代谢工程改造酿酒酵母降低黄酒中的氨基甲酸乙酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄酒中潜在致癌物质氨基甲酸乙酯的存在严重影响了我国传统发酵食品的安全性,降低黄酒中的氨基甲酸乙酯含量的研究具有重要的学术意义和应用前景。本论文以黄酒生产菌株酿酒酵母Saccharomyces cerevisiae N85为研究对象,通过对其偏好型氮源的研究,提出了造成菌株发酵过程中尿素积累的调控机理。在此基础上,在便于代谢改造的酿酒酵母单倍体模式菌株Saccharomyces cerevisiae CEN.PK2-1C中对尿素代谢相关调控途径进行了改造,并对改造效果进行了验证。结果表明新尝试的代谢改造策略可降低模式菌株发酵过程中的尿素积累量。将在模式菌株中效果最好的代谢改造策略应用到酿酒酵母N85菌株的黄酒模拟发酵中,结果表明也可显著降低发酵液中的氨基甲酸乙酯含量。说明本论文所采用的代谢改造策略不仅有效,而且适合于真实的黄酒生产。本文主要研究成果如下:
     (1)在21种常见氮源中寻找到了酿酒酵母N85菌株的7种偏好型氮源,并从中发现了造成菌株发酵过程中尿素积累的三种关键氮源(谷氨酰胺、谷氨酸和精氨酸);通过定量PCR检测,发现了参与尿素代谢抑制调控的关键调控因子(Gln3p、Gat1p、Tor1p等),并在此基础上提出了偏好型氮源对菌株尿素代谢产生抑制作用的机理。
     (2)以Gln3p的磷酸化调控方式为基础,对另外的三个GATA调控因子(Gat1p、Dal80p和Gzf3p)的胞内定位进行研究。通过序列比对和荧光蛋白融合表达技术,发现Dal80p和Gzf3p的胞内定位不受氮源调控的影响;而Gat1p的调控方式则与Gln3p相似。除此之外还发现了Gat1p的核定位序列、核定位调控序列以及核定位序列上的磷酸化位点。
     (3)在Gln3p和Gat1p核定位研究成果的基础上,尝试采用不同的策略对Gln3p和Gat1p进行了一系列的代谢改造(磷酸化位点的定点突变、核定位调控序列的缺失等)。实验结果表明,这些策略都可以在一定程度上缓解Gln3p和Gat1p所受的抑制调控,而联合使用这些策略能获得最佳的改造效果。效果最好的两株基因工程菌发酵48h后的尿素积累量比对照菌株分别下降了37.4%和44.3%,说明对Gln3p和Gat1p的改造策略有继续用于改造N85生产菌株的潜力。除此之外,进一步尝试敲除负调控因子Ure2p来增强代谢改造的效果。实验结果表明,虽然敲除URE2对增强Gln3p和Gat1p活性的效果显著,但对菌株的生长会造成强烈的抑制作用,因此这种策略无法应用于生产菌株的代谢改造中。
     (4)尝试通过对尿素代谢相关调控途径的代谢改造(去磷酸化调控、泛素化调控和Dal81p和Dal82p的激活作用),降低模式菌株发酵过程中的尿素积累量。实验结果表明,强化胞内的去磷酸化调控作用的效果有限;而强化Dal81p和Dal82p的激活作用可以增强菌株尿素代谢的能力。此外,以尿素代谢相关调控因子的泛素化检测结果为基础,对Dal81p上的泛素化位点进行了定点突变。突变后Dal81p的激活作用更强,和Dal82p共同表达后能获得最佳的代谢改造效果。Dal81p和Dal82p共表达的基因工程菌株在48h发酵的过程中尿素的积累量比对照菌株下降了55.7%。
     (5)将在模式菌株中获得良好效果的代谢改造策略应用于生产菌株N85,并在黄酒模拟体系中检测菌株的发酵特性和氨基甲酸乙酯产生量。实验结果表明,采用经代谢改造后的N85菌株,发酵过程中的尿素积累量和EC产生量都大幅下降(分别降低了63%和72%),但发酵特性并未发生明显的改变。
In this dissertation, based on the research on the preferred nitrogen sources for a diploidSaccharomyces cerevisiae strain N85, the inhibitory mechanism of normal nitrogen sourceson urea utilization could be proposed. With the guidance of urea metabolism regulation,several metabolic engineering strategies were applied in a model haploid S. cerevisiae strainCEN.PK2-1C. The results showed that the concentration of urea could be significantlyreduced by combining metabolic engineering strategies during the fermentation tests.Furthermore, the optimal strategy used in model strain also had better effect on the haploid S.cerevisiae strain N85. The main results were described as follows:
     (1) Although diploid S. cerevisiae strain N85is able to use many nitrogen sources for growth,the utilization rates of these components are different. In this study, seven nitrogen sourceswere considered as preferred nitrogen sources for S. cerevisiae strain N85. In addition, it wasfound that there were mainly two kinds of inhibitory effects on urea metabolism by preferrednitrogen sources. Furthermore, regulators of nitrogen catabolite repression (NCR) and targetof rapamycin (TOR) pathway were identified as being involved in urea accumulation byreal-time quantitative PCR. Based on these results, preferred nitrogen sources were found torepress urea utilization by converting them to glutamine or glutamate. Gln3p can be retainedin the cytoplasm by glutamine, while Gat1p can be retained by glutamine and glutamate.
     (2) Based on the nuclear localization signal (NLS) and nuclear localization regulation signal(NLRS) in Gln3p, the localization of Gat1p, Dal80p and Gzf3p were studied. The residues348–375and366–510were identified as the NLS and NLRS of Gat1p, respectively, and theresidues at positions360(serine) and361(serine) are likely to be the phosphorylation sites inGat1p. Dal80p and Gzf3p are not regulated by phosphorylation, although Gzf3p has an NLSat its C-terminus.
     (3) In order to increase the nuclear localization of Gln3p and Gat1p, the phosphorylation siteson NLS were mutated and the NLRS was truncated. By combining these strategies, the genes(DUR1,2and DUR3) involved in urea utilization could be significantly activated in thepresence of glutamine. During shake-flask fermentations of the genetically modified strains,little urea accumulated in the media. Furthermore, the disruption of URE2provided anadditional method of reducing urea accumulation. However, this method could not be appliedin S. cerevisiae strain N85because the disruption of URE2would repress the growth of strain.
     (4) In order to further enhance the expression of DUR1,2and DUR3, several metabolicengineering strategies were attempted on the dephosphorylation regulation, ubiquitylationregulation and the activation of Dal81p and Dal82p. The results showed that the strengtheningeffect of dephosphorylation were limited; whereas overexpression of Dal81p and Dal82pcould enhance the expression of DUR1,2and DUR3. Furthermore, based on the ubiquitylationdetection of regulators, the effect of combining metabolic engineering strategies ondeubiquitylated Dal81p and Dal82p was the best.
     (5) Based on the former metabolic engineering results, the best strategy used in model strainwas selected. The concentration of urea and EC in a model rice wine system were examined to confirm the effect of metabolic engineering. The results showed that the concentration ofurea and EC could be reduced by63%and72%, respectively. In addition, the examination ofthe normal nutrients and flavour compounds in rice wine indicated that there were fewdifferences in fermentation characteristics between the wild-type S. cerevisiae N85strain andthe genetically modified strain. Therefore, the metabolic engineering strategies attempted inthis study have great potential as the methods for eliminating EC during rice wine production.
引文
[1] Budavari S. The Merck Index (12th ed).[M], Boca Raton, Florida: Chapman&Hall/CRC,2000
    [2] Zimmerli B&Schlatter J. Ethyl carbamate: analytical methodology, occurrence,formation, biological activity and risk assessment [J], Mutat Res,1991,259(3-4):325-350
    [3] Haddow A&Sexton W A. Influence of carbamic esters (urethanes) on experimentalanimal tumors [J], Nature,1946,157:500-503
    [4] Hirschboeck J S, Lindert M C F, Chase J, et al. Effects of urethane in the treatment ofleukemia and metastatic malignant tumors [J], J Am Med Assoc,1948,136(2):90-95
    [5] Nomura T. Urethan (ethyl carbamate) as a cosolvent of drugs commonly usedparenterally in humans [J], Cancer Res,1975,35(10):2895-2899
    [6] Nettleship A, Henshaw P S&Meyer H L. Induction of pulmonary tumors in micewith ethyl carbamate (urethane)[J], J Natl Cancer Inst,1943,4(3):309-319
    [7] Cadranel J F, Legendre C, Desaint B, et al. Liver disease from surreptitiousadministration of urethane [J], J Clin Gastroenterol,1993,17(1):52-56
    [8] Ough C S. Ethylcarbamate in fermented beverages and foods. I. Naturally occurringethyl carbamate [J], J Agric Food Chem,1976,24(2):323-328
    [9] Weber J V&Sharypov V I. Ethyl carbamate in foods and beverages: a review [J],Environ Chem Lett,2009,7(3):233-247
    [10] Wu P G, Pan X D, Wang L Y, et al. A survey of ethyl carbamate in fermented foodsand beverages from Zhejiang, China [J], Food Control,2012,23(1):286-288
    [11] Patrignani F, Ndagijimana M, Belletti N, et al. Biogenic amines and ethyl carbamate inprimitivo wine: survey of their concentrations in commercial products and relationshipwith the use of malolactic starter [J], J Food Prot,2012,75(3):591-596
    [12] Alcarde A R, de Souza L M&Bortoletto A M. Ethyl carbamate kinetics in doubledistillation of sugar cane spirit [J], J I Brewing,2012,118(1):27-31
    [13] Tang A S P, Chung S W C, Kwong K, et al. Ethyl carbamate in fermented foods andbeverages: dietary exposure of the Hong Kong population in2007-2008[J], FoodAddit Contam B,2011,4(3):195-204
    [14] Nobrega I C C, Pereira J A P, Paiva J E, et al. Ethyl carbamate in cachaca (Braziliansugarcane spirit): Extended survey confirms simple mitigation approaches in pot stilldistillation [J], Food Chem,2011,127(3):1243-1247
    [15] Masqué M C, Soler M, Zaplana B, et al. Ethyl carbamate content in wines withmalolactic fermentation induced at different points in the vinification process [J], AnnMicrobiol,2011,61(1):199-206
    [16] Liu Y P, Dong B, Qin Z S, et al. Ethyl carbamate levels in wine and spirits frommarkets in Hebei Province, China [J], Food Addit Contam B,2011,4(1):1-5
    [17] Lachenmeier D W, Lima M C P, Nobrega I C C, et al. Cancer risk assessment of ethylcarbamate in alcoholic beverages from Brazil with special consideration to the spiritscachaca and tiquira [J], BMC Cancer,2010,10:266-281
    [18] Nobrega I C C, Pereira J A P, Paiva J E, et al. Ethyl carbamate in pot still cachacas(Brazilian sugar cane spirits): Influence of distillation and storage conditions [J], FoodChem,2009,117(4):693-697
    [19] Lachenmeier D W, Kanteres F, Kuballa T, et al. Ethyl carbamate in alcoholicbeverages from Mexico (tequila, mezcal, bacanora, sotol) and Guatemala (cuxa):market survey and risk assessment [J], Inter J Env Res Pub Heal,2009,6(1):349-360
    [20] Balcerek M&Szopa J S. Major volatile compounds and ethyl carbamate changes ofcontent [J], Deut Lebensm-Rundsch,2008,104(6):288-292
    [21] Hasnip S, Crews C, Potter N, et al. Survey of ethyl carbamate in fermented foods soldin the United Kingdom in2004[J], J Agric Food Chem,2007,55(7):2755-2759
    [22] Sakano K, Oikawa S, Hiraku Y, et al. Metabolism of carcinogenic urethane to nitricoxide is involved in oxidative DNA damage [J], Free Radical Biol Med,2002,33(5):703-714
    [23] Park K K, Liem A, Stewart B C, et al. Vinyl carbamate epoxide, a major strongelectrophilic, mutagenic and carcinogenic metabolite of vinyl carbamate and ethylcarbamate (urethane)[J], Carcinogenesis,1993,14(3):441-450
    [24] Le Kim Y-K, Koh E, Chung H-J, et al. Determination of ethyl carbamate in somefermented Korean foods and beverages [J], Food Addit Contam,2000,17(6):469-475
    [25] Jagerdeo E, Dugar S, Foster G D, et al. Analysis of ethyl carbamate in wines usingsolid-phase extraction and multidimensional gas chromatography/mass spectrometry[J], J Agric Food Chem,2002,50(21):5797-5802
    [26] Fu M L, Liu J, Chen Q H, et al. Determination of ethyl carbamate in Chinese yellowrice wine using high-performance liquid chromatography with fluorescence detection[J], Int J Food Sci Tech,2010,45(6):1297-1302
    [27] Lachenmeier D W. Rapid screening for ethyl carbamate in stone-fruit spirits usingFTIR spectroscopy and chemometrics [J], Anal Bioanal Chem,2005,382(6):1407-1412
    [28] Hofman-Bang J. Nitrogen catabolite repression in Saccharomyces cerevisiae [J], MolBiotechnol,1999,12(1):35-73
    [29] Azevedo Z, Couto J A&Hogg T. Citrulline as the main precursor of ethyl carbamatein model fortified wines inoculated with Lactobacillus hilgardii: a marker of the levelsin a spoiled fortified wine [J], Lett Appl Microbiol,2002,34(1):32-36
    [30] Terrade N&Mira de Orduna R. Impact of wine making practices on arginine andcitrulline metabolism during and after malolactic fermentation [J], J Appl Microbiol,2006,101(2):406-411
    [31] Arena M E&Manca de Nadra M C. Influence of ethanol and low pH on arginine andcitrulline metabolism in lactic acid bacteria from wine [J], Res Microbiol,2005,156(8):858-864
    [32] Mira de Orduna R, Liu S Q, Patchett M L, et al. Kinetics of the arginine metabolism ofmalolactic wine lactic acid bacteria Lactobacillus buchneri CUC-3and Oenococcusoeni Lo111[J], J Appl Microbiol,2000,89(3):547-552
    [33] Olafsdottir E S, Bolt Jorgensen L&Jaroszewski J W. Cyanogenesis inglucosinolate-producing plants: Carica papaya and Carica quercifolia [J],Phytochemistry,2002,60(3):269-273
    [34] Aresta M, Boscolo M&Franco D W. Copper(II) catalysis in cyanide conversion intoethyl carbamate in spirits and relevant reactions [J], J Agric Food Chem,2001,49(6):2819-2824
    [35] Lofroth G&Gejvall T. Diethyl pyrocarbonate: formation of urethan in treatedbeverages [J], Science,1971,174(4015):1248-1250
    [36] Yoshizawa K, Takahashi K&Sato K. Changes of urea content in rice and sakemoromi during sake making process [J], J Brew Soc Japan,1988,83(2):136-141
    [37] Jauniaux J C, Urrestarazu L A&Wiame J M. Arginine metabolism in Saccharomycescerevisiae: subcellular localization of the enzymes [J], J Bacteriol,1978,133(3):1096-1107
    [38] Liu S Q&Pilone G J. A review: arginine metabolism in wine lactic acid bacteria andits practical significance [J], J Appl Microbiol,1998,84(3):315-327
    [39] Lachenmeier D W, Schehl B, Kuballa T, et al. Retrospective trends and current statusof ethyl carbamate in German stone-fruit spirits [J], Food Addit Contam,2005,22(5):397-405
    [40] Ogunlowo A S&Adesuyi A S. A low-cost rice cleaning/destoning machine [J], AgricMech Asia, Africa, and Latin America,1999,30:20-24
    [41] Uthurry C A, Lepe J A, Lombardero J, et al. Ethyl carbamate production by selectedyeasts and lactic acid bacteria in red wine [J], Food Chem,2006,94(2):262-270
    [42] Patrignani F, Ndagijimana M, Belletti N, et al. Biogenic amines and ethyl carbamate inprimitivo wine: survey of their concentrations in commercial products and relationshipwith the use of malolactic starter [J], J Food Prot,2012,75(3):591-596
    [43] Hasnip S, Caputi A, Crews C, et al. Effects of storage time and temperature on theconcentration of ethyl carbamate and its precursors in wine [J], Food Addit Contam,2004,21(12):1155-1161
    [44] Wu H, Chen L, Pan G, et al. Study on the changing concentration of ethyl carbamate inyellow rice wine during production and storage by gas chromatography/massspectrometry [J], Eur Food Res Technol,2012,235(5):779-782
    [45] Weltring A, Rupp M, Arzberger U, et al. Ethyl carbamate: analysis of questionnairesabout production methods of stone-fruit spirits at German small distilleries [J], DtschLebensmitt Rundsch,2006,102(3):97-101
    [46] Christoph N&Bauer-Christoph C. Measures to reduce the content of ethyl carbamateduring production of stone-fruit spirits (I).[J], Kleinbrennerei,1998,50:9-13
    [47] Nusser R, Gleim P&Tramm A. The removal of cyanide. New washing procedurewith vapour [J], Kleinbrennerei,2001,53:6-9
    [48] Hashiguchi T, Horii S, Izu H, et al. The concentration of ethyl carbamate incommercial ume (prunus mume) liqueur products and a method of reducing it [J],Biosci Biotechnol Biochem,2010,74(10):2060-2066
    [49] Bruno S N F, Vaitsman D S, Kunigami C N, et al. Influence of the distillationprocesses from Rio de Janeiro in the ethyl carbamate formation in Brazilian sugar canespirits [J], Food Chem,2007,104(4):1345-1352
    [50] Park S R, Ha S D, Yoon J H, et al. Exposure to ethyl carbamate in alcohol-drinkingand nondrinking adults and its reduction by simple charcoal filtration [J], FoodControl,2009,20(10):946-952
    [51] Pieper H J, Seibold R, Luz E, et al. Reduction of the ethyl carbamate concentration inmanufacture of Kirsch (cherry spirit).[J], Kleinbrennerei,1992,44:125-130
    [52] Paton G, Palmer G, Kindness A, et al. Use of luminescence-marked bacteria to assesscopper bioavailability in malt whisky distillery effluent [J], Chemosphere,1995,31(5):3217-3224
    [53] Suzuki K, Benno Y, Mitsuoka T, et al. Urease-producing species of intestinalanaerobes and their activities [J], Appl Environ Microbiol,1979,37(3):379-382
    [54] Kobashi K, Takebe S&Sakai T. Removal of urea from alcoholic beverages with anacid urease [J], J Appl Toxicol,1988,8(1):73-74
    [55] Liu J, Xu Y, Nie Y, et al. Optimization production of acid urease by Enterobacter sp.in an approach to reduce urea in Chinese rice wine [J], Bioprocess Biosystems Eng,2012,35(4):651-657
    [56] Miyagawa K, Sumida M, Nakao M, et al. Purification, characterization, andapplication of an acid urease from Arthrobacter mobilis [J], J Biotechnol,1999,68(2-3):227-236
    [57] Yang L Q, Wang S H&Tian Y P. Purification, properties, and application of a novelacid urease from Enterobacter sp [J], Appl Biochem Biotechnol,2010,160(2):303-313
    [58] Kodama S&Yotsuzuka F. Acid urease: reduction of ethyl carbamate formation insherry under simulated baking conditions [J], J Food Sci,1996,61(2):304-307
    [59] Fidaleo M, Esti M&Moresi M. Assessment of urea degradation rate in model winesolutions by acid urease from Lactobacillus fermentum [J], J Agric Food Chem,2006,54(17):6226-6235
    [60] Esti M, Fidaleo M, Moresi M, et al. Modeling of urea degradation in white and rosewines by acid urease [J], J Agric Food Chem,2007,55(7):2590-2596
    [61] Andrich L, Esti M&Moresi M. Urea degradation in model wine solutions by free orimmobilized acid urease in a stirred bioreactor [J], J Agric Food Chem,2009,57(9):3533-3542
    [62] Kobashi K, Takebe S&Sakai T. Urethane-hydrolyzing enzyme from Citrobacter sp[J], Chem Pharm Bull,1990,38(5):1326-1328
    [63] Zhao C J, Imamura L&Kobashi K. Urethanase of Bacillus licheniformis sp. isolatedfrom mouse gastrointestine [J], Chem Pharm Bull,1991,39(12):3303-3306
    [64] Zhao C J&Kobashi K. Purification and characterization of iron-containing urethanasefrom Bacillus licheniformis [J], Biol Pharm Bull,1994,17(6):773-778
    [65] Mohapatra B&Bapuji M. Characterization of urethanase from Micrococcus speciesassociated with the marine sponge (Spirasfrella species)[J], Lett Appl Microbiol,1997,25(6):393-396
    [66] Toshiaki. Novel urethanase gene [P], Japan WO019095A1,2006
    [67] Sumrada R A&Cooper T G. Isolation of the CAR1gene from Saccharomycescerevisiae and analysis of its expression [J], Mol Cell Biol,1982,2(12):1514-1523
    [68] Sumrada R A&Cooper T G. Nucleotide sequence of the Saccharomyces cerevisiaearginase gene (CAR1) and its transcription under various physiological conditions [J],J Bacteriol,1984,160(3):1078-1087
    [69] Suizu T, Iimura Y, Gomi K, et al. Construction of urea non-producing yeastSaccharomyces cerevisiae by disruption of the CAR1gene (Microbiology&Fermentation Industry)[J], Agric Biol Chem,1990,54(2):537-539
    [70] Kitamoto K, Oda K, Gomi K, et al. Genetic engineering of a sake yeast producing nourea by successive disruption of arginase gene [J], Appl Environ Microbiol,1991,57(1):301-306
    [71] Kitamoto K, Oda-Miyazaki K, Gomi K, et al. Mutant isolation of non-urea producingsake yeast by positive selection [J], J Ferment Bioeng,1993,75(5):359-363
    [72] Park H, Shin M&Woo I. Antisense-mediated inhibition of arginase (CAR1) geneexpression in Saccharomyces cerevisiae [J], J Biosci Bioeng,2001,92(5):481-484
    [73] Yoshiuchi K, Watanabe M&Nishimura A. Breeding of a non-urea producing sakeyeast with killer character using a kar1-1mutant as a killer donor [J], J Ind MicrobiolBiotechnol,2000,24(3):203-209
    [74] Schehl B, Senn T, Lachenmeier D W, et al. Contribution of the fermenting yeast strainto ethyl carbamate generation in stone fruit spirits [J], Appl Microbiol Biotechnol,2007,74(4):843-850
    [75] ElBerry H M, Majumdar M L, Cunningham T S, et al. Regulation of the urea activetransporter gene (DUR3) in Saccharomyces cerevisiae [J], J Bacteriol,1993,175(15):4688-4698
    [76] Bussereau F, Mallet L, Gaillon L, et al. A12.8kb segment, on the right arm ofchromosome II from Saccharomyces cerevisiae including part of the DUR1,2gene,contains five putative new genes [J], Yeast,1993,9(7):797-806
    [77] Genbauffe F S&Cooper T G. The urea amidolyase (DUR1,2) gene of Saccharomycescerevisiae [J], DNA Seq,1991,2(1):19-32
    [78] Navarathna D H, Das A, Morschhauser J, et al. Dur3is the major urea transporter inCandida albicans and is co-regulated with the urea amidolyase Dur1,2[J], Microbiol,2011,157(Pt1):270-279
    [79] Coulon J, Husnik J I, Inglis D L, et al. Metabolic engineering of Saccharomycescerevisiae to minimize the production of ethyl carbamate in wine [J], Am J EnolViticult,2006,57(2):113-124
    [80] Dahabieh M S, Husnik J I&Van Vuuren H J. Functional enhancement of sake yeaststrains to minimize the production of ethyl carbamate in sake wine [J], J ApplMicrobiol,2010,109(3):963-973
    [81] Dahabieh M S, Husnik J I&van Vuuren H J J. Functional expression of the DUR3gene in a wine yeast strain to minimize ethyl carbamate in Chardonnay wine [J], Am JEnol Viticult,2009,60(4):537-541
    [82] Minehart P L&Magasanik B. Sequence and expression of GLN3, a positive nitrogenregulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zincfinger DNA-binding domain [J], Mol Cell Biol,1991,11(12):6216-6128
    [83] Kulkarni A A, Abul-Hamd A T, Rai R, et al. Gln3p nuclear localization and interactionwith Ure2p in Saccharomyces cerevisiae [J], J Biol Chem,2001,276(34):321-336
    [84] Svetlov V&Cooper T G. The minimal transactivation region of Saccharomycescerevisiae Gln3p is localized to13amino acids [J], J Bacteriol,1997,179(24):7644-7652
    [85] Rai R, Tate J J, Nelson D R, et al. gln3mutations dissociate responses to nitrogenlimitation (nitrogen catabolite repression) and rapamycin inhibition of TorC1[J], JBiol Chem,2013,288(4):2789-2804
    [86] Blinder D&Magasanik B. Recognition of nitrogen-responsive upstream activationsequences of Saccharomyces cerevisiae by the product of the GLN3gene [J], JBacteriol,1995,177(14):4190-4193
    [87] Coffman J A, Rai R, Cunningham T, et al. Gat1p, a GATA family protein whoseproduction is sensitive to nitrogen catabolite repression, participates in transcriptionalactivation of nitrogen-catabolic genes in Saccharomyces cerevisiae [J], Mol Cell Biol,1996,16(3):847-858
    [88] Stanbrough M&Magasanik B. Transcriptional and posttranslational regulation of thegeneral amino acid permease of Saccharomyces cerevisiae [J], J Bacteriol,1995,177(1):94-102
    [89] Coffman J A, Rai R, Loprete D M, et al. Cross regulation of four GATA factors thatcontrol nitrogen catabolic gene expression in Saccharomyces cerevisiae [J], J Bacteriol,1997,179(11):3416-3429
    [90] Cunningham T S&Cooper T G. Expression of the DAL80gene, whose product ishomologous to the GATA factors and is a negative regulator of multiple nitrogencatabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen cataboliterepression [J], Mol Cell Biol,1991,11(12):6205-6215
    [91] Cunningham T S&Cooper T G. The Saccharomyces cerevisiae DAL80repressorprotein binds to multiple copies of GATAA-containing sequences (URSGATA)[J], JBacteriol,1993,175(18):5851-5861
    [92] Coornaert D, Vissers S, Andre B, et al. The UGA43negative regulatory gene ofSaccharomyces cerevisiae contains both a GATA-1type zinc finger and a putativeleucine zipper [J], Curr Genet,1992,21(4-5):301-307
    [93] Soussi-Boudekou S, Vissers S, Urrestarazu A, et al. Gzf3p, a fourth GATA factorinvolved in nitrogen-regulated transcription in Saccharomyces cerevisiae [J], MolMicrobiol,1997,23(6):1157-1168
    [94] Coschigano P W&Magasanik B. The URE2gene product of Saccharomycescerevisiae plays an important role in the cellular response to the nitrogen source andhas homology to glutathione s-transferases [J], Mol Cell Biol,1991,11(2):822-832
    [95] Masison D C&Wickner R B. Prion-inducing domain of yeast Ure2p and proteaseresistance of Ure2p in prion-containing cells [J], Science,1995,270(5233):93-95
    [96] Magasanik B&Kaiser C A. Nitrogen regulation in Saccharomyces cerevisiae [J],Gene,2002,290(1-2):1-18
    [97] Godard P, Urrestarazu A, Vissers S, et al. Effect of21different nitrogen sources onglobal gene expression in the yeast Saccharomyces cerevisiae [J], Mol Cell Biol,2007,27(8):3065-3086
    [98] Heitman J, Movva N R&Hall M N. Targets for cell cycle arrest by theimmunosuppressant rapamycin in yeast [J], Science,1991,253(5022):905-909
    [99] Crespo J L&Hall M N. Elucidating TOR signaling and rapamycin action: lessonsfrom Saccharomyces cerevisiae [J], Microbiol Mol Biol Rev,2002,66(4):579-591
    [100] Weisman R&Choder M. The fission yeast TOR homolog, tor1+, is required for theresponse to starvation and other stresses via a conserved serine [J], J Biol Chem,2001,276(10):7027-7032
    [101] Kunz J, Henriquez R, Schneider U, et al. Target of rapamycin in yeast, TOR2, is anessential phosphatidylinositol kinase homolog required for G1progression [J], Cell,1993,73(3):585-596
    [102] Helliwell S B, Wagner P, Kunz J, et al. TOR1and TOR2are structurally andfunctionally similar but not identical phosphatidylinositol kinase homologues in yeast[J], Mol Biol Cell,1994,5(1):105-118
    [103] Helliwell S B, Howald I, Barbet N, et al. TOR2is part of two related signalingpathways coordinating cell growth in Saccharomyces cerevisiae [J], Genetics,1998,148(1):99-112
    [104] Di Como C J&Arndt K T. Nutrients, via the Tor proteins, stimulate the association ofTap42with type2A phosphatases [J], Genes Dev,1996,10(15):1904-1916
    [105] Wang H, Wang X&Jiang Y. Interaction with Tap42is required for the essentialfunction of Sit4and type2A phosphatases [J], Mol Biol Cell,2003,14(11):4342-4351
    [106] Posas F, Clotet J&Arino J. Saccharomyces cerevisiae gene SIT4is involved in thecontrol of glycogen metabolism [J], FEBS Lett,1991,279(2):341-345
    [107] Tate J J, Feller A, Dubois E, et al. Saccharomyces cerevisiae Sit4phosphatase is activeirrespective of the nitrogen source provided, and Gln3phosphorylation levels becomenitrogen source-responsive in a sit4-deleted strain [J], J Biol Chem,2006,281(49):37980-37992
    [108] Georis I, Tate J J, Feller A, et al. Intranuclear function for protein phosphatase2A:Pph21and Pph22are required for rapamycin-induced GATA factor binding to theDAL5promoter in yeast [J], Mol Cell Biol,2011,31(1):92-104
    [109] Sneddon A A, Cohen P T&Stark M J. Saccharomyces cerevisiae protein phosphatase2A performs an essential cellular function and is encoded by two genes [J], EMBO J,1990,9(13):4339-4346
    [110] Lin F C&Arndt K T. The role of Saccharomyces cerevisiae type2A phosphatase inthe actin cytoskeleton and in entry into mitosis [J], EMBO J,1995,14(12):2745-2759
    [111] Ljungdahl P O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast[J], Biochem Soc Trans,2009,37(Pt1):242-247
    [112] Cooper T G. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiaefrom the Tor proteins to the GATA factors: connecting the dots [J], FEMS MicrobiolRev,2002,26(3):223-238
    [113] Soetens O, De Craene J-O&André B. Ubiquitin is required for sorting to the vacuoleof the yeast general amino acid permease, Gap1[J], J Biol Chem,2001,276(47):43949-43957
    [114] Chen S&Xu Y. The influence of yeast strains on the volatile flavour compounds ofChinese rice wine [J], J I Brewing,2010,116(2):190-196
    [115] Lv Y, Zhao X, Liu L, et al. A simple procedure for protein ubiquitination detection inSaccharomyces cerevisiae: Gap1p as an example [J], J Microbiol Methods,2013,94(1):25-29
    [116] Boer V M, Tai S L, Vuralhan Z, et al. Transcriptional responses of Saccharomycescerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostatcultures [J], FEMS Yeast Res,2007,7(4):604-620
    [117] Knorst M T, Neubert R&Wohlrab W. Analytical methods for measuring urea inpharmaceutical formulations [J], J Pharm Biomed Anal,1997,15(11):1627-1632
    [118] Kanda J. Determination of ammonium in seawater based on the indophenol reactionwith o-phenylphenol (OPP)[J], Water Res,1995,29(12):2746-2750
    [119] Cigic I K, Vodosek T V, Kosmerl T, et al. Amino acid quantification in the presence ofsugars using HPLC and pre-column derivatization with3-MPA/OPA and FMOC-Cl [J],Acta Chim Slov,2008,55(3):660-664
    [120] Mitchell A P. The GLN1locus of Saccharomyces cerevisiae encodes glutaminesynthetase [J], Genetics,1985,111(2):243-258
    [121] Grenson M, Dubois E, Piotrowska M, et al. Ammonia assimilation in Saccharomycescerevisiae as mediated by the two glutamate dehydrogenases [J], Mol Gen Genet,1974,128(1):73-85
    [122] Dunlop P C, Meyer G M, Ban D, et al. Characterization of two forms of asparaginasein Saccharomyces cerevisiae [J], J Biol Chem,1978,253(4):1297-1304
    [123] Verleur N, Elgersma Y, Roermund C W T, et al. Cytosolic aspartate aminotransferaseencoded by the AAT2gene is targeted to the peroxisomes in oleate-grownSaccharomyces cerevisiae [J], Eur J Biochem,1997,247(3):972-980
    [124] ter Schure E G, van Riel N A&Verrips C T. The role of ammonia metabolism innitrogen catabolite repression in Saccharomyces cerevisiae [J], FEMS Microbiol Rev,2000,24(1):67-83
    [125] Gombert A K, Moreira dos Santos M, Christensen B, et al. Network identification andflux quantification in the central metabolism of Saccharomyces cerevisiae underdifferent conditions of glucose repression [J], J Bacteriol,2001,183(4):1441-1451
    [126] Stanbrough M, Rowen D W&Magasanik B. Role of the GATA factors Gln3p andNil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes [J],Proc Natl Acad Sci USA,1995,92(21):9450-9454
    [127] Chen E J&Kaiser C A. Amino acids regulate the intracellular trafficking of thegeneral amino acid permease of Saccharomyces cerevisiae [J], Proc Natl Acad SciUSA,2002,99(23):14837-14842
    [128] Wach A, Brachat A, Alberti-Segui C, et al. Heterologous HIS3marker and GFPreporter modules for PCR-targeting in Saccharomyces cerevisiae [J], Yeast,1997,13(11):1065-1075
    [129] Kuwayama H, Obara S, Morio T, et al. PCR-mediated generation of a gene disruptionconstruct without the use of DNA ligase and plasmid vectors [J], Nucleic Acids Res,2002,30(2):e2
    [130] Leca J M, Pereira V, Pereira A C, et al. Rapid and sensitive methodology fordetermination of ethyl carbamate in fortified wines using microextraction by packedsorbent and gas chromatography with mass spectrometric detection [J], Anal ChimActa,2014,811:29-35
    [131] Tate J J&Cooper T G. Stress-responsive Gln3localization in Saccharomycescerevisiae is separable from and can overwhelm nitrogen source regulation [J], J BiolChem,2007,282(25):18467-18480
    [132] Wang H&Jiang Y. The Tap42-protein phosphatase type2A catalytic subunit complexis required for cell cycle-dependent distribution of actin in yeast [J], Mol Cell Biol,2003,23(9):3116-3125
    [133] Bricmont P A, Daugherty J R&Cooper T G. The DAL81gene product is required forinduced expression of two differently regulated nitrogen catabolic genes inSaccharomyces cerevisiae [J], Mol Cell Biol,1991,11(2):1161-1166
    [134] Olive M G, Daugherty J R&Cooper T G. DAL82, a second gene required forinduction of allantoin system gene transcription in Saccharomyces cerevisiae [J], JBacteriol,1991,173(1):255-261
    [135] ElBerry H M, Majumdar M L, Cunningham T S, et al. Regulation of the urea activetransporter gene (DUR3) in Saccharomyces cerevisiae [J], J Bacteriol,1993,175(15):4688-4698
    [136] Radivojac P, Vacic V, Haynes C, et al. Identification, analysis, and prediction ofprotein ubiquitination sites [J], Proteins,2010,78(2):365-380
    [137] Tate J J, Georis I, Feller A, et al. Rapamycin-induced Gln3dephosphorylation isinsufficient for nuclear localization: Sit4and PP2A phosphatases are regulated andfunction differently [J], J Biol Chem,2009,284(4):2522-2534
    [138] Hayashi N, Nomura T, Sakumoto N, et al. The SIT4gene, which encodes proteinphosphatase2A, is required for telomere function in Saccharomyces cerevisiae [J],Curr Genet,2005,47(6):359-367
    [139] Santhanam A, Hartley A, Düvel K, et al. PP2A phosphatase activity is required forstress and Tor kinase regulation of yeast stress response factor Msn2p [J], EukaryotCell,2004,3(5):1261-1271
    [140] Barbosa A D, Osorio H, Sims K J, et al. Role for Sit4p-dependent mitochondrialdysfunction in mediating the shortened chronological lifespan and oxidative stresssensitivity of Isc1p-deficient cells [J], Mol Microbiol,2011,81(2):515-527
    [141] Dorrington R A&Cooper T G. The DAL82protein of Saccharomyces cerevisiae bindsto the DAL upstream induction sequence (UIS)[J], Nucleic Acids Res,1993,21(16):3777-3784
    [142] Katou T, Kitagaki H, Aka T, et al. Brewing characteristics of haploid strains isolatedfrom sake yeast Kyokai No.7[J], Yeast,2008,25(11):799-807
    [143] Cao Y, Xie G F, Wu C, et al. A study on characteristic flavor compounds in traditionalChinese rice wine-Guyue Longshan Rice Wine [J], J I Brewing,2010,116(2):182-189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700