悬臂梁阀压电泵理论及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、  绪论
     压电泵是将压电体激发的振动直接作用于流体,使其产生动压或流量输出
    的一种新型压电驱动机构。是流体输送系统的重要组成部分和研究热点之一。
    由于压电泵具有结构简单、体积小、无电磁干扰等诸多优点,并且可在较低的
    驱动电压下获得较好的输出能力,因此在化学分析、医疗、制药及生物工程等
    领域具有广泛的应用前景。
     本文结合国家自然基金项目和国家高科技计划(863)项目要求为目标,
    重点进行了悬臂梁阀式压电泵、两腔体压电泵的研究,并将压电泵应用到计算
    机 CPU 冷却等相关技术中。
    二、 复合压电振子振动的理论分析
     压电振子是压电泵的动力源,它承担着将电能转换为机械能的重要作用。
    压电振子一般由具有压电效应的压电材料与弹性体材料以一定方式结合而成,
    它利用压电材料的逆压电效应,将输入信号的电能转变为机械位移(或变形)
    的机械能,从而带动弹性体变形最终形成压电振子整体的弯曲振动。
     在充分考虑压电材料、压电效应及其性能参数的基础上,根据薄板的振动
    理论,分析了电压策动下压电陶瓷和金属板构成的两层复合圆形薄板的振动模
    式,给出了压电振子的几何方程。 
     通过实验,得出在不同阀片和阀孔条件下压电振子的振动规律。在工作状
    态下测得阀片的宽度尺寸对振子的振幅影响不大,阀片的长度尺寸对振子的振
    幅和最佳振幅对应的频率都有显著影响。随阀孔直径的增加压电泵流量也随之
    增加。 
     同时还对周边固定的圆形压电振子进行阻抗分析,结果表明在灌泵后振子
    的频率比空载时有明显下降,但比实际工作的最佳频率还要高出许多。 
     压电振子的变形量与输入电压成线性关系,随输入电压的增加变形量增
    大,同时其变形量还受输入信号波形的影响,其中输入正弦波信号时振子变形
     –58–
    
    
    量最大,三角波次之,矩形波最小。
    三、 单腔悬臂梁压电泵的理论分析与实验研究
    根据压电泵内悬臂梁阀片的工作环境,建立了悬臂梁阀片的动力学模型,
    给出了液体内悬臂梁阀片基频的计算方法及其与各个结构参数之间的关系,为
    悬臂梁阀设计提供了理论依据。 
    压电泵的输出能力及最佳工作频率与阀孔直径有关,阀孔直径越大泵的输
    出流量越大,最佳工作频率越高;相反,阀孔直径越小,压电泵的输出压力和
    最佳工作频率越低。 
    阀是影响压电泵性能的主要因素。增加阀片长度尺寸、加大系统阻尼,可
    使压电泵的出流能力和最佳工作频率降低。当改变阀片尺寸使其共振频率接近
    压电振子的共振频率时,就会发生系统共振,从而使压电泵具有一个最佳工作
    频率点。 
    四、 悬臂梁压电泵在芯片冷却中的分析与试验
    从压电泵的实际应用出发,在了解国内外芯片冷却技术的前提下,对压电
    泵在芯片水冷方面的应用进行了初步的研究。并对散热器的进行了选取,计算
    了最小散热面积。
    在单腔体结构的基础上,设计制造了两腔体压电泵,并对样机进行了的试
    验测试,得出了两腔体压电泵的输出特性。
    以压电泵为流体泵构建了水冷系统,用导热性能良好紫铜制作了吸热盒,
    分别用紫铜管,不同型号的铝型材制作了三种不同的换热器。分别研究了各组
    成部分的特性,由乙二醇和水混合成的冷却液中水比例越大,其粘度下降,比
    热上升,冷却效果变好,换热器的散热面积在空间允许的情况下越大,其散热
    效果越好。
    在整个系统与澳柯玛对比试验证明:压电泵系统具有一定的冷却效果,整
    个系统中泵的流量起决定作用。
    五、 悬臂梁阀压电泵的实验研究及结论
    在压电学、振动力学等相关知识基础上,以增大流量为目的,对悬臂梁式
    压电泵的工作机理,进行了比较系统的理论研究。通过对悬臂梁阀片与流体的
    耦合振动分析,建立了悬臂梁阀片结构参数与附加阻尼、附加质量之间的数学
     –59–
    
    
    模型,制做了不同形状的阀片和不同大小的阀孔,并进行了试验测试。设计、
    制造了单腔泵、两腔并联泵等多种结构形式的压电泵样机,同时进行了大量的
    试验研究。用压电泵为动力泵构建了芯片水冷系统并且进行了测试,得出如下
    结论:  
    1.单腔体结构压电泵和两腔体结构压电泵,输出压力、零压力输出流量与
    输入电压基本成线性关系,随电压的不断增加,工作参数也不断增加,且在电
    压允许的条件下,电压越高,其增加的幅度越大。
    2.压电泵在低频率段工作输出流量较大。本文实验的不同阀片和阀孔结构
    的压电泵样机的最佳频率均在 200 赫兹以内,在此频率段压电泵的工作性能最
    佳,随频率的增加,压电泵的输出压力、流量均大幅度减小。
    3.单腔泵的工作能力受输入电信号及阀孔直径等多种因素的影响。在输入
    电信号为正弦波时,其工作能力(这里指输出压力和流量)最强,三角波信号
    次之,而矩形波信号最差;另外,阀孔直径大小也影响其工作能力,当腔体容
    积在允许范围内增加时,泵的工作能力增强。阀片长度尺寸对泵输出影响较宽
    度尺寸的影响要大得多。
    4. 由压电泵构建的水冷系统,具有体积小、效率高、成本低等特点。试
    验证明该压电泵水冷系统有一定的冷却能力,20 分钟可以使 40W 的加热片达
    到热平衡 43℃?
Title: Theoretical and Applied Research of Piezoelectric Pump with
     Cantilever Valve
    1.Introduction
     The piezoelectric pump is a new-type PZT driven device. Vibration produced
    by the piezoelectric bimorph (PZT actuator) acting on the fluid and producing
    pressure or flux output. It is an important part and researching focus in microflow
    systems. There are more than ten counties and regions all over the world in which
    there are the research institutions of the piezoelectric pump. With many merits such
    as simple structure, small body, no interfere of electromagnetism and good output
    ability under low applied voltage etc, the piezoelectric pump has very extensive
    application prospects in the fields of chemical analysis, medical treatment,
    pharmacy and bioengineering etc.
     In order to meet the demand of the research item of national nature science
    fund and national advanced science plan(863) , this paper presents mainly some
    research on PZT pump with beam valve, PZT pump with two chambers and related
    techniques using PZT pumps in CPU cooling.
    2. Theory analysis on the oscillating of piezoelectric bimorph
     Piezoelectric bimorph is the power source to the piezoelectric pump, which
    play the key role on transforming the electric energy into mechanical energy. The
    simplest bimorph is made by bonding a piezoelectric element to one side of a
    passive elastic plate. It makes use of the piezoelectric material’s reverse
    piezoelectric effect to transform the electric signal into the machine displacement,
    and engender oscillating of the whole piezoelectric bimorph.
     On the basis of the knowledge that relates to piezoelectric effect, piezoelectric
    materials and their performance parameters, we analyze the oscillating mode to the
    piezoelectric bimorph composed of single piezoelectric ceramic plate and metal
    sheet, educed the geometry equation and constitutive equation of piezoelectric
    bimorph.
     The vibration rule of PZT bimorph with different valve sheets and valve holes
    is observed. During function, we know the width of valve sheet has little
    influence to bimorph vibration swing, but the length of valve sheet has great
    influence to its vibration swing and the frequency related to the optical vibration
    swing. The flux of PZT pump increases with the augment of valve hole’s diameter.
     Analysis to the edge-fixed PZT bimorph with Impedance Analysis Equipment
    shows after priming the frequency of PZT pump bimorph decreases apparently, but
    much more than optical frequency in practical work.
     The deformation of PZT bimorph is in direct proportion to the applied voltage.
    It increases when the applied voltage augments. At the same time, it is also affected
    by the input signals, sine wave the biggest, triangle wave bigger and rectangular
    wave the smallest.
    
    
    3. The theoretical analysis and experimental research of single-chambered
    PZT pump with beam valve
     According to the working environment of beam valve sheet in PZT pump, its
    dynamic model is fabricated and the base frequency calculating method of beam
    valve in liquid and the relations between every structural parameter are presented,
    providing theoretical warrant for the design of beam valve.
     The PZT pump’s output ability and optical working frequency are related with
    the diameter of valve hole. The bigger is the diameter of valve hole, the greater is
    the output flux, the higher is the optical working frequency.
     Valve is another main element which affects the PZT pump’s performance.
    Lengthening the valve sheet, leading to the increment of system impedance, lowers
    the output ability and optical working frequency of PZT pump. When valve’s
    resonance frequency is closed to the resonance frequency of PZT bimorph, system
    will resonate. So the optical working frequency of PZT pump is got. Widening the
    valve sheet, leading to the increment of system impedance and improvement of
    close ability, has little influence to the output ability.
    4. The analysis and experiment on the use of PZT pu
引文
参考文献
    [1]  I.J.卡拉西克等著,丁伟成译.泵手册(第二分册) 北京:机械工
     .
     业出版社,1985,289~303 
    [2]  Peter Woias. Micropumps-summarizing the first two decades [C]. 
     Microfluidics and BioMEMS, Carlos H. Mastrangelo,  Holger 
     Becker(eds.) Proc. of SPIE, 2001,4560: 39~52 
    [3]  T. Bourouina, A. Bosseboeuf and J.-P. Grandchamp, Design and 
     simulation  of  an  electrostatic micropump  for  
     drug-delivery  applications, J. Micromech. Microeng. 1997, 7 : 
     186~188 
    [4]  T.Y. Jiang, T.Y. Ng and K.Y. Lam, Dynamic Analysis of an 
     Electrostatic Micropump, Technical Proceedings of the MSM 2000 
     International Conference on Modeling and Simulation of 
     Microsystems, MSM2000, San Diego, CA, USA, 2000,March 27~29 
    [5]  Tarik  Bourouina, Alain bosseboeuf and Jean-Paul Grandchamp. 
     Design  and simulation of an electrostatic micropump for 
     drug-delivery application. J. Micromech. Mcroeng. 1997, 7:186~
     188 
    [6]  W.J.Spencer, W.T.Corbett, L.R.Dominguez, et al. An electronically 
     controlled piezoelectric insulin pump and valves. IEEE Trans. 
     Sonics Ultrasonbics, 1978,SU-25(3):153~156 
    [7]  Li Cao, Susan Mantell and Dennis Polla. Design and simulation of 
     an implantable  medical drug delivery system using 
     microelectromechanical systems technology. Sensors and Actuators 
     A 2001, 94: 117~125 
    [8]  R. Linnemann, P. Woias, C.-D. Senfft, et al, A Self-Priming and 
     Bubble-Tolerant Piezoelectric Silicon Micropump for Liquid and 
     Gases, Proc. of the 11th IEEE MEMS 1998 Technical Digest, 
     Heidelberg, Germany, 1/25-29/98: 532~537 
    [9]  樽崎哲二.日本专利公报.昭和 57-13767,三铃ェリ一社 
    [10] Olivier Fracais,Isabelle Dufour. Dynamic simulation of an 
     electrostatic micropump with pull-in and hysteresis phenomena, 
     Sensors and Actuators A, 1998, 70 :56~60 
    [11] Amos Ullmann. The piezoelectric valve-less pump—performance 
     enhancement analysis [J]. Sensors and Actuators A, 1998, 69: 97~
     –53–
    
    
    吉林大学硕士学位论文
     105  
    [12] T. Gerlach, M. Schuenemann and H. Wurmus. A new micropump principle 
     of the reciprocating type using pyramidic micro flowchannels as 
     passive valves [J]. J. Micromech.   Microeng, 1995, 5: 199-201.  
    [13] T. Gerlach, H. Wurmus. Working principle and performance of the 
     dynamic micropump [J]. Sensors and Actuators  A, 1995, 50 : 
     135-140 
    [14] 王大春.陶瓷驱动器及其应用.压电与声光,1989,11(3):40-48 
    [15] 刘一声.新型驱动器及其应用的开发.压电与声光,1994,16(5):19-26 
    [16] T. Gerlach. Microdiffusers as dynamic passive valves for micropump 
     applications. Sensors and Actuators A, 1998(69):181-191 
    [17] valvular microvalves. Sensors and Actuators A,1996,57:75~78 
    [18] 铃木胜义,鹿内元治,深泽宏之等. 压电ポンプの研究.日本机械学会东
     北支部讲演会论文集,1997,No971-2:193-194
    [19] D..Mailefer,H.Van Lintel,G.Rey-Mermet,et al. A High-performentce silicon
     micropump for an implantable drug delivery system. Proc. of the 12th IEEE
     MEMS 1999 Technical Digest,Orlando,Florida,USA,1/17-21/99:541-546 
    [20] Y. Kojima,T. Okusawa,K. Tsubouchi,et al. Fundamental investigation of a
     piezoelectric pump for a trace liquid feed. JSME International Journal. Series
     C. 1995,38(3):531-537
    [21] S.Shoji, S.Nakagawa and N.Esashi. Micropump and sample-injector for
     integrated chemical analysis system. Sensors and Actuators A,1990,
     21-23:189-192
    [22] E. Stemme,G. Stemme. A valveless diffuser/nozzle-based fluid pump.
     Sensors and Actuators A,1993,39: 159-167
    [23] Olsson,G. Stemme,E. Stemme. A valve-less planar fluid pump with two
     pump chambers. Sensors and Actuators A,1995,46-47: 549-556
    [24] Olsson,G. Stemme,E. Stemme. A numerical design study of the valveless
     diffuser pump using a lumped-mass model, J. Micromech. Microeng.,
     1999,9:334-44
    [25] Olsson,O. Larsson,J. Holm,et al. Valve-less diffuser micropumps fabricated
     using thermoplastic replication. Sensors and Actuators A,1998,64 : 63-68
    [26] Amos Ullmann. The piezoelectric valve-less pump — performance
     enhancement analysis. Sensors and Actuators A,1998,69: 97-105
    [27] Ederer,P. Raetsch,W. Schullerus,et al. Piezoelectrically driven micropump
     for on-demand fuel-drop generation in an automobile heater with
     continuously adjustable power output. Sensors and Actuators A,1997,62:
     752-755
     –54 –
    
    
    参 考 文 献
    [28] Michael Koch,Nick Harris,Alan G.R. Evans,et al. A novel micromachined
     pump based on thick –film piezoelectric actuation. Sensors and Actuators
     A,1998,70: 98-103
    [29] 程光明,杨志刚,曾平 等. 锥型阀压电薄膜泵的初步研究. 压电与声光,
     1998,20(5):300-303
    [30] 李军. 无阀压电泵的流体动态特性及工作机理研究. 长春:吉林大学,
     2001
    [31] 阚君武,杨志刚,程光明 等.压电泵的研究与发展.光学精密工程,2002,
     10(6):619-625
    [32] 阚君武, 曹仁秋, 杨志刚 等.压电薄膜泵结构设计与性能分析.压电与
     声光,2002,24(5): 368-371
    [33] E. Stemme,G. Stemme. A valveless diffuser/nozzle-based fluid pump.
     Sensors and Actuators A,1993,39: 159-167
    [34] L.S. Jiang,C.J. Morris,N.R. Sharma,et al. Transport of particle-laden fluids
     through fixed-wave micropump. Microelectromechanical Systems (MEMS)
     ASME, 1999,MEMS-Vol.1:503-509
    [35] S. Matsumoto,A. Klein and R. Maeda. Development of bi-directional
     valve-less micropump for liquid. Proc. IEEE MEMS,1999:141-146
    [36] N.T. Nguyen,R.M. White. Design and optimization of an ultrasonic flexural
     plate wave micropump using simulation. Sensors and Actuators,1999,
     77:229-236
    [37] A.H. Meng,N.T. Nguyen and R.M. White. Focused flow micropump using
     ultrasonic flexural plate waves. Biomedical Microdevices 2:3,2000: 169-174
    [38] Y. Bar-Cohen and Z. Chang. Piezoelectrically actuated miniature peristaltic
     pump. Proceedings of the SPIE Smart Structures Conference,SPIE Paper
     No.3992-103,2000
    [39] Y. Bar-Cohen and Z. Chang. Piezoelectrically actuated miniature peristaltic
     pump. Proceedings of the SPIE Smart Structures Conference,SPIE Paper
     No.4327-52,2001
    [40] M. Richter,R. Linnemann and P. Woias. Robust design of gas and liquid
     micropumps. Sensors and Actuators A,1998,68 : 480-486
    [41] Christopher J Morris and Fred K Forster. Optimization of a circular
     piezoelectric bimorph for a micropump driver. J. Micromech. Microeng.,
     2000,10: 459-465
    [42] 林声和, 叶至碧,王裕斌. 压电陶瓷. 北京:国防工业出版社,1979,29-38
    [43] 华南工学院, 天津大学. 压电陶瓷. 国防工业出版社. 1980.
    [44] J.范兰德国拉特,R.塞德林顿, 彭浩波 译. 压电陶瓷. 北京. 科技出版
     社. 1980.
     –55–
    
    
    吉林大学硕士学位论文
    [45] 电子陶瓷情报网.压电陶瓷应用.济南:山东大学出版社,1985,70-81
    [46] 中国科学院有机化学研究所. 压电高聚物. 上海科学技术文献出版
     社,1980,1-2
    [47] 李尚平,徐永利,苏建华. 驱动用压电陶瓷材料的发展与展望.压电与声
     光,1999,21(6):483-4871
    [48] 张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究.光学精密工程,1998,
     6(5):26-32
    [49] 刘品宽,孙立宁等.双压电复合薄圆板驱动器的理论分析.压电与声光,
     2002,24(2):111~115
    [50] 铁摩辛柯,古地尔 弹性理论[M] 北京:高等教育出版社,1990.
    [51] 压电致动式圆片驱动装置结构分析与设计 贾建援,范国滨,王卫东
     2003 年 2 月  西安电子科技大学学报(自然科学版)
    [52] 丁思远.粘性流体对结构固有频率及阻尼的影响.郑州轻工业学院学报,
     1994, 9(4):50-54
    [53] 赵键.薄板和不可压缩流体耦合振动的边界元法研究.中山大学学报(自
     然科学版),1996, 35(1): 7-11
    [54] 程光明,曾平等.新结构压电泵实验研究.中国机械工程,1998,9(8):
     19~20 
    [55] M C Carrozza,N Croce,B Magnani and P Dario.A piezoelectric-driven 
     stereolithography-fabricated micropump. J.Micromech.Microeng,
     1995(5):  177~179 
    [56] E.H.Yang,S.W.Han,S.S.Yang. Fabrication and testing of a pair of 
     passive bivalvular microvalves. Sensors and Actuators A ,
     1996,57:75~78 
    [57] Stefan Weigert,Markus Dreier and Martin Hegner. Frequency shifts of
     cantilevers vibrating in various media. Appl. Phys. Lett.1996 ,
     69(19):2834-3836
    [58] M. K. KWAK and S.-B. HAN. Effect of fluid depth on the hydroelastic
     vibration of free-edge circular plate. Journal of Sound and vibration.2000,
     230(1):171-185
    [59] Tikeswar Naik,Ellen K.Longmire and Susan C. Mantell. Dynamic response
     of a cantyilever in liquid near a solid wall. Sensors add Actuators A,2003,
     102:240-254
    [60] 苏尔皇. 液压流体力学. 国防工业出版社. 1979 年 12 月
    [61] 杨伯源. 材料力学. 中国人民大学出版社. 1998 年 3 月
    [62] 师汉民,谌刚,吴雅.机械振动系统-分析· 测试· 建模· 对策(上册).华
     中理工大学出版社.1992
    [63] 苏月琼.探寻未来电脑.计算机世界网,2001-8-2
     –56 –
    
    
    参 考 文 献
    [64] Zhang,Lian。Phase change phenomena in silicon microchannel heat sink for
     IC chip cooling.DAI-B 63/01,P.497,Jul 2002
    [65] Jiang LN, Mikkelsen J, Koo JM, HuberD, Yao SH, Zhang L , etc.Closed-loop
     electroosmotic microchannel cooling system for VLSI circuits. IEEE
     TRANSACTION ON COMPONENTS AND PACKAGING
     TECHNOLOGIES,25(3):347-355 SEP 2002
    [66] Bu MQ,Tracy M, Ensell G, Wilkinson JS, Evans AGR. Design and theoretical
     evaluation of a novel microfluidic device to be used for PCR.JOURNAL OF
     MICROMECHANICS AND MICROENGINEERING,13(4): S125-S130 JUL
     2003
    [67] 电子工程师。计算机应用,Vol.28 No.10 2002
    [68] 周定伟等。L12378 圆形射流冲击和浸没冷却传热.西安交通大学学报,
     Vol.35 No.9 Sep.2001
    [69] [美]D.皮茨 L.西索姆.传热学.葛新石 等译. 北京:科学出版社,2002.3
    [70] 顾维藻等.强化传热.北京:科学出版社,1990.8
    [71] 阿土. 超强 P4 液压制冷一体化设计散热器.中关村在线,2003.1
    [72] 秦曼,郑青等.FC—72 圆形射流冲击模拟电子芯片单相局部对流传热的
     实验研究.工程热物理学报,Vol.17, No.1, Feb.,1996
    [73] 董涛,侯丽雅等.电子芯片冷却用微管道散热器的换热性能分析.电子学
     报。Vol.31 No.5, May 2003
    [74] 朱光俊,李有章.小尺寸物体自然对流换热的数值模拟.北京科技大学学
     报。 Vol.16 No.3, June 1994
    [75] 史亚锋等.芯片冷却系统设计新工艺—计算流体力学数值仿真.电子工艺
     技术,第 24 卷第 3 期,2003.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700