冯家山水库水沙调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国干旱半干旱的西北地区,水库调蓄是该地区水资源控制利用的一种最重要的
    形式。在多沙河流的水库进行水沙调控是保持水库库容的重要措施。冯家山水库是陕西
    省一座以农业灌溉为主,兼有防洪、发电、养殖、向宝鸡第二发电厂和宝鸡市供应生产
    用水及生活用水等综合利用的大型水利工程,水库总库容 3.89 亿 m3,灌溉面积 9.07 万
    hm2。
     通过多年来对千河冯家山水库的排沙观测及试验研究表明,异重流排沙是多沙河流
    上水库排沙减淤的一种重要方式。利用异重流及蓄洪排沙可以减缓水库淤积,提高排沙
    效率,延长水库的使用年限。
     利用千河千阳水文站 1957~1993 年的水沙资料及冯家山水库的运用方式,建立了
    冯家山水库淤积数学模型,在数学模型验证的基础上,得到了冯家山水库到 2043 年时
    的淤积过程、淤积总量及分布。其中水库将淤积 1.71 亿 m3,推移质淤积占 0.259 亿 m3,
    悬移质淤积占 1.45 亿 m3;有效库容由 2.86 亿 m3损失到 1.43 亿 m3,死库容由 0.91 亿
    m3 损失到 0.33 亿 m3,从而导致冯家山水库调节能力降低。
     通过修建局部坝前水库,进行了冯家山水库排沙试验模拟研究,观察了异重流在水
    库模型中的掺混过程及浑水水库的形成过程,并定性地得到了坝前含沙量垂线分布和输
    水洞引水中的最大含沙量。
     在数学模型计算得到水位~库容关系的基础上,对不同频率的入库洪水进行了不同
    淤积年限库容的调洪计算。计算和模型试验结果均表明:对于 2043 年时的水库淤积地
    形,2 年一遇的洪水和 5 年一遇的洪水,输水洞引水为清水,对宝鸡市城市供水和宝鸡
    第二发电厂生产用水的水质(水中的泥沙限制含量小于 5.0 kg/m3)没有影响;在 2023
    年以前的水库淤积地形上,遇到 10 年一遇的入库洪水时,输水洞引水中的泥沙含量小
    于水中的泥沙限制含量小于 5.0 kg/m3,可以满足宝鸡市城市供水和宝鸡第二发电厂生
    产用水的水质要求。在 1993 年淤积地形上,遇到 20 年一遇的入库洪水和 50 年一遇的
    入库洪水时,宝鸡市城市供水和宝鸡第二发电厂生产用水的水质要求已经破坏。
     在保证供水水质(水中的泥沙限制含量小于 5.0 kg/m3)的条件下,得到了到 2030
    年时,各个需水部门的供水调度结果。每年向宝鸡市供水 6000 万 m3,向宝鸡第二发电
    厂供水 4000 万 m3 ,供水保证率为 97.3% , 满足设计标准 97%的要求;农业灌溉用水
    14910 m3,供水保证率为 59.5%,超过了保证率为 50%设计要求;向羊毛湾水库供水 3000
    万 m3,供水保证率为 62.2%。
In the dried and semi-dried northwest region of China, water that restored in reservoir is
    the most important method of water resource utilization. The most important measure to keep
    the storage of reservoirs is adjusting water and sediments in the reservoir that located on the
    Yellow River. Fengjiashan Reservoir is a large hydraulic engineering that have 389 million m3
    total reservoir capacity and irrigates 90.7 thousands hm2, it’s tasks are: irrigating agricultural
    fields, generating electricity, raising fishes, supplying water to Baoji City for life utilization
    and Baoji Second generating electricity plant for industry production utilization.
     With the measurements and model tests for many years of Fengjaishan Reservoir, the
    sediment management models have been worked out: The discharging sediment with density
    current is an important mode to discharge sediment for deposition reduction as well. The
    deposition of reservoir can be reduced by means of density current to sluice sediment and
    save water, it could increase the efficiency of sluicing sediment and prolong the life of the
    reservoir.
     This paper utilizes water and sediment data which collected from Qianyang hydrologic
    station from 1957~1993 and the administrated model of Fengjaishan Reservoir, the author
    construct a mathematic model of reservoir deposition. Based on the check of the model, the
    author research on the process, quantities, and distribution of the deposition in 2043 in the
    future. Total deposition in the reservoir is 171 millions m3, bed material is 25.85 millions m3,
    suspending sediment is 145 millions m3, Effective storage will decrease from 286 millions m3
    to 143 millions m3, died storage will decrease from 91 millions m3 to 33 millions m3. It will
    lead to the decrease of coefficient of the reservoir and reduce the capability of adjustment
    greatly.
     Meanwhile the author built a partial reservoir model to study the sediment deposition of
    the reservoir and sediment flushing with density current .The blending process of the density
    of current and the forming process of the turbid water reservoir are observed through building
    the reservoir before dam, the vertical distribution of sediment before the dam and the
    maximum suspending are obtained in the experiment.
     Based on the relation between level and capacity that obtained from mathematic
    calculation model, calculated routing of flood between different frequency and different
    capacity. The concrete results what obtained form calculation and experiment are: water
    supply of Fengjisshan Reservoir in 2043 year is clean under the condition of the discharge
    below reservoir inflow 560m3/s, quality of water supply is satisfied by Baoji City for life
    utilization and Baoji Second generating electricity plant for industry production utilization;
    
    
    water supply of Fengjisshan Reservoir in 2023 year is useful because sediment content is
    lower than 5kg/m3 under the condition of the discharge below reservoir inflow 1040 m3/s,
    quality of water supply is satisfied by Baoji City for life utilization and Baoji Second
    generating electricity plant for industry production utilization; water supply of Fengjisshan
    Reservoir in 1993 is useless completely because sediment content is bigger than 5kg/m3 under
    the condition of the discharge surpasses reservoir inflow 1650 m3/s, quality of water supply is
    not satisfied by Baoji City for life utilization and Baoji Second generating electricity plant for
    industry production utilization.
     Allocation of supply water in 2030 year for different units was obtained to satisfy by
    water supply quality that is lower than 5kg/m3. The concrete results are: the quantity of water
    supply to Baoji City is 60 millions m3; the quantity of water supply to electric plant is 40
    millions m3, the percentage of water supply is 97.3%, satisfied the demand of the designed
    standard-- 97%; average agriculture irrigation is 149.1 millions m3, percentage of water
    supply is 59.5%, surpassing designed standard--50%, water supply to Yangmao
引文
[1]李义天,孙昭华,邓金运,  黄颖.河流泥沙的资源化与开发利用[J].科技导
    报,2002,(2),57-61. 
    [2]水利部西北水利科学研究所,水利水电科学研究院泥沙所,山西水利科学研究
    所.中小型水库设计与管理中的泥沙问题[M].北京:科学出版社,1983.235-
    237. 
    [3]陕西省水利科学研究所,清华大学.水库泥沙[M].北京:水利电力出版社,
    1979.1-9. 
    [4]王兆印,林秉南.中国泥沙研究的几个问题[J].泥沙研究,2003,(4),73-
    80. 
    [5]韩其为.水库淤积[M].北京:水利电力出版社.2003.1-26. 
    [6]赵文林,张红武,潘贤娣.黄河干支流水库泥沙问题.黄河泥沙[M】.郑州:
    黄河水利出版社,1996.265-296. 
    [7]赵文林,张红武,潘贤娣,黄河泥沙[M].郑州:黄河水利出版社,1996.393-405
    [8] Zhou Zhide,Yang Xiaoqing. Reservoir Sedimentation in China - Experiences and Lessons[C]
    Energy and Water. Sustainable Development. New York: ASCE, 1997, 72-77.
    [9] Margaret M. Burns , Robert C. MacArthur. Sediment Deposition in Jennings Randolph
    Reservoir, Maryland and West Virginia [C] Hydraulic Engineering (1993) . New York: ASCE,
    1993, 1647-1652.
    [10] Jiahua Fan ,Gregory L. Morris. Reservoir Sedimentation. I:
    Delta and Density Current Deposits. [J]Hydraulic Engineering.ASCE.118 (3) 354-
    369.
    [11] Antonino Cancelliere. Alessandro Ancarani,Giuseppe Rossi. Susceptibility of Water
    Supply Reservoirs to Drought Conditions[J] Hydrologic Engineering. 1998,3 (2) 140-148.
    [12] Jiahua Fan ,Gregory L. Morris. Reservoir Sedimentation. II: Reservoir Desiltation and
    Long-TermStorage Capacity. [J]Hydraulic Engineer ing. ASCE. 118 (3) 370-384.
     [13]韩其为.水库淤积[M].北京:水利电力出版社.2003.489-515.
    [14]潘鸿雷,王倩.水库修建对黄河水沙问题的负面影响[J].水土保持通报,
    2003,(2),73-76. 
    [15]水利部西北水利科学研究所,水利水电科学研究院泥沙所,山西水利科学研究
    所.中小型水库设计与管理中的泥沙问题[M].北京:科学出版社,1983.246-
    252. 
    [16]赵文林,张红武,潘贤娣.黄河泥沙[M].郑州:黄河水利出版社,
    1996.393-405. 
    [17]黄华忻,赵克玉.陕南山区中小水库排沙运用[J].泥沙研究,2000,(1),
    77-80. 
    [18]费祥俊.黄河水沙变化新形式下,干流水库运用方式与泥沙处理的思考
    [C].三门峡水利枢纽运用四十周年论文集.郑州:黄河水利出版社,2001.27-
    35. 
    [19]李旭东,翟家瑞.三门峡水库调度工作回顾和展望[C].三门峡水利枢纽运用
    四十周年论文集.郑州:黄河水利出版社,2001.93-98. 
    [20]陕西省水利科学研究所,清华大学.水库泥沙[M].北京:水利电力出版社,
    1979.246-252. 
    [21]周建军,林秉南,张仁.三峡水库减淤增容调度方式研究——多汛限水位调度
    方案[J].水利学报,2002,(3),12-19. 
    [22]张红艺,杨明,张俊华,邓洪亮.高含沙水库泥沙运动数学模型的研究及应用
    [J].水利学报,2001, 
    
    
    65
    (11),20-25. 
    [23]张俊华,王艳平,张红武.黄河小浪底水库运用初期库区淤积过程数值模拟研
    究[J].水利学报,2002,(7),111-115. 
    [24]张红武,赵连军,王光谦,江恩惠.黄河下游河道准二维泥沙数学模型研究
    [J].水利学报,2003,(4),01-07.  . 
    [25]周建军.三峡工程上引航道低水位冲沙方案研究——水库不恒定流分析
    [J].泥沙研究,1999,(2),34-39. 
    [26]梁国亭,高懿堂,梁跃平,龚坚.非恒定流泥沙数学模型原理及其应用
    [J].泥沙研究,1999,(4).44-48 
    [27]K. SHIDA. How to predict reservoir sediment[C] International symposium on river
    sediment Beijing China 1980.3. 821-846 .
    [28]陕西省水利水土保持厅.水库排沙清淤技术[M]. 北京:水利电力出版社, 1989.13-
    24.
    [29]Shou-shan Fan. Research needs in sedimentation at the hydro
    development[C] Internationalsymposium on river sediment. Beijing China 1980.3 851-861 .
    [30] Heinz G.Stefan. Suspend sediment mixing and settling in reservoir. [C] International
    symposium onriver sediment. Beijing China 1980.3 .865-892 .
    [31] Chih Ted Yang . Rate of Energy Dissipation and River Sediment[C],Proceeding of the
    Second International Symposium on River Sediment ,1983,nanjing 575-585.
    [32]Wilhelm Bechteler .Mathematical Model of Non-
    Uniform Suspended Sediment Transport[C],Proceeding of the Second
    International Symposium on River Sediment ,1983,nanjing 390-401.
    [33]Simion Hancu. A Two-Dimensional Mathematical Model
    for the River Bed Deformations[C],Proceeding of the Second International
    Symposium on River Sediment ,1983,nanjing 212-218.
    [34]Churchill,M.A. Discussion of analysis and use of reservoir sedimentation
    data[C],L.C.Gottshalk, federal inter-agency sedimentation conf. Denver 1947 139-140 .
    [35] Thomas E. Croley, II. Sequential Deterministic Optimization in Reservoir
    Operation.[J]Hydrawlic Engineering.ASCE.1974, 100 (3) 443-459.
    [36] Rollin H. Hotchkiss and Daniel E. Mares. Computer Modeling of Reservoir Sedimentation
    and Sluicing [C]Waterpower '91: A New View of Hydro Resources. New York: ASCE, 1991,
    745-752.
    [37] Jose D. Salas, Hyun-Suk Shin.Uncertainty Analysis of Reservoir
    Sedimentation.[Ji]Hydraulic Engmeering.ASCE.2000.125(4) 339-350.
    [38] Albert Molinas , Baosheng Wu.Non-Equilibrium Sediment Transport Modeling of
    Sanmenxia Reservoir[C] Energy and Water. Sustainable Development. New York: ASCE,
    1997, 126-131.
    [39] John S. Tapp, Andrew D. Ward, Billy J. Barfield. Approximate sizing of Reservoirs for
    Detention
    
    
    66
    Time[J] Hydraulics Division.ASCE. 108 (1) 17-23.
    [40] Erlane F. Scares, Tharakkal E. Unny, William C. Lennox. Long Term Prediction of
    Sediment Storage in Reservoirs[C] Water Forum '81, 1981,141-148.
    [4l]沙玉清.泥沙运动引论(修订本)[M].西安:陕西科学出版社.1996. 
    [42]李春安,等.三门峡水利枢纽四十年运用回顾与展望[C].三门峡水利枢纽运
    用四十周年论文集.郑州:黄河水利出版社,2001:3 一 11. 
    [43]王涌泉.三门峡水库对中国水利建设的贡献.泥沙研究,2001,(2),5-7. 
    [44]刘红宾.三门峡水利枢纽四十年运用回顾与展望[c].三门峡水利枢纽运用四
    十周年论文集.郑 州:黄河水利出版社,2001:16—24. 
    [45]王湧泉.三门峡水利枢纽四十年运用回顾与展望[c].三门峡水利枢纽运用四
    十周年论文集.郑  州:黄河水利出版社,2001:12 一 15. 
    [46]曾庆华.重温历史经验,进一步改建三门峡水利枢纽,解决潼关以上库区继续
    淤积和洪涝灾害问题 [J].泥沙研究,2001,(3),10—15. 
    [47]傅建利.三门峡水库对黄河河流地貌的影响[J].水土保持研究,2001,(2),
    59—65. 
    [48]赵克玉.三门峡水库运用方式对潼关高程的影响[J].西北水资源与水工程,
    2001,(1),32—36. 
    [49]周建军.从三门峡水库水沙条件变化看潼关高程[J].水力发电学报,2003,
    (3),50—58. 
    [50]周建军.从三门峡水库的运行看潼关高程的变化[J].水力发电学报,2003,
    (3),59—67. 
    [51]孙绵惠,鲁孝轩,兰现卿,马花能,高潮.近期改善三门峡库区淤积的措施及
    效果分析[J].人民黄河,2001,(11),25—26. 
    [52]王育杰.三门峡水库”蓄清排浑”运用与潼关高程关系研究[J].人民黄河,
    2003,(7),16—18.. 
    [53]陶海鸿,赵梅,屠新武,章蔚红,陈广德.潼关高程变化成因分析[J].西北
    水力发电,2003,(4),15—18. 
    [54]张根广,王新宏,赵克玉,李建中,林劲松.潼关高程抬升成因相关分析
    [J].泥沙研究,2004,(1),56—62. 
    [55]万景文.抓住机遇减免三门峡水库对陕西库区的危害(上)[J].西北水电,
    2002,(3),4—7. 
    [56]万景文.抓住机遇减免三门峡水库对陕西库区的危害(下)[J].西北水电,
    2002,(4),7—10. 
    [57]吴致尧,陈效国.小浪底水库开发任务的库容要求分析[J].人民黄河,
    2000,(8),1—2. 
    [58]谢宝平,曾芹,涂启华,安催花.小浪底水库开发任务的库容要求分析
    [J].人民黄河,2000,(4),20—22. 
    [59]焦恩泽.浅谈小浪底水库泥沙问题[J].人民黄河,2002,(1),16—17. 
    [60]李国英.黄河调水调沙[J].人民黄河,2003,(3),15—18. 
    [61]谢守祥,王红育.惊世创举一黄河首次调水调沙[J].水利发展研究,2003,
    (3),15—18. 
    [62]刘毅.黄河的治理开发与小浪底工程[J].城市与减灾,2003,(3),19—21. 
    [63]李国英.深入开展黄河重大问题研究[J].人民黄河,2002,(12),1—2. 
    [64]廖义伟.2003 年黄河调水调沙试验[J].人民黄河,2003,(11),25—26. 
    
    
    67
    [65]张金良.水库异重流调度问题的研究[J].人民黄河,2001,(12),17-19. 
    [66]李书霞,  张俊华.小浪底水库 2000 年运用方案库区动床模型试验研究
    [J].人民黄河,2000,(8),36-37. 
    [67]侯素珍.小浪底水库异重流有关问题分析[J].水利水电技术,2003,(6):
    11-14. 
    [68]安催花,李福生,杨丽丰,余欣,郜国明.小浪底水库拦沙初期调控库容分析
    论证[J].人民黄河,2000,(8),28-29. 
    [69]费祥俊.黄河小浪底水库运用与下游河道防洪减淤问题【J].水利水电技术,
    1999,(3),1—4. 
    [70]谢鉴衡.河流模拟[M].北京:水利电力出版社.1988. 
    [71]韩其为.水库淤积[M].北京:水利电力出版社.2003. 
    [72]谢鉴衡,魏良琰.河流泥沙数学模型的回顾与展望[J].泥沙研究,1987,
    (3),28-29. 
    [73] Fan,S,S,ed Twelve selected computer stream sedimentation models 
    developed  in the United States.Fed. Energy Regulatory 
    commission,Washington,D.C.1988. 
    [74]李义天,谢鉴衡,吴伟明.二维及三维泥沙数学模型的研究进展[c].全国泥
    沙基本理论研究学术讨论会论文集(第二界),北京 1 992.38-46. 
    [75]李义天.水沙灾害研究进展及发展趋势[C].全国泥沙基本理论研究学术讨论
    会论文集(第四界),成都 2000.28-37. 
    [76]张瑞谨,等.河流泥沙动力学[M].北京:水利电力出版社,1988. 
    [77]巨江,林劲松.非恒定悬移质不平衡输沙的研究[J].水利学报,1995,(3):
    77-83. 
    [78]西北水利科学研究所,清华大学水利系.水库泥沙[M].北京:水利电力出版
    社,1979. 
    [79]谢鉴衡.河流模拟[M].北京:水利电力出版社.1988. 
    [80]朱书乐.冯家山水库异重流排沙观测成果初步分析[J].陕西水利,1986,
    (6):14-19. 
    [81]林劲松.冯家山水库排沙运用及水库淤积分析[J].西北水资源与水工程,
    2002,(1):37-40. 
    [82]林劲松,巨江,马耀光,张耀哲.冯家山水库供水调度及调洪计算分析
    [J].西北农林科技大学学报(自然科学版),2002,(5):96-99. 
    [83]林劲松,巨江,马耀光,刘俊民.千河冯家山水库淤积数学模型的研究
    [J].西北农林科技大学学报(自然科学版),2002,(6):202-206. 
    [84]韩其为.非均匀沙不平衡输沙研究[J].科学通报,1979,(17):804-808. 
    [85] Q.W.Han ,and MM. A Mathematical Model for Reservoir Sedimentation and Fluvial
    Processes , InU.of Sediment Research,1990,Vol5,NO.2,43-84.
    [86]王静远,等.水库悬移质泥沙淤积的分析计算(学术讨论)[J].泥沙研究,
    1982,(1):79-82. 
    [87]韩其为,何明民.河床淤积与河床演变的(一维)数学模型[J].泥沙研究,
    1987,(3):14-29. 
    [88]何明民,韩其为.挟沙能力级配及有效床级配的概念[J].水利学报,1989,
    (3):7-16. 
    [89]何明民,韩其为.挟沙能力级配及有效床级配的确定[J].水利学报,1990,
    (3):l-12. 
    [90]李义天.冲淤平衡状态下床沙质级配初探[J].泥沙研究,1987,(1):82-87. 
    [9l]韩其为,何明民.恢复饱和系数初步研究[J].泥沙研究,1997,(3):32-40. 
    
    
    68
    [92] 韩 其 为 , 何 明 民 . 泥 沙 数 学 模 型中冲淤计算的几个问题[J].水利学
    报,1988,(5):16-25 
    [93] Mostafa M. Soliman, A. Z. Makary, M. Motasem. Reservoir Sedimentation Mathematical
    Modeling [C]\Sediment Transport Modeling Sam S. Wang, ed., 1989 New York: ASCE, 819-
    822.
    [94] Jan Malan Jordaan. The Sediment Problem in South Africa Reservoirs[C] Sediment
    Transport Modeling .Sam S. Wang, ed., 1989 New York: ASCE, 795-800.
    [95] Rollin H. Hotchkiss Xi Huang. Hydrosuction Sediment-Removal Systems (HSRS):
    Principles and Field Test [J]Hydraulic Engineer ing. ASCE.1 995.121(6) 479-489
    [96] John W. Nicklow, Larry W. Mays. Optimization of Multiple Reservoir Networks for
    SedimentationContro\.[J]Hydraulic Engineering.ASCE.2000.126(4) 232-242.
    [97] G.M.Brune. Trap Efficiency of Reservoirs. Trans. AGU.Vol.34,No.3,1953, 69-88.
    [98]范家骅,焦恩泽,官厅水库异重流初步分析[J].泥沙研究,1958,(4):34-53 
    [99] Feldman,A.D. HEC Model For Water Resources System Simulation: Theory and
    Experience .The Hydraulic Engineering Center, Davis,califomia,1981.
    [100] Chang,H,H. Fluvial processes in river engineering. Wliey Inter-science. New
    York,N.Y.429.1988.
    [101]Chang,H,H. harrusib, LL.Lee, W.Tu.S. Numerical Modeling For Sediment-Pass-Thorugh
    Reservoirs. [J]Hydraulic Engineering.ASCE.\996, 122 (7) , 381-388.
    [102] Yang, C.T. Molinsa,A.and Song,C.S. GSTATS-Generalized Stream Tube Model for
    Alluvial River Simulation. Twelve selected computer stream sedimenatation Models developed
    in the U.S.S.Fan,ed. Energy Regulatory Commission,Washington,D.C. 1988.
    [103] Borah,D.K. Bordoloi,P.K. Stream bank erosion and bed evolution model. Sediment
    Transport Modeling,S. Wang ed. ASCE,New York. 1989, 612-617.
    [104] Borah,D.K. Dashputre,M.S. field evaluation of the sediment transport model STREAM
    with a bank erosion component. Proc. Hydr. Engrg.94,G.V.Cotroneo
    and R.R.Rumer,eds. ASCE.New York,N.Y. 1994 ,979-983.
    [105] Osman,A.M. Thorne.C.R. Riverbank stability analysis.
    68 Theory .[]]Hydraulic Engineering. ASCE. 1988.114(2) 134-150.
    [106] Thome,C.R. Osman,A.M. Riverbank stability analysis.
    68 Theory .[J]Hydraulic Engineering.ASCE.1988.114(2) 151-163.
    [107]杨方社.潼关高程对渭河下游冲淤影响的数值模拟研究[D].西安理工大学学位论
    文,2004,3:42-44.
    [108] Hasegawa K.Universal bank erosion coefficient for
    meandering rivers[J]Hydraulic Engineering,ASCE, 1989,115(6):744-765.
    [109] Shimizu Y,Yamaguchi H,Itakura T.Three dimensional computation of flow and bed
    deformation[J]. Hydraulic Engineering,ASCE, 1990,116(9): 1090-1108.
    [110] WuWM,RodiW,WenkaT,3DNumericalmodelingofflowandsedimentandsedimenttransport in
    
    
    69
    open channels[J],Journal of Hydraulic Engineering,ASCE,2000,126(l):4-15.
    [111] Debris Basins, and Debris Dams . Trap Efficiency of Reservoirs [J] Hydraulics Division,
    Vol. 86, No.2, 1960, pp. 69-88.
    [112] Singh B,and C.R.Shan, Plunging Phenomenon of Density Current in Reservoirs, La
    Houike Blanche,1971, No 1,59-64.
    [113] Pykin U.G.bB.Somoljubov, S, J.Lashchnov, and V.N.Korolcv. Transport of suspended
    Particle byDensity Current in Nylck Reservoir of Hydroclctric Station and Calculation of
    Reservoir Sliting.fC],
    Hydrotechniacl Construction, 1 978,Nos.9-12.
    [114] 范家骅,沈受百,吴德一.水库异重流的近似计算法[J].水利水电科学研究院论文
    集,第2期,1963,34-44.
    [115]吴德一.关于水库异重流的计算方法[J].泥沙研究,1983,(2):54-63.
    [116] Fukushima Y., G. Parker, and H.M.Pantin, Prediction of Ignitive Turbidity Currents in
    Scripps Submarine Canyon, Marine Geology 1 985 ( 67 ) : 58-81.
    [117] Parker .G., M.Garcia ,Fukushima Y. and Yu.W. Experiments on Turbidity Currents over
    an Erodible Bed[J].Hydraulic Research 1987,25(1):123-147.
    [118]Debler,W. R.Stratified Flow into a Link Sink. [J]. Hydraulic
    Engineering,ASCE,1959,85(l):51-65.
    [119]Zhixian Cao. Impact of Turbidity Currents on Reservoir
    Sedimentation[J]Hydraulic Engineering. ASCE.2001.127(1)6-16
    [120] Wei-Sheng Yu, Hong- Yuan Lee, ShaoHua Marko Hsu. Experiments on Deposition
    Behavior of Fine Sediment in a Reservoir. [ J]Hydraulic Engineering. ASCE .2000.126(12)
    912-920
    [121] R.L.Doneker, J.D. Nash,G.H.Jirka. Pollutant Transport and Mixing Zone Simulation of
    Sediment Density Currents [j]Hydraulic Engineering.ASCE.2004. 130(4) 349-359
    [122]A. Petitjean, F. Maurel, J. P. Bouchard, J. C. Galland .Modeling the
    Impacts of Reservoir Emptying[C]. Energy and Water. Sustainable Development. New York:
    ASCE, 1997, 114-119
    [123] H. Knoblauch, G. Heigerth, T. Dum.Sediment Management at an Alpine Reservoir[C].
    Energy and Water. Sustainable Development. New York: ASCE, 1997, 144-149
    [124] Rollin H. Hotchkiss and Daniel E. Mares. Computer Modeling of Reservoir
    Sedimentation and Sluicing [C]Waterpower '91 : A New View of Hydro Resources. New York:
    ASCE, 1991, 745-752
    [125] Brad Hall , James Lencioni. Sedimentation in Mud Mountain Reservoir at High Discharge
    [C] Sediment Transport Modeling Sam S. Wang, ed., 1989 New York: ASCE, 807-812
    [126] Vlad Focsa. Sedimentation in Iron Gates Reservoir on the Danube. [J]Hydraulics
    Division.ASCE.116 (10) 1659-1676
    [127] M. Bayazit, B. Onoz. Conditional Distributions of Ideal Reservoir Storage VariablesfJ]
    Hydrologic Engineering. 2000,5 (1) 52-58
    [128] 林劲松,马耀光.冯家山水库排沙试验模拟研究[J].水利与建筑工程学报,2003,(3):25-27.
    
    
    70
    [129] Bell,H,S.The Effect of Entrance Mixing on the Size on Density currents in Shaver
    Lake.[J]Amer Geophys Union 1947,28 (5) 780-791.
    [130] Kao.Timothy W. Density currents and Their Applications. [J]Hydraulics
    Division.ASCE.103 (5) 543-555.
    [131] Wilkinson,D.L.and I.R.Wood. Some Observations on the Motion of the Head of A
    Density Current. [J]Hydraulics Research .ASCE. 10 (3) 305-304.
    [132] Geza,B. K.Bogich. Some Observations on Density in the Laboratory and in the Field. [C],
    Hydrotechniacl Construction, 1953,3 87-400.
    [133]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社.1983,448-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700