巷道围岩流变损伤及应力演变理论研究与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着煤矿开采深度的不断增加,矿山动力灾害越发频繁。对矿山动力灾害发生机理、预测预报等进行研究是预防矿山动力灾害的关键。本文采用实验室试验和理论分析相结合的方法研究三轴应力状态下煤岩的流变损伤及应力演变规律。实验室试验采用先进实验设备进行煤岩的力学性能测试,获取三轴应力状态下煤岩压缩和蠕变的力学特性,利用热力学和损伤力学基本理论,对试验结果进行分析,得到考虑围压的三向应力状态下的煤岩应力应变与损伤的相互关系;建立煤岩流变损伤演变模型,并对模型中的参数进行了初步的量化,揭示煤岩蠕变、松驰等动态现象的共同本质,分析各种煤岩动力现象,用动力学理论解释煤岩动力灾害发生规律,为预测预防煤矿动力灾害提供新的理论和方法;编制围岩流变损伤及应力演变数值软件,实现巷道围岩动态损伤演变全过程模拟,即煤岩体从流变到突变的动态演变过程模拟。通过试验、理论、数值模拟,形成完整的统一研究体系,揭示煤岩动力灾害的本质和机理,为煤矿防治煤与瓦斯突出提供理论指导和支持。
With the deepening of depth in coal mining, mining dynamic phenomena occur more frequently. The mechanism of the dynamic phenomena and the methods of prediction have been done in lots of research work, it is a key point to prevent mining dynamic phenomena. In this thesis, the experiments and theoretical analysis are adopted to reveal the law of coal and rock dynamic damage evolution. Advanced experimental equipments are used in the experiments to obtain the mechanics properies of coal and rock which are analyzed under the thermodynamic and damage mechanics theory to achieve the relationship between the damage and stress-strain. It also attributes to establish the model of dynamic damage evolution to reveal the common essence in the creep and relaxation phenomenon. By analyzing kinds of dynamic phenomena in coal and rock with the dynamics theory, it explains the law of dynamic phenomena in coal and rock and provides new theory and method to prevent and predict the dynamic phenomena. Developped a numerical simulation software in stress field of roadway, it can simulate the process of damage which means it can simulate the dynamic process from the creep to the sudden break. The research system is supported closely by the experiment, theory and numerical simulation to reveal the essence of dynamic phenomena of coal and rock, which also give the theoretical guidance and support on the prevention of coal and gas outburst.
引文
[1]国家安全生产监督管理总局政府网站事故查询系统[EB/OL]. http://media.chinasafety. gov.cn:8090/iSystem/shigumain. jsp.
    [2]周世宁,鲜学福,朱旺喜.煤矿瓦斯灾害防治理论战略研讨[M].徐州:中国矿业大学出版社,2001.
    [3]于不凡.关于煤矿瓦斯动力现象的分类[J].煤矿安全技术,1982(3):9-15.
    [4]何学秋,王恩元,聂百胜,等.煤流变电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [5]马不良.煤矿瓦斯防治技术手册[M].北京:化学工业出版社,2007.
    [6]陆菜平,窦林名,吴兴荣.煤岩动力灾害的弱化控制机理及其实践[J].中国矿业大学学报,2006(3):301-305.
    [7]陈玉和.软岩巷道锚注加固原理与应用[R].矿业工程,2001.
    [8]杜计平,苏景春著.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,2000.
    [9]Qi-hu Q. The key problems of deep underground space development:The Key Technical Problems of Base Research in Deep Underground Space Development—the 23th Xiangshan Science Conference,2004[C].
    [10]岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J].河南理工大学学报(自然科学版),2005(4):271-274.
    [11]鲜学福,李晓红,姜德义等.瓦斯煤层裸露面蠕变火稳的时间预测研究[J].岩土力学,2005(6):841-844.
    [12]Takahashi Y. Identification of Stress Multiaxiallity Effect on Creep Damage by a Combination of Experiments and Numerical Analyses[J]. ASME Conference Proceedings, 2009(43697):1471-1477.
    [13]Patel M D, Jansen K M B, Ernst L J, et al. Study of Time and Temperature Dependency of Bulk Modulus for Molding Compound by Transient Bulk Creep Experiments [J]. ASME Conference Proceedings,2007,2007(42991):275-279.
    [14]Ding J L, Findley W N. Creep Experiments Under Nonproportional Loadings With Stress Reversals for 2618 Aluminum[J]. Journal of Engineering Materials and Technology, 1984,106(4):397-404.
    [15]王子潮,王威.高温高压岩石三轴蠕变实验系统(固体传压介质)[J].地震学报,1989(4):431-436.
    [16]Kie T T, Wen-Fa K. The development and current state of rock Mechanics in china.: Proc.5th Congt Int.Sos.Rock Mech, Melbourne,1985[C].
    [17]吴立新,王金庄.煤岩流变特性及其微观影响特征初探[J].岩石力学与工程学报,1996(4):25-29.
    [18]郭开元.盐岩蠕变特性研究[D].重庆大学,2004.
    [19]万玲.岩石类材料粘弹塑性损伤本构模型及其应用[D].重庆大学,2004.
    [20]李振华,李化敏,苏承东.简易煤岩蠕变试验装置的研制[J].实验技术与管理,2009(3):234-237.
    [21]崔希海,高延法,李进兰.岩石扰动蠕变试验系统的研发[J].山东科技大学学报(自然科学版),2006(3):36-38.
    [22]边金.可描述加速蠕变的流变力学组合模型和煤岩的蠕变试验研究[D].重庆大学,2002.
    [23]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与.工程学报,2001(6):817-821.
    [24]曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报(自然科学版),2002(7):96-98.
    [25]曹树刚,刘延保,张立强,等.突出煤体单轴压缩和蠕变状态下的声发射对比试验[J].煤炭学报,2007(12):1264-1268.
    [26]关逊,刘庆,郭建亭.高温合金循环蠕变实验[J].工程与试验,2008(3):24-28.
    [27]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004(10):1635-1639.
    [28]卻保平,赵阳升,赵金昌,等.层状盐岩温度应力耦合作用蠕变特性研究[J].岩石力学与工程学报,2008(1):90-96.
    [29]卻保平,赵阳升,万志军,等.高温静水应力状态花岗岩中钻孔围岩的流变实验研究[J].岩石力学与工程学报,2008(8):1659-1666.
    [30]姜永东,鲜学福,熊德国,等.砂岩蠕变特性及蠕变力学模型研究[J].岩土工程学报,2005(12):1478-1481.
    [31]岳世权,李振华,张光耀.煤岩蠕变特性试验研究[J].河南理工大学学报(自然科学版),2005(4):271-274.
    [32]荣耀,许锡宾,靖洪文,等.不同含水岩石蠕变试验电磁辐射频谱分析:东北岩石力学与工程分会学术讨论会,中国辽宁大连,2005[C].
    [33]尹光志,张东明,何巡军.含瓦斯煤蠕变实验及理论模型研究[J].岩土工程学报,2009(4):528-532.
    [34]郭臣业,鲜学福,姜永东,等.破裂砂岩蠕变试验研究[J].岩石力学与工程学报,2010(5):990-995.
    [35]王俊光,梁冰.孔隙压力作用下泥岩三轴蠕变实验研究[J].山东大学学报(工学版),2009(3):135-138.
    [36]黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003(S2):203-206.
    [37]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995(1):39-47.
    [38]Yongsheng L, Caichu X. Time-dependent tests on intact rocks in uniaxial compression[J]. Int. j. Rock Mech. Mine Sci. and Geomech. Abstr.,2000(37):465-467.
    [39]Yamatomij.岩石粘塑性性态流变模型计算方法在岩石力学及工程的应用,西安,1993[C].
    [40]Boukharov G N, Chanda M W. The three processes of brittle crystalline rock creep[J].岩石力学与工程学报,1995,32(4):325-335.
    [41]韦立德,杨春和,徐卫亚.基于细观力学的盐岩蠕变损伤本构模型研究[J].岩石力学与工程学报,2005(23):4253-4258.
    [42]韦立德,徐卫亚,朱珍德,等.岩石粘弹塑性模型的研究[J].岩土力学,2002(5):583-586.
    [43]张小涛,窦林名,李志华.煤岩体蠕变突变模型[J].中国煤炭,2005(1):37-40.
    [44]曹树刚,金边,李鹏.岩石蠕变本构关系及改进的西原正大模型[J].岩石力学与工程学报,2002(5):632-634.
    [45]曹树刚,鲜学福.煤岩蠕变损伤特性的实验研究[J].岩石力学与工程学报,2001(6):817-821.
    [46]范庆忠,高延法.软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007(2):391-396.
    [47]何学秋,薛二龙,聂百胜,等.含瓦斯煤岩流变特性研究[J].辽宁工具呢程技术大学学报,2007(2):201-203.
    [48]刘芳彬.含瓦斯煤的力学特性实验研究[D].中国矿业大学(北京),2008.
    [49]刘水文.含瓦斯煤蠕变力学特性实验及理论研究[D].中国矿业大学(北京),2010.
    [50]徐松林,吴文,王广印,等.大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J].岩石力学与工程学报,2001(6):763-767.
    [51]云美厚,易维启,庄红艳.砂岩的弹性模量与孔隙率、泥质含量、有效压力和温度的经验关系[J].石油地球物理勘探,2001(3):308-314.
    [52]许江,王维忠,杨秀贵,等.细粒砂岩在循环加、卸载条件下变形实验[J].重庆大学学报(自然科学版),2004(12):60-62.
    [53]尹光志,王登科,张东明等.含瓦斯煤岩三轴蠕变特性及蠕变模型研究[J].2008(27):1-6.
    [54]王维忠,尹光志,赵洪宝,等.含瓦斯煤岩三轴蠕变特性及本构关系[J].重庆大学学报,2009(2):197-201.
    [55]王登科,尹光志,张东明.含瓦斯煤岩三维蠕变模型与稳定性分析[J].重庆大学学报,2009(11):1316-1320.
    [56]赵延林,曹平,文有道,等.岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008(3):477-486.
    [57]张雪颖,阮怀宁,贾彩虹.岩石损伤力学理论研究进展[J].四川建筑科学研究,2010(2):134-138.
    [58]Kachanov L M. Introduction to Continuum Damage Mechanics[M]. Dordrecht,The Netherlmds:Mattinus Nijhoff publishers,1986.
    [59]Rabotnov Y N. On the equations of state for creep[J].1963:307-315.
    [60]荆建平,孟光.汽轮机转子疲劳-蠕变损伤的非线性损伤力学分析[J].中国电机工程学报,2003(9):167-172.
    [61]杨更社,张长庆著.《岩体损伤及检测》[R].西安科技大学,2001.
    [62]余天庆,钱济成.损伤理论及应用[M].北京:国防工业出版社,1998.
    [63]褚建萍.工业技术岩石混凝土损伤力学[R].北京:中国出版年鉴社,1999.
    [64]刘红岩,王根旺,陈福刚.以损伤变量为特征的岩石损伤理论研究进展[J].爆破,2004(1):9-12.
    [65]唐春安,赵文.岩石破裂全过程分析软件系统RFPA-(2D)[J].岩石力学与工程学报,1997(5):109-110.
    [66]李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995.
    [67]曹文贵,张升,赵明华.基于新型损伤定义的岩石损伤统计本构模型探讨[J].岩土力学,2006(1):41-46.
    [68]曹文贵,赵明华,唐学军.岩石破裂过程的统计损伤模拟研究[J].岩土工程学报,2003(2):184-187.
    [69]徐卫亚,韦立德.岩石损伤统计本构模型的研究[J].岩石力学与工程学报,2002(6):787-791.
    [70]李树春,许江,李克钢.基于初始损伤系数修正的岩石损伤统计本构模型[J].四川大学学报(工程科学版),2007(6):41-44.
    [71]谢和平.分形力学研究进展[J].力学与实践,1996(2):10-18.
    [72]谢和平,陈至达.岩石的连续损伤力学模型探讨[J].煤炭学报,1988(1):33-42.
    [73]谢和平,鞠扬.基于应变等效性假说的损伤定义的使用条件[J].1998(15):43-49.
    [74]Yang J, Heping X. Applicability of Damage Variable DefinitionBased on Hypothesis of Strain Equivalence[J].2006(6):9-14.
    [75]彭瑞东,谢和平,鞠杨.砂岩拉伸过程中的能量耗散与损伤演变分析[J].岩石力学与工程学报,2007(12):2526-2531.
    [76]谢和平,彭瑞东,鞠杨,等.岩石破坏的能量分析初探[J].岩石力学与工程学报,2005(15):2603-2608.
    [77]金丰年,蒋美蓉,高小玲.基于能量耗散定义损伤变量的方法[J].岩石力学与工程学报,2004(12):1976-1980.
    [78]李玉寿,华安增,孔园波,李世平.岩块降压破碎的能量分析[J].煤炭学报,1995(4):389-392.
    [79]杨圣奇,徐卫亚,苏承东.大理岩三轴压缩变形破坏与能量特征研究[J].工程力学,2007(1):136-142.
    [80]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002(6):778-781.
    [81]赵忠虎,鲁睿,张国庆.岩石破坏全过程中的能量变化分析[J].矿业研究与开发,2006(5):8-11.
    [82]赵忠虎,谢和平.岩石变形破坏过程中的能量传递和耗散研究[J].四川大学学报(工程科学版),2008(2):26-31.
    [83]祝启虎,卢文波,孙金山.基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007(2):84-87.
    [84]刘红岩,王根旺,陈福刚.以损伤变量为特征的岩石损伤理论研究进展[J].爆破,2004(1):9-12.
    [85]曹文贵,张升.基于Mohr—Coulomb准则的岩石损伤统计分析方法研究[J].湖南大学学报(自然科学版),2005,1(32):52-57.
    [86]Golshani A, Oda M, Okui Y, et al. Numerical simulation of the excavation damaged zone around an opening in brittle rock[J]. International Journal of Rock Mechanics and Mining Sciences,2007,6(44):835-845.
    [87]Desmorat R, Gatuingt F, Ragueneau F. Nonlocal anisotropic damage model and related computational aspects for quasi-brittle materials[J]. International Journal of Rock Mechanics and Mining Sciences,2007,10(74):1539-1560.
    [88]Einav I, Houlsby G T, Nguyen G D. Coupled damage and plasticity models derived from energy and dissipation potentials[J]. Theoretical and Applied Fracture Mechanics, 2007,7-8(44):2487-2508.
    [89]Zhou X P. Microcrack interaction brittle rock subjected to uniaxial tensile loads. Theoretical and Applied Fracture Mechanics[J]. Theoretical and Applied Fracture Mechanics, 2007,1(47):68-76.
    [90]Horng J, Chan Y, Sheng C, et al. An Improved Fractal Contact Model With Special Emphasis on Surface Roughness, Elastoplastic Transition Deformation Zone, and Hardness Effects of Coating Film[J]. ASME Conference Proceedings,2005,2005(42010):267-268
    [91]Lu C, Kuo M. Coefficients of Restitution Based on a Fractal Surface Model[J]. Journal of Applied Mechanics,2003,70(3):339-345.
    [92]Ciavarella M, Demelio G. Elastic Multiscale Contact of Rough Surfaces:Archard's Model Revisited and Comparisons With Modern Fractal Models[J]. Journal of Applied Mechanics, 2001,68(3):496-498.
    [93]Warren T L, Majumdar A, Krajcinovic D. A Fractal Model for the Rigid-Perfectly Plastic Contact of Rough Surfaces[J]. Journal of Applied Mechanics,1996,63(1):47-54.
    [94]Bhat S U. Modeling of Size Effect in Ice Mechanics Using Fractal Concepts[J]. Journal of Offshore Mechanics and Arctic Engineering,1990,112(4):370-376.
    [95]Guison A L. Plastic flow and fracture behavior of ductile materials incorporating void nucleation, growth and interation.[D]. Brown University,1975.
    [96]卢应发,葛修润.岩石损伤本构理论[J].岩土力学,1990(2):67-71.
    [97]卢允德,葛修润,蒋宇,等.大理岩常规三轴压缩全过程试验和本构方程的研究[J].岩石力学与工程学报,2004(15):2489-2493.
    [98]任建喜,葛修润.单轴压缩岩石损伤演变细观机理及其本构模型研究[J].岩石力学与工程学报,2001(4):425-431.
    [99]赵吉东,周维垣,刘元高,等.岩石类材料银应变梯度损伤模型研究及应用[J].水利学报,2002(7):70-74.
    [100]张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003(1):30-34.
    [101]文建华.隧道结构稳定性及其流固耦合损伤研究[D].武汉理工大学,2009.
    [102]杨小彬,丁元伟,秦跃平,等.煤岩非线性损伤试验及理论模型[J].辽宁工程技术大学学报(自然科学版),2009(6):884-887.
    [103]秦跃平.煤岩损伤与动力灾害的理论与实验研究[D].北京:中国矿业大学,2003.
    [104]秦跃平,张金峰,王林.岩石损伤力学理论模型初探[J].岩石力学与工程学报,2003(4):646-650.
    [105]秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报,2001(4):560-562.
    [106]Zhu Q, Kondo D, Shao J, et al. Micromechanical modelling of anisotropic damage in brittle rocks and application [J]. International Journal of Rock Mechanics and Mining Sciences, 2008,4(45):467-477.
    [107]Xiaobin Y, Yongjun X, Xiaojun W. Investigation into the nonlinear damage model of coal containing gas[J]. Safety Science,2012(50):927-930.
    [108]Fu-qiang G, Hong-pu K. Effect of pre-tensioned rock bolts on stress redistribution around a roadway—insight from numerical modeling[J]. Journal of China University of Mining & Technology,2008(4):509-515.
    [109]李桂臣,张农,王成,等.高地应力巷道断面形状优化数值模拟研究[J].中国矿业大学学报,2010(5):652-658.
    [110]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].中国矿业大学,2008.
    [111]鲁岩.构造应力场影响下的巷道围岩稳定性原理及其控制研究[D].中国矿业大学,2008.
    [112]赵国栋.巨厚复合顶煤大断面煤巷围岩控制技术研究[D].中国国矿业大学(北京),2011.
    [113]李学华,姚强岭,张农.软岩巷道破裂特征与分阶段分区域控制研究[J].中国矿业大学学报,2009(5):618-623.
    [114]肖同强.深部构造应力作用下厚煤层巷道围岩稳定与控制研究[D].中国矿业大学,2011.
    [115]朱庆华.深部骑跨采巷道围岩变形力学分析及稳定性控制研究[D].中国矿业大学,2010.
    [116]李伟.深部巷道围岩稳定性安全控制原理与应用研究[D].山东科技大学,2010.
    [117]李本涛.深井软岩巷道支护技术研究[D].中国矿业大学,2008.
    [118]韩猛,王连国.巷道围岩蠕变特性及支护效果数值模拟研究[J].矿业工程,2011(4):61-64.
    [119]黄先伍.巷道围岩应力场及变形时效性研究[D].中国矿业大学,2008.
    [120]ITASCA Consulting Groups, Inc. FLAC Manuals[G].1993.
    [121]董积平,高攸纲.有限移动源的电磁波辐射[J].北京邮电大学学报,2001(3):89-92.
    [122]冯西桥,余寿文.准脆性材料细观损伤力学[M].北京:高等教育出版社,2003.
    [123]尹双增.断裂判据与在混凝土工程中的应用[M].北京:1992.
    [124]尹双增.断裂损伤理论及应用[M].北京:清华大学出版社,1992.
    [125]唐春安.岩石破裂过程数值模拟方法发展的若干问题:中国岩石力学与工程学会软岩工程专业委员会第二届学术大会,中国北京,1999[C].科学出版社.
    [126]陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报,2002(3):351-361.
    [127]杨强,张浩,周维垣.基于格构模型的岩石类材料破坏过程的数值模[J].2003(20):117-120.
    [128]傅宇方.脆性材料破裂过程的数值模拟研究[D].东北大学,2000.
    [129]Wilins M L. Calculation of elasto-plastic flow. Research Report [J].1964.
    [130]Belytschko T, Black T. Elastic crack grouth in finite elements with minimal re-meshing [J]. Numer Methods Eng,1999(45):601-620.
    [131]Buczkowaski R, Kleiber M. Elasto-plastic interface model for 3D-frictional orthotropic contact problems [J]. Int J Numer Methods Eng,1997(40):599-619.
    [132]Desai C S, Zamman M M, Lightner J G, et al. Thin-layer element for interfaces and joints [J]. Int J Numer Anal Methods Geomech,1984(8):19-43.
    [133]Gens A, Carol I, Alonso E E. An interface element formulation for the analysis of soil-renforcement interaction [J]. Comput Geotech,1987(7):133-151.
    [134]Hu J, Lao D, Chen Q, et al. Numerical Simulation of Dimension Effect to Deformation in the Cataclastic Medium Goafs Using UDEC [J]. High Performance Computing and Applications,2010,5938:183-190.
    [135]Lu W, Zhou Z, Liu T, et al. Discrete Element Simulation Analysis of Rock Slope Stability Based on UDEC[J]. Advanced Materials Research,2012,461:384-388.
    [136]Desai C S, Zamman M M, Lightner J G, et al. Thin-layer element for interfaces and joints [J]. Int J Number Anal Methods Geomech,1984(8):19-43.
    [137]Matallah M, La Borderie C. Inelasticity damage based model for numerical modeling of concrete cracking[J]. Engineering Fracture Mechanics,2009(76):1087-1108.
    [138]Maleki K, Pouya A. Numerical simulation of damage-Permeability relationship in brittle geomaterials[J]. Computers and Geotechnics,2010(37):619-628.
    [139]Rossiter J, Inal K, Mishra R. Numerical Modeling of the Failure of Magnesium Tubes Under Compressive Loading[J]. Journal of Engineering Materials and Technology, 2012,134(2):21008-21009.
    [140]Liu Y Q, Li H B, Zhao J. UDEC SIMULATION FOR DYNAMIC RESPONSE OF A ROCK SLOPE SUBJECT TO EXPLOSIONS [J]. International Journal of Rock Mechanics and Mining Sciences,2004,2(41):76-79.
    [141]Lina Y, Zhua D, Dengb Q, et al. Collapse Analysis of Jointed Rock Slope Based on UDEC Software and Practical Seismic Load [J]. International Conference on Advances in Computational Modeling and Simulation,2012,31:441-446.
    [142]Effect of pre-tensioned rock bolts on stress redistribution around a roadway—insight from numerical modeling[J]. Journal of China University of Mining & Technology, 2008(4):509-515.
    [143]杜晓丽.采矿岩石压力拱演变规律及其应用的研究[D].中国矿业大学,2011.
    [144]李桂臣,张农,王成,等.高地应力巷道断面形状优化数值模拟研究[J].中国矿业大学学报,2010(5):652-658.
    [145]王襄禹.高应力软岩巷道有控卸压与蠕变控制研究[D].中国矿业大学,2008.
    [146]鲁岩.构造应力场影响下的巷道围岩稳定性原理及其控制研究[D].中国矿业大学,2008.
    [147]蔡光华,陆海军,陈宝银,等.矩形和直墙拱断面围岩巷道破坏的数值模拟研究[J].武汉工业学院学报,2011(1):74-78.
    [148]李小军,袁瑞甫,赵兴东.矩形巷道围岩破坏规律数值模拟[J].矿业工程,2008(2):18-20.
    [149]赵国栋.巨厚复合顶煤大断面煤巷围岩控制技术研究[D].中国矿业大学(北京),2011.
    [150]李学华,姚强岭,张农.软岩巷道破裂特征与分阶段分区域控制研究[J].中国矿业大学学报,2009(5):618-623.
    [151]肖同强.深部构造应力作用下厚煤层巷道围岩稳定与控制研究[D].中国矿业大学,2011.
    [152]朱庆华.深部骑跨采巷道围岩变形力学分析及稳定性控制研究[D].中国矿业大学,2010.
    [153]李伟.深部巷道围岩稳定性安全控制原理与应用研究[D].山东科技大学,2010.
    [154]李本涛.深井软岩巷道支护技术研究[D].中国矿业大学,2008.
    [155]韩猛,王连国.巷道围岩蠕变特性及支护效果数值模拟研究[J].矿业工程,2011(4):61-64.
    [156]黄先伍.巷道围岩应力场及变形时效性研究[D].中国矿业大学,2008.
    [157]章梦涛,潘一山,梁冰等.煤岩流体力学[M].北京:科学出版社,1995.
    [158]周志刚,傅搏峰.用粘弹性理论评价沥青混合料的高温稳定性[J].公路交通科技,2005(11):58-60.
    [159]神户博太郎.流变学概论[J].塑料,1978(3):32-40.
    [160]Yueping Q, Li W, Xiaobin Y, et al. Experimental Study of Different Granularity on the Gas Absorption of Coal:2011 1st International Symposium on Mines Safety Science and Engineering., Beijing,2011 [C].
    [161]秦跃平,王丽,李贝贝.压缩实验煤岩孔隙率变化规律研究[J].矿业工程研究,2010(1).
    [162]Li W, Xiaobin Y, Yueping Q, et al. Investigations on Nonlinear Theory of Coal and Rock Damage and Fracture:2010 International Symposium on Safety Science and Technology, Beijing,2010[C].
    [163]杨海天.有限体积法在固体力学中的应用[J].大连理工大学学报,1995(3):296-298.
    [164]杨海天.有限体积法在二维固体力学问题中的应用[J].计算结构力学及其应用,1996(3):84-92.
    [165]明平剑,张文平,陈卫东.弹性结构的非结构网格有限体积数值模拟[J].哈尔滨工程大学学报,2011(2):178-182.
    [166]杨海天,邬瑞锋,佟晓利.二维蠕变损伤的有效模量法及有限元分析[J].计算结构力学及其应用,1996(2):217-225.
    [167]陈永强,郑小平,姚振汉.三维非均匀脆性材料破坏过程的数值模拟[J].力学学报,2002,(3):351-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700