熔融盐横纹管吸热器传递特性与强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能热发电技术作为有低成本前景的清洁能源技术,已成为支撑我国国民经济可持续发展的前瞻性、战略性的新能源技术之一,在2006年颁布的国家中长期科学和技术发展规划纲要中被列为重点和优先发展的方向。而系统中主要部件吸热器内非稳态、非均匀条件下的辐射-导热-对流耦合的复杂传热过程及其强化机理,则是太阳能热发电系统实用化的关键科学问题。
     本文对熔融盐吸热器传热与流动特性进行了深入地理论与实验研究,针对太阳热发电系统中吸热器传热过程为高辐射热流密度的特点,建立了横纹管内熔盐流动与传热的数学模型,采用标准k-ε模型和非结构化网格进行了数值计算。研究了熔盐温度、流速和热物性、加热热流密度和传热管几何结构参数对横纹管传热与流动特性的影响规律,讨论了不同评价准则的影响。结果表明:横纹管内流场与温度场沿轴向呈周期性发展,凹槽附近形成流体高速流动区,槽面温度由于边界层减薄而显著降低。由于凹槽破坏边界层并减小流动截面,流体的扰动和阻力显著增加,使得横纹槽流体阻力系数和传热性能显著高于光滑管;粘度与导热系数变化对光滑管与横纹管内的流动传热性能有一定影响,而密度与比热容变化则可以忽略不计;横纹管几何结构参数对管内流动与传热性能有较大影响,当横纹管槽形为三角形时,三角形尖端直接破坏流动和传热边界层,使其管内流动阻力系数与传热系数均较高;当横纹管槽形为抛物线形时,流场和温度场变化较平缓,使其流动阻力最小,而传热性能也较低;当横纹管槽形为方形时,流体流动沿方形槽有急剧冲撞,流动阻力较大,而传热性能与抛物线形槽横纹管相当。同时强化传热效应评价准则对吸热管槽形的选择有重要影响:采用Nu/Nus准则时,三角形槽横纹管传热性能最好;采用准则时,抛物形槽横纹管在较高Re下综合性能较好,而三角形槽横纹管在较低Re下综合性能较好。
     构建了高温熔盐横纹管流动传热的实验平台,实验研究了横纹管内高温硝酸混合熔盐对流传热性能,结果显示:横纹管对高温熔盐具有十分显著的强化传热效果,其传热系数比光滑管高30%-100%。横纹管内高温熔盐对流传热系数随着Re数的增加而增加,其变化趋势与经典传热关联式基本一致,由此导出不同温度段横纹管内熔盐对流传热关联式。横纹管内熔盐流动传热系数的实验结果与模拟结果基本一致,误差为5-30%;管内熔盐流动阻力系数关联式则可类比于模拟结果获得。
     本文对太阳吸热涂层在不同聚光比下的理论效率及耐热性能进行了定量地理论分析,测试了高温涂层表观形貌、反射率与发射率,结果显示:对于中低聚光比的吸热器,主要采用高吸收比的选择性涂层以提高吸热器表面温度和吸收效率;对于在高聚光比的吸热器,太阳吸收涂层主要以提高涂料的吸收率和耐高温为主。
Solar thermal power as a very promising and inexpensive clean energy technology has become a supporting sustainable development of China's national economy forward, and it is a key development direction and priorities in the national long-term development plan for science and technology which was promulgated in 2006. The key problem which commercializes the solar thermal power system is coupled heat transfer processes with conduction, radiation and convection under unsteady and non-uniform conditions and its associated mechanisms and ways of enhancement in receiver
     The characteristic of heat transfer and flow in receiver with molten salts materials have been investigated experimentally and theoretically. The characteristics of the heat transfer process for the receiver are high temperature,high heat flux, half circumference heating and half circumference adiabatic. Mathematical model which describes the heat transfer and flow processes with molten nitrate salts in transversely ridged tube has been set up. The heat transfer process in transversely ridged tube and smooth tube have been simulated respectively by use of the unstructured grid and standardκ?εturbulence model. The effects of temperature, velocity and thermal properties of molten salts, heat flux, and geometry parameters of receiver tube on the characteristic of heat transfer and flow in transversely ridged tube have been investigated. The effect of evaluation criteria has also been discussed. The results showed that the flow distribution and temperature distribution in the transversely ridged tube developed periodically along the direction of axis. And there is high-speed flowing region of molten salts in the ridge, the wall temperature decreased notably with the decrease of the boundary layer. Since the ridge damaged the flow boundary layer, the flow resistance coefficient and heat transfer coefficient for the transversely ridged tube were both higher than that of smooth tube. The variation of viscosity and heat conductivity can affect the flow and heat transfer performances, while the variation of density and heat capicity can be ignored. The ridge structure can also affect greatly the performance of flow and heat transfer. When the ridge shape of tube is triangle,, the flow boundary was damaged by the ridge, so the flow resistance coefficient and heat transfer coefficient were both higher. When the ridge shape of tube is parabolic, the flow and temperature gradually varied, so the flow resistance coefficient was lower, and the heat transfer coefficient was not very higher. When the ridge shape of tube is quadratic,, the flow will collide with the ridge, so the flow resistance coefficient was higher, and the heat transfer coefficient was near to that in parabolic ridge structure tube. The evaluation criteria for enhancing heat transfer also affected greatly the choosing of different ridge structure. When the criteria of Nu/Nus was considered, the triangle ridge structure tube will have the best performance of heat transfer. When the criteria of were considered, the parabolic ridge structure tube will have better performance under the condition of higher Reynolds number, and the triangle ridge structure will have better performance under the condition of lower Reynolds number.
     The heat transfer performances of Nitrate salts in transversely ridged tube have been investigated experimentally. The results show that the heat transfer of molten nitrate salts in transversely ridged tube was obviously better than that in smooth tube, and that the heat transfer coefficient of Nitrate salts in transversely ridged tube is higher than that in smooth tube for about 30%-100%. The heat transfer coefficient increased notably with the increase of the Re number in transversely ridged tube, Its associated empirical formula was derived by experimental results. The simulated results from hard sphere model have a good agreement with the experimental results. The simulated results from hard sphere model have a good agreement with the experimental results, its uncertainty is 5-30%. And the correlation relationship of flow resistance can be obtained by analogy for the experimental results.
     The heat absorption theoretical efficiency and heat-resistant performance of the solar absorb coating has been investigated quantificationally under the different concentration ratios. The apparent morphology, reflectivity and emissivity of high-temperature coating, were measured. The results show that the solar selective coating with higher absorptance should be used under the receiver with lower concentration ratio,. the solar absorb coating with high absorptivity and high temperature should be used under the receiver with higher concentration ratio.
引文
[1] http://www.eia.doe.gov/oiaf/forecasting.html
    [2] Trieb, F. Concentrating solar power for the mediterranean region. Federal Ministry for the Environment [M]. Nature Conservation and Nuclear Safety, 2005
    [3] Energy Information Administration. Annual Energy Outlook 2009 [R]. Office of Integrated Analysis and Forecasting, U.S. Department of Energy, Washington, DC, 2009
    [4] Jiang Z. M. Reflections on Energy Issues in China [J]. Journal of Shanghai Jiaotong University(Science). 2008, 13(3): 257-274
    [5]钟理,谭盈科.国外强化传热技术的研究与进展[J].化工进展. 1993, 13(4): 1-5
    [6] Fend, T., Hoffschmidt, B., Pitz-Paal, R, el al. Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties [J]. Energy. 2004, 29(5-6): 823-833
    [7] Kolb, G. J. Economic evaluation of solar-only and hybrid power towers using molten-salt technology [J]. Solar Energy. 1998, 62(1): 51-61.
    [8] Etievant, C. Solar central receiver power plant [J]. International Journal of Solar Energy. 1984, 2(3): 309-339
    [9] Manuel R., Reiner B., Pacheco, J. E. An update on solar central receiver systems, projects, and technologies [J]. Journal of Solar Energy Engineering. 2002, 124(2): 98-108
    [10] Baker, A. F., Faas, S. E., Radosevich, L. G. US -Spain evaluation of the Solar One and CESA-1 receiver and storage systems [R]. SAND88-8262 UC-235, 1989
    [11] Blake, F. A., Walton, J. D. Update on the solar power system and component research program [J]. Solar Energy. 1975, 17(4): 213-219
    [12] Palgrave, R. Innovation in CSP [J]. Renewable Energy Focus. 2008, 9(6): 44-49
    [13] Taggart, S. Hot stuff: CSP and the power tower [J]. Renewable Energy Focus. 2008, 9(3): 51-54
    [14] Kolb, G. J. Insights from the operation of Solar One and their implications for future Central Receivers Plants [J]. Solar Energy. 1991, 47(1):39-47
    [15] Radosevich, L. G., Skinrood, A.C. The power production operation of solar one, the 10 MWe solar thermal central receiver pilot plant [J]. Journal of Solar Energy Engineering. 1989, 111(3): 144–151
    [16] Pacheco, J. E. Final test and evaluation results from the solar two project [M],SAND2002-0120, 2002
    [17] Li, X., Kong, W. Q., Wang, Z. F., el al. Thermal model and thermodynamic performance of molten salt cavity receiver [J]. Renewable Energy, 2010, 35(5): 981-988
    [18] Pacheco, J. E., Ralph, M. E., Chavez, J. E. et al. Results of molten salt panel and component experiments for solar central receivers: cold fill, freeze/thaw,thermal cycling and shock,and instrument test (R). 1995
    [19] G. Carli. Design and Fabrication of Absorber Panels for a 5MWt Molten Salt Test Solar Receiver [J]. Solar Engineering. 1987:488-493
    [20] Prakash, M., Kedare, S. B., Nayak, J. K. Investigations on heat losses from a solar cavity receiver [J]. Solar Energy. 2009, 83(2): 157-170
    [21]张春平,刘志刚,赵耀华等.碟式聚光太阳能热发电系统用腔式吸热器热性能分析[J].上海理工大学学报. 2004, 26(4): 591-594
    [22] Melchior, T., Perkins, C., Weimer, A. W., el al. A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using concentrated solar energy [J]. International Journal of Thermal Sciences. 2008, 47(11): 1496-1503
    [23] Cui, H., Xing, Y., Guo, Y. , el al. Numerical simulation and experiment investigation on unit heat exchange tube for solar heat receiver [J]. Solar Energy. 2008, 82(12): 1229-1234
    [24]邢玉明,崔海亭,袁修干.太阳能吸热器换热管蓄热数值模拟与试验研究[J].太阳能学报. 2003, 24(3): 325-329
    [25]柯秀芳,张仁元,钟煜华等.无机盐/陶瓷基超微结构多孔介质熔化过程传热研究[J].工程热物理学报. 2005, 26(1): 113-115
    [26] Rabadi, N. J., Mismar., S. A. Enhancing solar energy collection by using curved flow technology coupled with flow in porous media: An experimental study [J]. Solar Energy. 2003, 75(3): 261-268
    [27] Fend, T., Paal, R. P., Reutter, O., el al. Two novel high-porosity materials as volumetric receivers for concentrated solar radiation [J]. Solar Energy Materials and Solar Cells. 2004, 84(1-4): 291-304
    [28] Fend, T., Hoffschmidt, B., Paal, R. P., el al. Porous materials as open volumetric solar receivers: Experimental determination of thermophysical and heat transfer properties [J]. Energy. 2004, 29(5-6): 823-833
    [29] Mers, A. A., Mimet., A. Numerical study of heat and mass transfer in adsorption porous medium heated by solar energy: Boubnov-Galerkin method [J]. Heat and Mass Transfer. 2005, 41(8): 717-723
    [30] Becker, M., Fend, T., Hoffschmidt, B., el al. Theoretical and numerical investigation of flow stability in porous materials applied as volumetric solar receivers [J]. Solar Energy. 2006, 80(10): 1241-1248
    [31] Albanakis, C., Missirlis, D., Michailidis, N., el al. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation [J]. Experimental Thermal and Fluid Science. 2009, 33(2): 246-252
    [32] Gupta, M. K., Kaushik., S. C. Performance evaluation of solar air heater having expanded metal mesh as artificial roughness on absorber plate [J]. International Journal of Thermal Sciences. 2009, 48(5): 1007-1016
    [33] Rannels, J. The DOE office of solar energy technologies' vision for advancing solar technologies in the new millennium [J]. Solar Energy. 2000, 69(5): 363-368
    [34] Garcia, P., Ferriere, A., Bezian, J.-J. Codes for solar flux calculation dedicated to central receiver system applications: A comparative review [J]. Solar Energy. 2008, 82(3): 189-197
    [35] Kirst, W. E., Nagle, W. M., Castner, J. B. A new heat transfer medium for high temperatures [J]. Transactions of the American Institute of Chemical Engineers. 1940, 36: 371
    [36] Kamimoto, M., Tanaka, T., et al. Investigation of nitrate salts for solar latent heat storage [J]. Solar Energy. 1980, 24(6): 581-587
    [37] Ferri, R., Mazzei, A. C., D. Molten salt mixture properties in RELAP5 code for thermodynamic solar applications [J]. International Journal of Thermal Sciences. 2008, 47(12): 1676-1687
    [38] Coastal Chemical Co., L.L.C. Hitec heat transfer salt [R]. 2005, http://www.coastalchem.com/PDFs/HITECSALT/HITEC%20Heat%20Transfer%20Salt.pdf
    [39]张建忠. Hts高温载热体及其在化工生产中的应用[J].化工科技. 2000, 8(04): 52-54
    [40]马建兵,李德峰.熔盐热载体的特点及使用中的若干问题[J].工业锅炉. 2002, 76(6): 15-16
    [41] Bradshaw, R. W., Meeker, D. E. High-temperature stability of ternary nitrate molten salts for solar thermal energy systems [J]. Solar Energy Materials. 1990, 21(1): 51-60
    [42] Kearney, D., Kelly, B., Herrmann, U., el al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field [J]. Energy. 29(5-6): 861-870
    [43] Peng, Q., Ding, J., Wei, X., el al. The preparation and properties of multi-component molten salts [J]. Applied Energy. In Press, 2010
    [44] Qiang Peng, Xiaolan Wei, et al. High temperature thermal stability of molten salts materials[J]. International Journal of Energy Research. 2008, 32(12): 1164-1174
    [45]吴玉庭,朱建坤,张丽娜等.高温熔盐的制备及实验研究[J].北京工业大学学报. 2007, 33(1): 62-66
    [46]廖敏,丁静,魏小兰等.高温碳酸熔盐的制备及传热蓄热性质[J].无机盐工业. 2008, 40(10): 15-17
    [47] Tabor, H. Solar energy research: Program in the new desert research institute in Beersheba [J]. Solar Energy. 1958, 2(1): 3-6
    [48] Kennedy, C. E. Review of mid- to high-temperature solar selective absorber materials. NREL/TP-52031267, National Renewable Energy Laboratory, 2002
    [49] Kesselring, P., Selvage, C. S. The IEA/SSPS solar thermal power plants: facts and figures; final report of the International Test and Evaluation Team (ITET), Berlin, New York: Springer-Verlag, 1986
    [50]赵玉文,庄秀治,张超英等.硫化铅选择性涂层的研制[J].太阳能学报. 1982, 3(1): 61-65
    [51]殷志强.溅射Al-C-O/Al太阳选择性吸收涂层[J].物理学报. 1986, 35(10):1369-1373
    [52]曹义,程海峰,郑文伟等.基于红外热像仪的涂层波段发射率测量[J].红外技术. 2007, 29(6): 316-319
    [53]奚同庚,邵介荪,倪鹤林.发射率ε手携式快速检测仪的研究[J].太阳能学报. 1981, 2(1): 95-100
    [54]那鸿悦,肖庆光,阎治平.便携式发射率测量仪的研制[J].太阳能学报. 1991, 12(1): 97-101
    [55] Winter, C. J., Vant-Hull, L.L. Solar power plants—Fundamentals, Technology, Systems, Economics [M], Springer-Verlag, 1991
    [56] Flores, R. A. Behavior of the compound wall copper-steel receiver with stratified two-phase flow regimen in transient states when solar irradiance is arriving on one side of receiver [J]. Solar Energy. 2003, 8(15): 195-198
    [57]黄维军,邓先和,周水洪.应用热阻分析缩放管强化传热机理[J].化学工程. 2006, 34(9): 13-16
    [58]谭盈科.对圆管中充分发展的湍流流阻和传热关联式的选择[J].化学工程. 1985, (3): 4-9
    [59] Hausen, H. Neue Gleichungen für die w?rmeübertragung bei freier oder erzwungenerStromüng(New equations for heat transfer in free or forced flow) [J]. Allg W?rmetechn. 1959, 5(4): 75-79
    [60] Boelter, F. W. D. Heat transfer in automobile radiators of the tubular type [M]. 1930: 443-461
    [61] Sieder, E. N., Tate, G. E. Heat transfer and pressure drop of liquids in tubes [J]. Ind. Eng. Chem. 1936, 28(12): 1429–1435
    [62] Guo, Z. Y., Li, D. Y., Wang, B. X. A novel concept for convective heat transfer enhancement [J]. International Journal of Heat and Mass Transfer. 1998, 41(14): 2221-2225
    [63] Guo, Z. Y., Tao, W. Q., Shah, R. K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer [J]. International Journal of Heat and Mass Transfer. 2005, 48(9): 1797-1807
    [64] Chen, Y. C., Ma, C. F., Yuan, Z. X., et al. Heat transfer enhancement with impinging free surface liquid jets flowing over heated wall coated by a ferrofluid [J]. International Journal of Heat and Mass Transfer. 2001, 44(2): 499-502
    [65] Wang, S., Guo, Z. Y., Li, Z. X. Heat transfer enhancement by using metallic filament insert in channel flow [J]. International Journal of Heat and Mass Transfer. 2001, 44(7): 1373-1378
    [66]韩光泽,华贲,魏耀东.传递过程强化的新途径——场协同[J].自然杂志. 2002, 24(05): 372-376
    [67]徐艳芳,王松平,于大文等.强化对流换热场协同唯象理论[J].青岛大学学报(自然科学版). 2002, 15(4): 57-61
    [68]陶贤湖,杨伯伦,华贲.反应精馏过程中的场协同分析[J].高校化学工程学报. 2003, 17(4): 389-394
    [69]刘伟,张卫星,刘志春.场协同下板翅式换热器效率的研究[J].华中科技大学学报(自然科学版). 2007, 35(1): 77-79
    [70]梁晓军,岳希明,吴金星等.管壳式换热器强化传热的数值模拟分析[J].中国油脂. 2003, 28(10): 22-24
    [71]周水洪,邓先和,何兆红等.旋流片强化传热的数值模拟和场协同分析[J].化工学报. 2007, 58(10): 3437-3443
    [72]孟继安.基于场协同理论的纵向涡强化换热技术及其应用[D].清华大学博士学位论文. 2003
    [73]孟继安,陈泽敬,李志信等.管内对流换热的场协同分析及换热强化[J].工程热物理学报. 2003, 24(4): 652-654
    [74]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析[J].工程热物理学报. 2003, 24(5): 826-828
    [75]崔国民,卢洪波,蔡祖恢等.场协同下的多股流换热器换热性能研究[J].工程热物理学报. 2002, 23(3): 323-326
    [76]薛若军,王革,姜毅.冷凝器开缝肋片换热特性场协同原理分析[J].哈尔滨工程大学学报. 2008, 29(6): 568-572
    [77]陈颖.复杂通道中湍流与热传递的场协同研究[D].华南理工大学博士学位论文. 2003
    [78]严良文,王志文.折流杆换热器壳程流场和温度场的数值模拟及场协同分析[J].石油化工设备. 2006, 35(5): 12-15
    [79]杨立军.磁场作用下的对流换热及其场协同分析[D].清华大学博士学位论文. 2003.
    [80] Bergles, A. E. ExHFT for fourth generation heat transfer technology [J]. Experimental Thermal and Fluid Science. 2002, 26(2-4): 335-344
    [81] Panchal, C. B., France, D. M. Heat transfer and pressure drop in large pitch spirally indented tubes [J]. International Journal of Heat and Mass Transfer. 1993, 36(3): 565-576
    [82] Brognaux, L. J., Webb, R. L., Chamra, L. M. Single-phase heat transfer in micro-fin tubes [J]. International Journal of Heat and Mass Transfer. 1997, 40(18): 4345-4357
    [83] Bharadwaj, P., Khondge, A. D., Date, A. W. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert [J]. International Journal of Heat and Mass Transfer. 2009, 52(7-8): 1938-1944
    [84] Somerscales, E. F. C., Bergles, A. E., James P. Hartnett, T. F. Enhancement of Heat Transfer and Fouling Mitigation [M]. Advances in Heat Transfer (Elsevier), 1997, 197-253
    [85] Ravigururajan, T. S., Bergles, A. E. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes [J]. Experimental Thermal and Fluid Science. 1996, 13(1): 55-70
    [86] Ravigururajan, T. S., Bergles, A. E. Optimization of in-tube enhancement for large evaporators and condensers [J]. Energy. 1996, 21(5): 421-432
    [87] Vicente, P. G., Garcia, A., Viedma, A. A mixed convection heat transfer and isothermal pressure drop in corrugated tubes for laminar and transition flow [J]. International Communications in Heat and Mass Transfer. 2004, 31(5): 651-662
    [88]陈颖,邓先和,丁小江等.场协同理论对充分发展湍流传热性能的数值分析(英文)[J].华南理工大学学报(自然科学版). 2003, 31(07): 42-48
    [89]黄德斌,邓先和,邢华伟.异形管内水力、传热性能的数值模拟[J].高校化学工程学报. 2003, 17(02): 146-150
    [90] Kalinin, E. K., Dreyt, G. A. et al. Improvement of heat transfer in tubular heat t ransfer exchangers by the use of grooved tubes [J]. Heat Transfer -Soviet Research. 1981, 13(4): 30-40
    [91]黄维军,邓先和,黄德斌.横纹槽管结构优化的正交数值模拟试验研究[J].化工学报. 2005, 56(08): 1445-1450
    [92] Webb, R. L. Turbulent heat transfer in tubes having two-dimensional roughness, including the effect of Prandtl number[D]. University of Minnesota. 1969
    [93]贾檀.横纹管传热与流体力学特性研究[D].华南理工大学硕士论文学位论文. 1989
    [94]贾檀,陆应生,庄礼贤等.横纹管的传热与流体力学特性研究[J].化工学报. 1990, 41(5): 612-616
    [95] Hodgson, T. D., Elliot, M. N., Jordan, T. W. J. Calcium sulphate scaling in falling film evaporators [J]. Desalination. 1974, 14(1): 77-91
    [96]熊少武,罗小平,高贵良.强化传热的场协同理论研究进展[J].石油化工设备. 2007, 36(1): 50-54
    [97]熊少武,罗小平,黄岗.水平管外沸腾强化换热的数值模拟与场协同分析[J].制冷与空调. 2008, 8(1): 19-23
    [98]罗小平,高贵良,方振鑫.高压电场强化空气对流传热实验及其数值模拟[J].化学工程. 2008, 35(05): 12-15
    [99]刘吉普,唐春.横纹槽管滚轧加工及强度研究[J].化工装备技术. 1998, 19(3): 26-28
    [100]盂祥春.横纹管列管式换热器性能分析[J].化工装备技术. 1991, 12(1): 4-6
    [101]陆应生,庄礼贤,陈广怀等.横纹管氨卧式冷凝器传热强化的试验研究[J].制冷. 1992, 39(2): 8-13
    [102]罗运禄,崔乃瑛,张秀云等.用于原油加热的横纹槽管换热器[J].石油化工设备. 1993, 22(4): 27-28
    [103]闵亚光.糖厂蒸发系统横纹管强化传热和抗垢性能的研究[J].齐齐哈尔大学学报.1994, 10(1): 19-25
    [104]徐志明,杨善让,甘云华.横纹管污垢性能的实验研究[J].中国电机工程学报. 2005, 25(5): 159-163
    [105]陆应生,庄礼贤,崔乃瑛等.横纹管甲醛废热锅炉及甲醇混合气加热器的开发与应用[J].广州化工. 1992, 20(1): 46-51
    [106]沈向阳.高温熔盐吸热管传热特性与强化方法研究[D].华南理工大学硕士学位论文. 2008
    [107] Wassel, A. T., Mills, A. F. Calculation of variable property turbulent friction and heat transfer in rough pipes [J]. Journal of Heat Transfer, Transactions ASME. 1979, 101(3): 469-474
    [108]简弃非,肖恺.基于fluent软件的强化传热管特性三维数值模拟研究[J].低温与特气. 2006, 24(6): 6-10
    [109]刘尹红,卿德藩.纵向涡发生器在空气预热器中的强化传热数值模拟研究[J].机械研究与应用. 2008, 21(6): 18-21
    [110]徐百平,江楠,雷鸣. Kenics静态混合器强化传热比熵产数工况分析[J].化工装备技术. 2000, 21(1): 35-39
    [111] Li, L., Yang, M., Zhang, Y. Numerical study of periodically fully-developed convection in channels with periodically grooved parts [J]. International Journal of Heat and Mass Transfer. 2008, 51(11-12): 3057-3065
    [112]成昌锐,胡延东,赵长颖等.导热泥强化传热作用的数值模拟[J].工程热物理学报. 2001, 22(1): 101-103
    [113]白敏丽,徐哲,吕继组.纳米流体对内燃机冷却系统强化传热的数值模拟研究[J].内燃机学报. 2008, 26(2): 183-187
    [114]李志刚,淮秀兰,陶毓伽等.变物性对微通道内流动与传热的影响[J].工程热物理学报. 2007, 28(4): 641-643
    [115]刘明会,杨茉,徐之平等.流体变物性对带肋套管内耦合换热的影响[J].热力透平. 2004, 33(3): 198-201
    [116] Garcia, A., Solano, J. P., Vicente, P. G.., el al. Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts [J]. International Journal of Heat and Mass Transfer. 2007, 50(15-16): 3176-3189
    [117] Garcia, A., Vicente, P. G., Viedma, A. experimental study of heat transfer enhancementwith wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers [J]. International Journal of Heat and Mass Transfer. 2005, 48(21-22): 4640-4651
    [118] Sunden, B., Karlsson, I. Enhancement of heat transfer in rotary heat exchangers by streamwise-corrugated flow channels [J]. Experimental Thermal and Fluid Science. 1991, 4(3): 305-316
    [119] Sunden, B., Trollheden, S. Periodic laminar flow and heat transfer in a corrugated two-dimensional channel [J]. International Communications in Heat and Mass Transfer. 1989, 16(2): 215-225
    [120] Kalinin, E. K., Dreytser, G. A., Zakin, J. L., el al. Improvement of heat transfer in tubular heat transfer exchangers by the use of grooved tubes [J]. Moscow: Moscow Aviation College 1981, 13(4):30-40
    [121] Webb, R. L. Princple of enhanced heat transfer [M], 1993.
    [122] Donne, M. D., Meyer, L. Turbulent convective heat transfer from rough surfaces with two-dimensional rectangular ribs [J]. International Journal of Heat and Mass Transfer. 1977, 20(6): 583-620
    [123] Webb, R. L., Eckert, E. R. G. Application of rough surfaces to heat exchanger design [J]. International Journal of Heat and Mass Transfer. 1972, 15(12): 11647-11658
    [124] Fan, J. F., Ding, W. K., Zhang, J. F. , el al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving [J]. International Journal of Heat and Mass Transfer. 2009, 52(1-2): 33-44
    [125]林宗虎.强化传热及其工程应用[M]机械工业出版社, 1987
    [126] Nagano, Y., Shimada, M. Development of a two-equation heat transfer model based on direct simulations of turbulent flows with different Prandtl numbers[J]. Phys. Fluids. 1996, 8(12):379-402
    [127] Singh, Jasbir. Heat transfer fluids and systems for process and energy applications [R]. 1982:583-599.
    [128] George, J. J., Truong, G. N. Melting and premelting preoperties of the KNO3-NaNO2-NaNO3 eutectic system[J]. J Chem. Eng. Data. 1983, (28):201-202
    [129] Cindrella, L. The real utility ranges of the solar selective coatings[J]. Solar Energy Materials and Solar Cells. 2007, 91(20):1898-1901.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700