梅,李江波,李玉文等.基于ADAMS的垃圾运送车拉臂系统优化设计[J].机械设计,2007,第24卷第3期:48-50
    [29]王欣,蔡福海,高顺德.基于ADAMS的全地面起重机油气悬架动力学优化设计.建筑机械,2007,08(上半月刊):62-67
    [30]于海峰,于学兵.基于ADAMS的双横臂独立悬架优化仿真分析[J].机械设计与制造,2007,第10期:56-58
    [31]徐加慧,夏立新,吴金虎等.基ANSYS的框架变形分析及优化设计[J].机械制造,2004,42卷第476期:19-2
    [32]马天兵,孙兵,杜菲.基于ANSYS对压力容器管板厚度的优化设计[J].煤矿机械,2004,第12期:23-25
    [33]马霄.基于ANSYS定柱式旋臂起重机金属结构的优化设计[J].煤矿机械,2006,第27卷第2期:193-195
    [34]杨晓京,傅中裕,刘剑雄.基于ANSYS的XK640数控铣床立柱优化设计[J].机械设计与制造,2006,第11期:73-74
    [35]何文斌,李菊丽,李立伟. ANSYS在液压支架优化设计中的应用[J].机械设计与制造,2007,第6期:170-172
    [36]宋春明,赵宁,张士勇.基于ANSYS的电主轴结构优化[J].机床与液压,2007,第35卷第9期:104-106
    [37]江进国,常江华,姚宁平.基于ANSYS的液压卡盘胶筒的应力分析与优化[J].煤田地质与勘探,2007,第35卷第5期:77-80
    [38]张进国,陈俊云.基于ANSYS参数化语言汽车钢板弹簧有限元分析及优化[J].拖拉机与农用运输车,2007,第34卷第6期:90-91
    [39]陈立周主编.机械优化设计方法[M].北京,冶金工业出版社,2005
    [40] R.Fletcher. Practical Methods of Optimization[M].2nd.ed.(Wiley, 2000)
    [41] A. Ravindran, K. M. Ragsdell, G. V. Reklaitis. Engineering Optimization[M].2nd Ed, Wiley (2006)
    [42] Christodoulos A. Floudas,Panos M. Pardalos. Encyclopedia of Optimization.Second Edition[M],USA,Springer,2008
    [43] Andreas Antoniou, Wu-Sheng Lu. PRACTICAL OPTIMIZATION Algorithms and Engineering Applications[M].USA,Springer,2007
    [44]白新理等.结构优化设计[M].郑州,黄河水利出版社,2008
    [45]李正东,吴伯明.影响陶瓷过滤机产能的因素[J].金属材料与冶金工程,2007,第35卷,第1期:40-42
    [46]陈志平.搅拌与混合设备设计选用手册[M].北京,化学工业出版社,2004
    [47]化学工程手册编辑委员会.搅拌与混合[M].北京,化学工业出版社,1989
    [48]赵利军,董武,冯忠绪.双排叶片搅拌装置合理参数的确定与匹配.长安大学学报(自然科学版), 2008,第3期: 96-100
    [49]翟雪琴,葛建兵,陈立峰.混凝土搅拌车搅拌叶片优化设计.机械工程与自动化, 2007,第5期: 72-75
    [50] MSC.Software Corporation. MSC.ADAMS Basic Full Simulation Package Training Guide[M].2003
    [51] MSC.Software Corporation. Advanced ADAMS/View Training Guide[M].2003
    [52] Design Synthesis.Inc.OptdesX Users Manial[M].1992
    [53]曾攀编著.有限元分析及应用[M].北京,清华大学出版社,2004
    [54]薛守义编著.有限单元法[M].北京,中国建材工业出版社,2005
    [55] Friedel Hartmann, Casimir Katz. Structural Analysis with Finite Elements[M]. USA,Springer,2007
    [55] O.C.Zienkiewicz, R.L. Taylor, J.Z. Zhu. The Finite Element Method: Its Basis and Fundamentals. Sixth edition, USA, Elsevier, 2005
    [57] Erdogan Madenci, Ibrahim Guven. Finite Element Method and Applications in Engineering Using ANSYS[M].USA,Springer,2006
    [58] Kent L.lawrence. ANSYS tutorial. USA, SDC, 2005
    [59]周长城,胡仁喜,熊文波编著. ANSYS 11.0基础与典型范例[M].北京,电子工业出版社, 2007
    [60] ANSYS.Inc. ANSYS Advanced Analysis Techniques Guide. 2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700