高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨率遥感影像(如QuickBird, IKONOS,SPOT-5等),能够提供大量的地面细节信息,因此展开了遥感应用的新纪元。但是,这种新型数据却对影像特征提取和分类提出了新的问题和挑战。由于影像复杂的空间排列,以及同类地物内部的光谱异质性,使得传统的光谱解译方法对高分辨率影像无法取得好的效果。高分辨率影像中,可以观测到更多的细节特征和小目标,这造成了同种地物内部的光谱变化和异质性,也使得不同地物之间的光谱差异减少。这种较高的类内变化和较低的类间差异,降低了各种地面覆盖物在光谱域的模式可分性。为了克服这一问题,需要有效的利用影像的纹理、结构、尺度和对象信息,弥补光谱特征的不足。
     本文分别从纹理、形状和对象的角度来提取和分析影像的特征,在此基础上,研究这些空间信息的多尺度特性,最后,用三个高分辨率影像应用的实例(城市、农业和森林区域)来验证本文所提出的各种方法。
     在论文展开之前,我们首先分析了分类器对高分辨率影像解译的影响。本文提出使用机器学习和人工智能方法来处理高分辨率数据,并在实验中用多层感知器(MLP)、概率神经网络(PNN)、支持向量机(SVM)和关系向量机(RVM)进行了测试,结果发现:由于机器学习算法的非参数化性质,和自适应学习的能力,使之能够获得比传统的统计分类器(如极大似然法MLC、距离分类器MDM、光谱角制图SAM)更好的结果。
     但同时,实验结果也表明:尽管先进的分类方式能够提供更高的精度,但它们的结果仍然显示出某些系统性的误差。这种错误是无法通过分类器的革新来消除的,必须加入更多的决策信息,如更多的波段,纹理和结构信息等。换句话说,解决光谱相似性目标的区分需要更多的信息。因此,本文接下来将重点研究高分辨率影像的纹理、形状和面向对象特征。
     对于纹理信息提取,本文提出一种基于NSCT变换(非下采样小轮廓变换)的多方向多尺度纹理特征。NSCT变换可以分为两个具有移动不变性的部分:1)满足多尺度特性的非下采样金字塔结构,2)满足方向性的方向滤波簇。NSCT变换是小波变换的改进形式,它的优势主要在于对影像边缘和线特征的表达,因此,NSCT对于高分辨率影像的纹理结构特征提取更有潜力。实验结果显示:纹理信息的加入在视觉上和精度上都要优于传统的光谱分类方式。而且,NSCT特征得到了比小波纹理、GLCM纹理和空间自相关测度更好的结果。
     形状和结构特征是高分辨率影像的一个显著特性,它对人类的视觉更为敏感。我们原创性的提出一种像元形状指数(PSI),用来描述中心像元局部邻域的形状和轮廓信息。实验比较了PSI与小波纹理以及GLCM纹理特征,结果显示:PSI能够有效的描述上下文形状信息,提供了更高的精度。
     同时,在方向线直方图基础上,不仅可以提取PSI指数,也可以提取更多的结构指数(PSI的扩展算法),如:长、宽、长宽比、直方图方差等等,以弥补PSI特征的单一性。然后,针对多波段结构特征的相似性,本文提出一种特征相似性指数的维数减少算法,减少信息冗余和计算代价,并用BP神经网络、概率神经网络PNN,以及支持向量机来解译多元结构特征。QuickBird数据集和HYDICE航空影像数据的实验表明:SFS特征集能够得到比PSI更好的效果。
     对于对象信息的提取和影像的面向对象分析,本文针对eCognition软件的不足,提出一种自适应均值移动框架。其基本步骤是用均值移动来获取高分辨率影像的面向对象表达形式,然后用SVM进行解译。为了有效的利用均值移动分析,我们提出两种自适应带宽尺度算法:一种是基于影像局部结构(非监督),另一种是基于类别可分性测度(监督)。实验影像采用HYDICE航空数据和HYMAP航空影像。我们把提出的自适应均值移动算法和面向对象分析软件eCognition进行了详细的比较,结果说明了均值移动方法的稳健型和效率。
     在多元特征提取(纹理、结构和对象)的基础上,本文进一步研究了这些特征的多尺度性质,把纹理、结构和对象特征在尺度维进行扩展,研究多尺度特征表达和多尺度信息融合方法。本文提出了三种多尺度融合方案:矢量叠力口(VS),SVM模糊输出(Fuzzy SVM),以及多分类器投票(Voting)。VS方法是把多尺度信息在特征空间进行叠加。模糊SVM方法的基本原理是对每个尺度的SVM输出函数值进行模糊化,选择不确定性最小的作为最优决策尺度和最优决策结果。实验用多个高分辨率数据集对四种多尺度特征表达方法进行了详细的测试,结果显示特征叠加和模糊SVM都能够有效的融合多尺度信息,达到单尺度下的最优精度。同时,实验说明:VS多尺度叠加的方法能够利用特征在尺度维的扩展,形成高维的尺度特征空间,在大多数测试结果中,VS能提供优于模糊SVM和Voting的结果。
     最后用三个高分辨率遥感应用问题来验证本文提出的多尺度和多特征方法。具体包括:1)对LiDAR影像进行纹理特征、统计特征提取,并对航空影像和相应的LiDAR数据进行信息融合,对Denmark,Odense区域进行高精度高分辨率城市地面覆盖制图;2)使用多尺度形态学特征、多层面向对象分析方法,用IKONOS多光谱影像对Panama的Caribbean海岸的红树林进行树种区分和森林物种空间分布研究;3)使用多尺度光谱—纹理方式,用PHI航空影像,对江苏省常州市夏桥农业区域进行农作物物种识别和精细农业制图。
Very high resolution (VHR) remotely sensed imagery, such as QuickBird, IKONOS, SPOT-5, can provide a large amount of information, thus opening up avenues for new remote sensing applications. However, their availability poses challenges to image classification. Due to the complex spatial arrangement and spectral heterogeneity even within the same class, conventional spectral classification methods are grossly inadequate for classification of VHR imagery. Detailed features and small objects can be detected in VHR images and, consequently, the spectral signatures inside an information class become more heterogeneous and different objects become more spectrally similar. The resulting high intraclass and low interclass variabilities lead to a reduction in the statistical separability of the different land-cover classes in the spectral domain. In order to overcome the inadequacy, the textural, strauctural, scale and object-based features should be exploited effectively, in order to complement the spectral feature space.
     This paper aims to investigate the textural, shape and object-based features from VHR imagery. Furthermore, these spatial features are extended to multiscale approaches. Afterwards, three case studies on urban, agricultural and forest regions were conducted for validation and application for the proposed algorithms in this paper.
     At first, we analyzed the effects and performance of different classifiers for VHR image interpretation. Accordingly, we proposed to use the neural network classifiers and machine learning approaches. The notable advantages of these classification approaches consist in the adaptive learning rule and the non-parametric characteristic, which is especially efficient for the complex data distribution of VHR imagery. In experiments, the MLP (Multi-Level Perceptron), PNN (Probability Neural Network), SVM (Support Vector Machines), and RVM (Relevance Vector Machine) were employed. The experiments on the HYDICE airborne dataset revealed that the machine learning approaches substantially outperformed the conventional classifiers, such as MLC (Maximum Likelihood Classification), MDM (Minimum Distance to Mean), SAM (Spectral Angular Mapping) etc.
     However, the experimental results revealed that although the advanced classification techniques could give higher accuracies, their results also showed some confident mis-allocations. These mis-classifications should be improved using further discriminatory variables (e.g. additional wavelengths, textural and structural information). In other words, some additional information is essential for the recognition of spectrally similar classes. Therefore, in this paper, we focused on the texture, shape and object-based feature extraction from the VHR imagery.
     For the texture information extraction, in this paper, a novel multiscale and multidirectional texture measure based on the NSCT transform was proposed. NSCT transform can be divided into two shift-invariant parts:1) a non-subsampled pyramid structure that satisfies the multiscale property and 2) a directional filter bank that ensures directionality. The advantages of NSCT over the wavelet consist in the representations of image edges and lines, therefore, it is more potential for textural and structural feature extraction from the VHR imagery. The experiments showed the introduction of additional texture information could obviously improve the spectral classification in terms of both visual inspection and statistical accuracies. In the other hand, the proposed NSCT feature gave higher accuracy than the GLCM textures, spatial autocorrelation measure and the feature based on stationary wavelet transform.
     The shape and structural features are of interest because they are more sensitive to the human vision system and they can provide more discriminative information. We proposed a novel shape feature index, namely pixel shape index (PSI), to describe the shape and contour in a local area surrounding a central pixel. PSI is a pixel based feature, which measures the gray similarity distance in multiple directions. The results of PSI were compared with some spatial features extracted using wavelet transform (WT), gray level co-occurrence matrix (GLCM) in order to test its effectiveness. The experiments demonstrated that PSI was capable of describing the shape features effectively and resulted in more accurate classifications than other methods.
     Based on the extracted direction-lines histogram, we proposed an extension of PSI algorithm, namely SFS (structural feature set). Some new statistical measures were designed to extract structural features from the direction-lines, such as weighted mean, length-width ratio, and standard deviation, in order to overcome the inadequacy of the PSI. Afterwards, some dimension reduction approaches were employed in order to reduce information redundancy. BPNN, EM-PNN and SVM were used to process the hybrid spectral-structural features after the steps of spatial feature extraction and dimension reduction. The proposed SFS approach was evaluated using two QuickBird datasets and the HYDICE Washington dataset. The results revealed that the new set of reduced spatial features had better performance than PSI.
     With respect to the object-based analysis, an adaptive mean shift analysis framework was proposed for object extraction and classification of VHR imagery. The basic idea is to apply a mean shift to obtain an object-oriented representation of VHR data and then use support vector machine to interpret the feature set. In order to employ mean shift effectively, two bandwidth selection algorithms were proposed for the mean shift procedure. One is based on the local structure and the other exploits separability analysis. Experiments were conducted on two VHR datasets, the DC Mall HYDICE image and the Purdue campus HYMAP image. We evaluated and compared the proposed approach with the well-known commercial software eCognition (object-based analysis approach) and an effective spectral/spatial classifier for hyperspectral data, namely the derivative of the morphological profile (DMP). Experimental results verified that the proposed mean shift-based analysis system was robust and obviously outperformed other methods.
     The proposed textural, shape and object-based features are extended to multiscale approaches. We aim to 1) extract multiscale features from VHR urban imagery and 2) integrate the multiscale information using three approaches: vector-stacking (VS) SVM, Fuzzy SVM and multi-classifier voting. The VS SVM concatenates the multilevel features in a single SVM. The fuzzy approach deals with the SVM function values for each scale and then chooses the optimal scale according to the membership value. In experiments, three VHR datasets were used for validation of the presented multiscale fusion schemes:ROSIS Pavia datasets and the HYDICE DC Mall image. Experiments showed that both vector-stacking and fuzzy approaches were able to give comparable or higher results than that one obtained by the optimal scale in terms of accuracies. In most cases, the VS SVM provided higher accuracies than the Fuzzy SVM and multi-classifier voting.
     At last, we used three case studies to validate and test the multiscale features and the classification methods proposed in this paper. The applications involved 1) the feature analysis and information fusion using aerial photograph and LiDAR data, 2) the mangrove mapping from IKONOS multispectral imagery using multiscale texture information in a study area on the Caribbean coast of Panama, and 3) detailed agriculture mapping using multiscale spectral-textural method based on the PHI airborne data in Xiaqiao, Jiangsu Province.
引文
[1]薄树奎,聂荣,丁琳.基于面向对象方法的遥感影像桥梁提取.计算机工程与应用,2008,44(26):200-202.
    [2]陈君颖,田庆久.高分辨率遥感植被分类研究.遥感学报,2007,11(2):221-227.
    [3]陈亮,张友静,陈波.结合多尺度纹理的高分辨率遥感影像决策树分类.地理与地理信息科学,2007,23(4):18-21.
    [4]陈启浩,高伟,刘修国.辅以纹理特征的高分辨率遥感影像分类.测绘科学,2008,33(1):88-90.
    [5]陈杉,秦其明.基于小波变换的高分辨率影像纹理结构分类方法.地理与地理信息科学,2003,19(3):6-9.
    [6]陈阳,陈映鹰,林怡.基于面向对象分类方法的遥感影像变化检测.山东建筑大学学报,2008,23(6):515-520.
    [7]付卓,胡吉平,谭衢霖,刘正军.遥感应用分析中影像分割方法.遥感技术与应用,2006,21(5):456-462.
    [8]胡海旭,王文,何厚军.基于纹理特征与数学形态学的高分辨率影像城市道路提取.地理与地理信息科学,2008,24(6):46-49.
    [9]胡进刚,张晓东,沈欣,张婵.一种面向对象的高分辨率影像道路提取方法.遥感技术与应用,2006,21(3):184-188.
    [10]黄建文,鞠洪波,赵峰,陈巧,马红.利用遥感进行退耕还林成活率及长势监测方法的研究.遥感学报,2007,11(6):899-905.
    [11]黄听,张良培,李平湘.基于小波的高分辨率遥感影像纹理分类方法研究.武汉大学学报(信息科学版),2006,31(1):66-69.
    [12]黄昕,张良培,李平湘.融合形状和光谱的高分辨率遥感影像分类,遥感学报,2007,11(2):193-200.
    [13]李厚强,刘政凯,林峰.基于分形理论的航空图像分类方法.遥感学报,2001,5(5):353-357.
    [14]李敏,崔世勇,李成名,印洁,李云岭.面向对象的高分辨率遥感影像信息提取——以耕地提取为例.遥感信息,2008,6:63-67.
    [15]李禹,刘军,计科峰,粟毅.高分辨率SAR图像机动目标纹理特征提取与分析.电子与信息学报,2008,30(12):2809-2812.
    [16]刘慧婵,何国金.基于子带小波特征的高分辨率遥感图像特征提取.科学技术与工程,2007,7(17):4353-4357.
    [17]乔程,骆剑承,吴泉源,沈占锋,王宏.面向对象的高分辨率影像城市建筑物提取.地理与地理信息科学,2008,24(5):36-39.
    [18]秦其明,陆荣建.分形与神经网络方法在卫星数字图像分类中的应用.北京大学学报(自然科学版),2000,36(6):858-864.
    [19]苏伟,李京,陈云浩,张锦水,胡德勇,刘翠敏.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例.遥感学报,2007,11(4):521-530.
    [20]孙家抦,舒宁,关泽群.遥感原理、方法和应用.北京:测绘出版社,1997.
    [21]孙晓霞,张继贤,刘正军.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路.测绘科学,2006,31(1):61-62.
    [22]王慕华,张继贤,李海涛,徐华龙.基于区域特征的高分辨率遥感影像变化检测研究.测 绘科学,2009,34(1):92-94.
    [23]徐新刚,李强子,周万村,吴炳方.应用高分辨率遥感影像提取作物种植面积.遥感技术与应用,2008,23(1):17-23.
    [24]颜梅春.高分辨率影像的植被分类方法对比研究.遥感学报,2007,11(2):235-240.
    [25]张锦水,何春阳,潘耀忠等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究.遥感学报,2006,10(1):49-57.
    [26]张良培,张立福.高光谱遥感.湖北武汉:武汉大学出版社,2005.
    [27]张秀英,杨敏华,刘常娟,王振兴.面向对象遥感分类技术在第二次土地调查中的应用.遥感信息,2008,3:77-80.
    [28]赵银娣.马尔可夫模型的扩展及其在高分辨率影像分类中的应用[博士论文],2006.
    [29]赵英时.遥感应用分析原理与方法.北京:科学出版社,2003.
    [30]赵宇鸾,林爱文.基于面向对象和多尺度影像分割技术的城市用地分类研究——以武汉市城市中心区为例.国土资源科技管理,2008,25(5):90-95.
    [31]Acharyya, M., De, R. K. and Kundu, M. K. Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework, IEEE Transactions on Geoscience and Remote Sensing,2003,41(12):2900-2905.
    [32]Akcay, H. G. and Aksoy, S. Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Transactions on Geoscience and Remote Sensing,2008,46, pp.2097-2111.
    [33]Bell, A. J. and Sejnowski, T. J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation.1995,7:1129-1159.
    [34]Bellens, R., Gautama, S., Martinez-Fonte, L., Philips, W., Chan, J. C., and Canters, F. Improved classification of VHR images of urban areas using directional morphological profiles. IEEE Transactions on Geoscience and Remote Sensing,2008,46(10):2803-2813.
    [35]Benediktsson, J. A., Pesaresi, M. and Arnason, K. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing.2003,41(9):1940-1949.
    [36]Benediktsson, J. A., Palmason, J. A., and Sveinsson, J. R.,2005, Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience and Remote Sensing,43(3):480-491.
    [37]Binaghi, E., Gallo, I., and Pepe, M. A cognitive pyramid for contextural classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing,41(12): 2906-2992.
    [38]Bovolo, F. A multilevel parcel-based approach to change detection in very high resolution multispectral images. IEEE Geoscience and Remote Sensing Letters,2009,6(1):33-37.
    [39]Bovolo, F., and Bruzzone, L. A detail-preserving scale-driven approach to change detection in multitemporal SAR images. IEEE Transactions on Geoscience and Remote Sensing,43(12): 2963-2972.
    [40]Bruzzone, L. and Carlin, L. A multilevel context-based system for classification of very high spatial resolution images. IEEE Transactions on Geoscience and Remote Sensing,2006,44(9): 2587-2600.
    [41]Bruzzone, L., Roli, F. and Serpico, S. B. An extension of the Jeffreys-Matusita Distance to multiclass cases for feature selection. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(6):1318-1321.
    [42]Carleer, A. P., Debeir, O., and Wolff, E. Assessment of very high spatial resolution satellite image segmentation. Photogrammetric Engineering and Remote Sensing,2005,71(11): 1285-1294.
    [43]Champion, I., Dubois-Fernandez, P., Guyon, D., and Cottrel, M. Radar image texture as a function of forest stand age. International Journal of Remote Sensing,2008,29(6): 1795-1800.
    [44]Chanussot, J., Benediktsson, J. A., and Fauvel, M. Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Geoscience and Remote Sensing Letters,2006,3(1):40-44.
    [45]Christoulas, G, Tsagaris, V., and Anastassopoulos, V. Textural characterization from various representations of MERIS data. International Journal of Remote Sensing,2007,28(3-4): 675-692.
    [46]Christodoulou, C. I., Michaelides, S. C., and Pattichis, C. S. IEEE Transactions on Geoscience and Remote Sensing,2003,41(11):2662-2668.
    [47]Coburn, C. A. and Roberts, A. C. B.,2004. A multiscale texture analysis procedure for improved forest stand classification, International Journal of Remote Sensing,2004,25(20): 4287-4308.
    [48]Comaniciu, D. and Meer, P. Mean shift:a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
    [49]Cortes, C. and Vapnik, V. Support vector networks. Machine Learning,1995,20:273-297.
    [50]Cots-Folch, R., Aitkenhead, M. J., and Martinez-Casasnovas, J. A. Mapping land cover from detailed aerial photography data using textural and neural network analysis. International Journal of Remote Sensing,2007,28(7):1625-1642.
    [51]Cunha, A. L., Zhou, J., and Do, M. N. The nonsubsampled contourlet transform:theory, design, and applications. IEEE Transactions on Image Processing,2008,15(10):3089-3101.
    [52]Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory,1990,36:961-1005.
    [53]Definiens Imaging, eCognition Professional User Guide 4,2003, Munich, Germany. [Online]. Available:http://www.definiens-imaging.com
    [54]Delenne, C., Durrieu, S., Rabatel, G., et al. Textural approaches for vineyard detection and characterizing using very high spatial resolution remote sensing data. International Journal of Remote Sensing,2008,29(4):1153-1167.
    [55]Dell'Acqua, F. and Gamba, P. Discriminating Urban Environments using Multiscale Texture and multiple SAR images. International Journal of Remote Sensing,2006,27(18-20): 3739-3812.
    [56]Dell'Acqua, F., Gamba, P., Ferari, A., Palmason, J. A., Benediktsson, J. A. and Arnason, K. Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geoscience and Remote Sensing letters,2004,1(4):322-326.
    [57]Dell'Acqua, F., Gamba, P., Trianni, G. Semi-automatic choice of scale-depedent features for satellite SAR image classification. Pattern Recognition Letters,2006,27:244-251.
    [58]Devijver, P. A. and Kittler, J. Pattern Recognition:A Statistical Approach. Englewood Cliffs: Prentice Hall,1982.
    [59]Du, G., and Yeo, T. S. A novel lacunarity estimation method applied to SAR image segmentation. IEEE Transactions on Geoscience and Remote Sensing,2002,40(12): 2687-2691.
    [60]Durieux, L., Kropacek, J., Grandi, G.D., et al. Object-oriented and textural image classification of the Siberia GBFM radar mosaic combined with MERIS imagery for continental scale land cover mapping. International Journal of Remote Sensing,2007,28(18): 4175-4182.
    [61]Elmqvist, B., Ardo, J., and Olsson, L. Land use studies in drylands:en evaluation of object-oriented classification of very high resolution panchromatic imagery. International Journal of Remote Sensing,2008,29(24):7129-7140.
    [62]Epifanio, I., and Soille, P. Morphological texture features for unsupervised and supervised segmentations of natural landscapes. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(4):1074-1083.
    [63]Fauvel, M., Chanussot, J., and Benediktsson, J. A. Decision fusion for the classification of urban remote sensing images. IEEE Transactions on Geoscience and Remote Sensing,2006, 44(10):2828-2838.
    [64]Fauvel, M., Benediktsson, J. A., Chanussot, J., and Sveinsson, J. R. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Transactions on Geoscience and Remote Sensing,2008,46(11):3804-3814.
    [65]Foody, G. M. RVM-based multi-class classification of remotely sensed data. International Journal of Remote Sensing,2008,29(6):1817-1823.
    [66]Foody, G. M., and Mather, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Transactions on Geoscience and Remote Sensing,2004,42(6): 1335-1343.
    [67]Fukuda, S. and Hirosawa, H. A wavelet-based texture feature set applied to classification of multifrequency polarimetric SAR images. IEEE Transactions on Geoscience and Remote Sensing,1999,37(5):2282-2286.
    [68]Fukunaga, K. Introduction to Statistical Pattern Recognition, second ed. Academic Press, 1990.
    [69]Fukunaga, K. and Hostetler, L. D. The estimation of gradient of a density function, with applications in pattern recognition. IEEE Transactions on Information Theory,1975,21(1): 32-40.
    [70]Gamba, P. and Dell'Acqua, F. Improved multiband urban classification using a neuron-fuzzy classifier. International Journal of Remote Sensing,2003,24:827-834.
    [71]Gamba, P., Dell'Acqua, F., Lisini, G, and Trianni, G. Improved VHR urban area mapping exploiting object boundaries. IEEE Transactions on Geoscience and Remote Sensing,2007, 45(8):2767-2682.
    [72]Gao, Y., Mas, J. F., Maathuis, B. H. P., Zhang, X., and Van Dijk, P. M.,2006, Comparison of pixel-based and object-oriented image classification approaches-a case study in a coal fire area, Wuda, Inner Mongolia, China. International Journal of Remote Sensing,2006,27(18-20): 4039-4055.
    [73]Germain, M., Benie, G. B., Boucher, J., et al. Contribution of the fractal dimension to multiscale adaptive filtering of SAR imagery. IEEE Transactions on Geoscience and Remote Sensing,2003,41(8):1765-1772.
    [74]Gitas, I., Mitri, G. H., and Ventura, G. Object-based image classification for burned area mapping of Creus Cape, Spain, using NOAA-AVHRR imagery. Remote Sensing of Environment,2004,92:409-413.
    [75]Gonzalez, R. C., and Woods, R. E. Digital Image Processing. Prentice-Hall,2002.
    [76]Hay, G. J., Blaschke, T., Marceau, D. J., and Bouchard, A.,2003. A comparison of three image-object methods for the multiscale analysis of landscape structure. ISPRS journal of Photogrammetry and Remote Sensing,57:327-345.
    [77]Hay, G. J., Castilla, G., Wulder, M. A., et al. An automated object-based approach for the multiscale image segmentation of forest scenes. International Journal of Applied Earth Observation and Geoinformation,2005,7:339-359.
    [78]Huang, X., Zhang, L., and Li, P. Classification and extraction of spatial features in urban areas using high resolution multispectral imagery. IEEE Geoscience and Remote Sensing letters, 2007,4(2):260-264.
    [79]Huang, X., Zhang, L., and Li, P. An Adaptive Multiscale Information Fusion Approach for Feature Extraction and Classification of IKONOS Multispectral Imagery over Urban Areas. IEEE Geoscience and Remote Sensing letters,2007,4(4):654-658.
    [80]Huang X., Zhang, L., and Li, P. Classification of very high spatial resolution imagery based on the fusion of edge and multispectral information. Photogrammetric Engineering and Remote Sensing,2008,74(12):1585-1596.
    [81]Hyvarinen, A. fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks,1999,10(3):626-634.
    [82]Im, J., Jensen, J. R., and Tullis, J. A. Object-based change detection using correlation image analysis and image segmentation. International Journal of Remote Sensing,2008,1(2): 399-423.
    [83]Jackson, Q., and Landgrebe, D. A. Adaptive Bayesian contextual classification based on Markov random fields. IEEE Transactions on Geoscience and Remote Sensing,2002,40(11): 2454-2463.
    [84]Jimenez, L. O., Rivera-Medina, J. L., Rodriguez-Diaz, E., et al. Integration of spatial and spectral information by means of unsupervised extraction and classification for homogeneous objects applied to multispectral and hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):844-851.
    [85]Jin, X., Davis, C. H. Automated building extraction from high-resolution satellite imagery in urban areas using structural, contextual, and spectral information. EURASIP Journal on Applied Signal Processing,2005,14:2196-2206.
    [86]Karathanassi, V., Topouzelis, K., Pavlakis, P., and Rokos, D. An object-oriented methodology to detect oil spills. International Journal of Remote Sensing,2006,27(23):5235-5251.
    [87]Kettig, R. L., and D. A. Landgrebe. Classification of multispectral image data by extraction and classification of homogeneous objects. IEEE Transactions on Geoscience Electronics, 1976,14(1):19-26.
    [88]Landgrebe, D. A. The development of a spectral-spatial classifier for earth observational data. Pattern Recognition,1980,12:165-175.
    [89]Landgrebe, D. A. Signal Theory Methods in Multispectral Remote Sensing, John Wiley and Sons,2003, Hoboken, NJ.
    [90]Lee, C. and Landgrebe, D. A. Feature Extraction based on Decision Boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15:388-400.
    [91]Lee, D. D. and Seung, H. S. Learning the parts of objects by non-negative matrix factorization. Nature,1999,401(6775):788-791.
    [92]Li, J., and Narayanan, R. M. Integrated spectral and spatial information mining in remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing,2004,42(3): 673-685.
    [93]Li, P., and Xiao, X. Multispectral image segmentation by a multichannel watershed-based approach. International Journal of Remote Sensing,2007,28(19):4429-4452.
    [94]Liu, D., Kelly, M., and Gong, P. A spatial-temporal approach to monitoring forest disease spread using multi-temporal high spatial resolution imagery. Remote Sensing of Environment, 2006,101:167-180.
    [95]Long, H., and Zhao, Z. Urban road extraction from high-resolution optical satellite images. International Journal of Remote Sensing,2005,26(22):4907-4921.
    [96]Lu, S., Oki, K., Shimizu, Y., et al. Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. International Journal of Remote Sensing,2007,28(5):963-984.
    [97]Luo, Q. and Khoshgoftaar, M. Unsupervised multiscale color image segmentation based on MDL principle. IEEE Transactions on Image Processing,2006,15(9):2755-2761.
    [98]Mallat, S. G.A Theory for Multiresolution signal decomposition:The Wavelet Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [99]Meher, S. K., Shankar, B. U., and Ghosh, A. Wavelet-feature-based classifiers for multispectral remote-sensing images, IEEE Transactions on Geoscience and Remote Sensing, 2007,45(7):1881-1886.
    [100]Miao, L., and Qi, H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):765-777.
    [101]Myint, S. W., Lam, N., and Tyler, J. An evaluation of four different wavelet decomposition procedures for spatial feature discrimination in urban areas. Transactions in GIS,2002,6(4): 403-429.
    [102]Myint, S. W., Lam, N., and Tyler, J. Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches. Photogrammetric Engineering and Remote Sensing,2004,70(7):803-812.
    [103]Ouma, Y. O., Ngigi, T. G and Tateishi, R. On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation. International Journal of Remote Sensing,2006,27(1):73-104.
    [104]Ouma, Y. O., Tetuko, J., and Tateishi, R. Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in verh-high-resolution optical-sensor imagery. International Journal of Remote Sensing,2008, 29(12):3417-3456.
    [105]Pagot, E., Pesaresi, M., Buda, D., and Ehrlich, D. Development of an object-oriented classification model using very high resolution satellite imagery for monitoring diamond mining activity. International Journal of Remote Sensing,2008,29(2):499-512.
    [106]Palmason, J., Benediktsson, J. A., Sveinsson, J. et al. Classification of hyperspectral data from urban areas using morphological preprocessing and independent component analysis. In Proceedings of the Geoscience and Remote Sensing Symposium 2005 (IGARSS'05),2005: 176-179.
    [107]Palmason, J. A., Benediktsson, J. A., Sveinsson, J. R., et al. Fusion of morphological and spectral information for classification of hyperspectral urban remote sensing data. Proceedings of the Geoscience and Remote Sensing Symposium 2006 (IGARSS'06),2006:2506-2509.
    [108]Park, N. W., and Chi, K. H. Quantitative assessment of landslide susceptibility using high-resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing,2008,29(1):247-264.
    [109]Pesaresi, M. Textural analysis of coca plantations using remotely sensed data with resolution of 1 metre. International Journal of Remote Sensing,2008,29(23):6985-7002.
    [110]Pesaresi, M., and Benediktsson, J. A. A new approach for the morphological segmentation of high resolution satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(2):309-320.
    [111]Puissant, A., Hirsch, J., and Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. International Journal of Remote Sensing,2005,26(4):733-745.
    [112]Richards, J. A., and Jia, X.,1999. Remote sensing digital image analysis:an introduction. Berlin, Germany:Springer-Verlag.
    [113]Shackelford, A. K., and Davis, C. H. A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2354-2363.
    [114]Soille, P. and Pesaresi, M. Advances in mathematical morphology applied to geoscience and remote sensing. IEEE Transactions on Geoscience and Remote Sensing,2002,40(9): 2042-2055.
    [115]Song, M., and Civco, D. Road extraction using SVM and image segmentation. Photogrammetric Engineering and Remote Sensing,2004,70(12):1365-1371.
    [116]Su, W., Li, J., Chen, Y., Liu, Z., Zhang, J., Low, T. M., Suppiah, I., and Hashim, S. A. M. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. International Journal of Remote Sensing,2008,29(11):3105-3117.
    [117]Sun, W., Xu, G., Gong, P., and Liang, S. Fractal analysis of remotely sensed images:A review of methods and applications. International Journal of Remote Sensing,2006,27(22): 4963-4990.
    [118]Tian, B., Shaikh, M. A., Azimi-Sadjadi, R., et al. A study of cloud classification with neural networks using spectral and textural features. IEEE Transactions on Neural Networks,1999, 10(1):138-151.
    [119]Tso, B., and Olsen, R. C. A contextual classification scheme based on MRF model with improved parameter estimation and multiscale line process, Remote sensing of environment, 2005,97:127-136.
    [120]Unsalan, C., and Boyer, K. L. Classifying land development in high-resolution panchromatic satellite images using straight-line statistics. IEEE Transactions on Geoscience and Remote Sensing,2004,42(4):907-919.
    [121]Unsalan, C., and Boyer, K. L. Classifying land development in high-resolution satellite imagery using hybrid structural-multispectral features. IEEE Transactions on Geoscience and Remote Sensing,2004,42(12):2840-2850.
    [122]Vapnik, V. Statistical Learning Theory. New York:John Wiley & Sons,1998.
    [123]Walker, J. S., and Blaschke, T. Object-based land-cover classification for the Phoenix metropolitan area:optimization vs. transportability. International Journal of Remote Sensing, 2008,29(7):2021-2040.
    [124]Wang, L., Sousa, W. P., and Gong, P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing, 2004,25(24):5655-5668.
    [125]Wang, L., Sousa, W., Gong, P., and Biging, G. S. Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment,2004,91(3-4):432-440.
    [126]Wang, Z., and Boesch, R. Color- and texture-based image segmentation for improved forest delineation. IEEE Transactions on Geoscience and Remote Sensing,2007,45(10): 3055-3062.
    [127]Waske, B., and Benediktsson, J. A. Fusion of support vector machines for classification of multisensor data. IEEE Transactions on Geoscience and Remote Sensing,2007,45(12): 3858-3866.
    [128]Yu, Q., Gong, P., Clinton, N., Biging, G., and Schirokauer, D. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering and Remote Sensing,2006,72(7), pp.799-811.
    [129]Zhang, L., Huang, X., Huang, B. and Li, P. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing,2006,44(10):2950-2961.
    [130]Zhang, Y. Optimisation of building detection in satellite images by combining multispectral classification and texture filtering, ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54:50-60.
    [131]Zhao, Y, Zhang, L., and Li, P. Classification of High Spatial Resolution Imagery Using Improved General Markov Random Field-Based Texture Features, IEEE Transactions on Geoscience and Remote Sensing,2007,45(5):1458-1468.
    [132]Zhou, Q., and Troy, A. An object-oriented approach for analyzing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing,2008,29(11): 3119-3135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700