金属空心球材料组元力学性能及结构设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业技术、交通运输及航空航天科技的发展对轻质、高强材料的设计和制备提出了更高的要求。金属空心球多孔材料即是在此要求下发展起来的超轻多孔金属材料中的一种类型,对单球和多球组元力学性能的研究是研究金属空心球多孔材料整体力学性能和构成设计的一项十分重要的工作。本文对金属空心球多孔材料的单球、多球组元、金属空心球/环氧树脂复合材料进行了深入的理论分析、实验研究及数值模拟分析。
     研究金属空心球壳受刚性板压缩的理论结果具有重要意义,本文将球壳分为薄壁壳和中厚壁壳,分别导出了薄壁球壳压缩时的屈曲临界载荷和中厚壁球壳压缩的名义应力-应变关系,并进一步给出了球壳相对厚度的明确划分界限。
     为进一步研究金属空心球单球压缩性能,本文对由两个半球焊接而成的薄壁金属空心球单球和中厚壁金属空心球单球进行了准静态压缩实验,得出了其屈服/屈曲临界载荷、弹性模量及名义应力-应变关系,同时研究了焊缝摆放位置和焊接出现孔洞等因素对空心球力学性能的影响。
     多球组元的力学性能是金属空心球多孔材料设计的重要参考,本文设计了多种不同的多球组元堆积形式,分别对其进行了大量的准静态压缩实验,观察了其屈服/屈曲变形规律,并分析了其原因。通过分析载荷-位移曲线和有效应力-应变曲线,讨论了其屈服/屈曲极限、有效弹性模量、比刚度及能量吸收等力学性能,然后讨论了最优的堆积模式。
     金属空心球复合材料是多孔金属复合材料的一种形式,本文对薄壁金属空心球/环氧树脂复合材料、环氧树脂及复合泡沫材料进行了准静态压缩实验,研究了作为基体材料的环氧树脂和复合泡沫的力学性能,对比分析了复合材料的屈服极限和有效弹性模量。同时,通过改变金属空心球壁厚对三种堆积模式的复合材料进行了数值模拟,分析了其有效弹性模量、有效泊松比的变化规律,提出了复合材料中金属空心球的最佳堆积模式。
     为了进一步分析得出规律,本文对金属空心球半球壳进行了数值模拟,验证了实验结果,并分析了影响球壳屈曲的相对厚度临界值。通过对多球组元的数值模拟,验证了实验现象,给出了有效弹性模量,分析了三种堆积模式的力学性能。
     最后,根据理论和实验分析,提出了金属空心球多孔材料的多种构成形式,预测了其压缩过程中的垮塌规律,针对实际中可能的应用,提出了合理的结构设计。
The development of industrial technology, communication, transportation and scientific & technical aerospace require development of lighter, stiffer, stronger and tougher structural materials and its preparation method. Metallic hollow sphere structural material is a type of the super-light cellular metallic material. Studies on the mechanical properties of single sphere and multi-sphere components are important work for the studies of mechanical behavior and form design of whole metallic hollow sphere cellular material. In this paper, the theoretic, experimental and numerical studies of mechanical properties of single sphere, multi-spheres component and metallic hollow sphere composite were carried out.
     In this paper, the mechanical properties of single sphere shell compressed between two rigid plates were studied. The theoretic critical force of thin-wall sphere shell under compression and the nominal stress-strain relationship of medium thick-walled sphere under compression were derived respectively. The dividing limit different from traditional theory of relative thickness of sphere shell was provided.
     Then, a series of quasi-static compressive experiments of thin-walled spheres and medium thick-walled spheres welded with two hemispheres were conducted. The deformation behaviors of it were observed, and its critical force of buckling or yield limit, Young’s modulus and effective stress-strain curves were obtained. And the influence of the change of angle between welding line and horizontal line was analyzed. The influence of cracks produced by welding was analyzed too.
     The mechanical properties of multi-spheres components are the basic reference for the design of metallic hollow sphere materials. In this paper, many packing models of multi-spheres components were devised and its quasi-static compressive experiments were carried out. The buckling or collapse behavior were observed and analyzed, and its load-displacement curves and effective stress-strain curves were obtained. The buckling or yield limit, effective elastic modulus, specific stiffness and specific energy absorb were discussed, and the optimal packing model was provided.
     Epoxy filled with one or many thin-walled metallic hollow spheres is a new style composite, and its quasi-static compressive experiments were conducted. The compressive experiments of epoxy and syntactic foam were also conducted for the comparative analysis. The yield limit and effective elastic modulus were discussed. Then, the numerical simulations of composite with three types of packing models were conducted by considering of the change of shell thick. The change laws of effective elastic modulus and effective Poisson’s ratio were discussed, and an optimal packing model of metallic hollow spheres in composite was provided.
     To analyse the laws, the numerical simulations of half sphere shells were conducted by changing the thick and radius of shell. The critical thick of buckling was gained and the deformation behavior agreed with the experiment. Then, the numerical simulations of multi-spheres components with three types of packing models were conducted too, and its effective yield limit and elastic modulus were provided. The mechanical behavior of the three types of packing models was analyzed.
     Finally, many type forms of metallic hollow sphere structure were provided. The laws of collapse in the process of compression were forecasted. And the reasonable structural designs for the actual applications were presented.
引文
1 T.J. Lu, L. Valdevit, A.G. Evans. Active cooling by metallic sandwich structures with periodic cores. Progress in Materials Science, 2005, 50(7): 789-815.
    2 L.J. Gibson, M.F. Ashby. Cellular solids: structure and properties. Cambridge: Cambridge University Press, 1997.
    3 J. Banhart. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science, 2001, 46(6): 559-632.
    4卢天健,刘涛,邓子辰.多孔金属材料多功能化设计的若干进展.力学与实践, 2008, 30(1): 1-9.
    5 H. Degischer, B. Kriszt. Handbook of Cellular Metals. Weinheim: Wiley-VCH, 2002.
    6 I.S. Golovin, H.R. Sinning. Damping in some cellular metallic materials. Journal of Alloys and Compounds, 2003, 335(1-2): 2-9.
    7 S. Nemat-Nasser, W.J. Kang, J.D. Mcgee, W. Guo, J.B. Isaacs. Experimental investigation of energy-absorption haracteristics of components of sandwich structures. International Journal of Impact Engineering, 2007, 34(6): 1119-1146.
    8 C.Y. Zhao, T.J. Lu, H.P. Hodson, J.D. Jackson. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Materials Science and Engineering A, 2004, 367(1-2): 123-131.
    9 J.S. Kim, S.J. Lee, K.B. Shin. Manufacturing and structural safety evaluation of a omposite train carbody. Composite Structures, 2007, 78(4): 476-498.
    10杨雪娟,刘颖,李梦.多孔金属材料的制备及应用.材料导报, 2007, 21(F05): 380-383.
    11卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用.力学进展, 2006, 36(4): 517-535.
    12 M.F. Ashby, A. Evans, N.A. Fleck. Metal foam:a design guide. Boston: Butterworh-Heinemann, 2000.
    13 M.J. Silva, W.C. Hayes, L.J. Gibson. The effect of non-periodic microstructure on the elastic properties of two-dimensional cellular solides. International Journal fo mechanical and science, 1995, 37(11): 1161-1177.
    14 C. Chen, T.J. Lu, N.A. Fleck. Effect of imperfections on the yielding of two-dimensional foams. Journal of the Mechanics and Physics of solids, 1999, 47(11): 1747-1769.
    15 H.X. Zhu, J.R. Hobdell, A.H. Windle. Effects of cell irregularity on the elastic properties of oper-cell foams. Acta Materialia, 2000, 48(20): 1893-4900.
    16 Y.X. Gan, C. C, S.Y. P. Three dimensional modeling of the mechanical property of elastomericopen cell foams. International Journal of Solids and Structures, 2005, 42(26): 6628-6642.
    17 S.G. Bardenhagen, A.D. Brydon, J.E. Guilkey. Insight into the physics of foam densification via numerical simulation. Journal of the Mechanics and Physics of solids, 2005, 53(3): 597-617.
    18 V.S. Deshpande, N.A. Fleck. Isotropic constitutive models for metallic foams. Journal of the Mechanics and Physics of Solids, 2000, 48(6-7): 1253-1283.
    19 B. Hucko, L. Faria. Material model of metallic cellular solids. Computers & Structures, 1997, 62(6): 1049-1057.
    20 S. Santosa, T. Wierzbicki. On the modeling of crush behavior of a closed-cell aluminum foam structure. Journal of the Mechanics and Physics of Solids, 1998, 46(4): 645-669.
    21 R.E. Miller. A continuum plasticity model for the constitutive and indentation behaviour of foamed metals. International Journal of Mechanical Sciences, 2000, 42(4): 729-754.
    22 C. Chen, T.J. Lu. A phenonenological framework of constitutive modeling for incompressible and compressible elastoplastic solids. International Journal of Solids and Structures, 2000, 37(52): 7769-7786.
    23 A.G. Hanssen, O.S. Hopperstad, M. Langseth. Validation of constitutive models applicable to aluminium foams. International Journal of Mechanical Sciences, 2002, 44(2): 359-406.
    24王二恒,虞吉林,王飞,孙亮.泡沫铝材料准静态本构关系的理论和实验研究.力学学报, 2004, 36(6): 673-679.
    25 R.S. Kumar, D.L. Mcdowell. Generalized continuum modeling of 2-D periodic cellular solids. International Journal of Solids and Structures, 2004, 41(26): 7399-7422.
    26 M.W. Schraad, F.H. Harlow. A stochastic constitutive model for disordered cellular materials: Finite-strain uni-axial compression. International Journal of Solids and Structures, 2006, 43(11-12): 3542-3568.
    27 M. Avalle, G. Belingardi, A. Ibba. Mechanical models of cellular solids: Parameters identification from experimental tests. International Journal of Impact Engineering, 2007, 34(1): 3-27.
    28 M.C. Gui, D.B. Wang, G.J. Wu. Deformation and damping behaviors of foamed Al-Si-SiCp composite. Materials Science and Engineering A, 2000, 286(2): 282-288.
    29 J.L. Grenestedt, F. Bassinet. Infuence of cell wall thickness variations on elastic stiffness of closed-cell cellular solids. International Journal of Mechanical Sciences, 2000, 42(7): 1327-1338.
    30 X. Badiche, S. Forest, T. Guibert, Y. Bienvenu. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Materials Science and Engineering A, 2000, 289(1-2): 276-288.
    31 E.W. Andrews, L.J. Gibson. The influence of cracks, notches and holes on the tensile strength of cellular solids. Acta Materialia, 2001, 49: 2975-2979.
    32 A. Ochsner, K. Lamprecht. On the uniaxial compression behavior of regular shaped cellular metals. Mechanics Research Communications, 2003, 30(6): 573-579.
    33 D. Okumura, N. Ohno, H. Noguchi. Elastoplastic microscopic bifurcation and post-bifurcation behavior of periodic cellular solids. Journal of the Mechanics and Physics of Solids, 2004, 52(3): 641-666.
    34 K. Tantikom, T. Aizawa, T. Mukai. Symmetric and asymmetric deformation transition in the regularly cell-structured materials.Part I: experimental study. International Journal of Solids and Structures, 2005, 42(8): 2199-2210.
    35 J.S. Huang, F.M. Chang. Effects of curved cell edges on the stiffness and strength of two-dimensional cellular solids. Composite Structures, 2005, 69(2): 183-191.
    36 L. Gong, S. Kyriakides, W.Y. Jang. Compressive response of open-cell foams.Part I: Morphology and elastic properties. International Journal of Solids and Structures, 2005, 42(5-6): 1355-1379.
    37 L. Gong, S. Kyriakides. Compressive response of open cell foams Part II: Initiation and evolution of crushing. International Journal of Solids and Structures, 2005, 42(5-6): 1381-1399.
    38 L. Gong, S. Kyriakides, N. Triantafyllidis. On the stability of Kelvin cell foams under compressive loads. Journal of the Mechanics and Physics of solids, 2005, 53(4): 771-794.
    39 K. Li, X.L. Gao, G. Subhash. Effects of cell shape and cell wall thickness variations on the elastic properties of two-dimensional cellular solids. International Journal of Solids and Structures, 2005, 42(5-6): 1777-1795.
    40 K. Li, X.L. Gao, G. Subhash. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams. Journal of the Mechanics and Physics of Solids, 2006, 54(4): 783-806.
    41 P.S. Liu. Mechanical behaviors of porous metals under biaxial tensile loads. Materials Science and Engineering A, 2006, 422(1-2): 176-183.
    42 D.P. Kou, J.R. Li, J.L. Yu, H.F. Cheng. Mechanical behavior of open-cell metallic foams with dual-size cellular structure. Scripta Materialia, 2008, 59(5): 483-486.
    43 A. Rabiei, L.J. Vendra. A comparison of composite metal foam's properties and other comparable metal foams. Materials Letters, 2009, 63(5): 533-536.
    44 S. Demiray, W. Becker, J. Hohe. Analysis of two- and three-dimensional hyperelastic model foams under complex loading conditions. Mechanics of Materials, 2006, 38(11): 985-1000.
    45卢子兴,郭宇.金属泡沫材料力学行为的研究概述.北京航空航天大学学报, 2003, 29(11):978-983.
    46刘培生,付超,李铁藩.高孔率金属材料的抗拉强度.稀有金属材料与工程, 2000, 29(2): 94-100.
    47刘培生,梁开明,顾守仁,王习术.多孔金属抗拉强度公式中的指数项取值.力学学报, 2001, 33(6): 853-855.
    48刘培生.泡沫金属双向拉伸破坏时名义应力与孔率的关系.中国科学(E辑), 2003, 33(9): 774-777.
    49刘培生.泡沫材料在多向拉伸载荷作用下的力学模型.稀有金属材料与工程, 2008, 37(12): 2009-2103.
    50刘培生.泡沫金属在单双向拉压载荷作用下的表征分析.中国有色金属学报, 2008, 18(11): 2062-2067.
    51许坤,寇东鹏,王二恒,虞吉林.泡沫铝填充薄壁方形铝管的静态弯曲崩毁行为.固体力学学报, 2005, 26(3): 261-266.
    52富裕,蒋平,谢若泽,田常津.泡沫铝铜合金静态压缩力学行为和吸能性能的实验研究.爆炸与冲击, 2006, 26(5): 416-422.
    53谢中友,李剑荣,虞吉林.泡沫铝填充薄壁圆管的三点弯曲实验的数值模拟.固体力学学报, 2007, 28(3): 261-265.
    54施国栋,何德坪,张勇明,何思渊.超轻多孔金属孔结构的X射线断层扫描分析.机械工程材料, 2008, 32(3): 13-15.
    55王展光,陈选,李书琴,褚旭明,何德坪.球形孔泡沫铝及其合金的拉伸性能.机械工程材料, 2009, 33(10): 75-77.
    56 T. Mukai, H. Kanahashi, T. Miyoshi. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading. Scripta materialia, 1999, 40(8): 921-927.
    57 A. Paul, U. Ramamurty. Strain rate sensitivity of a closed-cell aluminum foam. Materials Science and Engineering A, 2000, 281(1-2): 1-7.
    58 V.S. Deshpande, A. Fallet. High strain rate compressive behaviour of aluminium alloy foams. International Journal of Impact Engineering, 2000, 24(3): 277-298.
    59 A. Honig, W.J. Stronge. In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping. International Journal of Mechanical Sciences, 2002, 44(8): 1665-1696.
    60 P.J. Tan, J.J. Harrigan, S.R. Reid. Intertia effects in the uniaxial dynamic compression of a closed-cell aluminium alloy foam. Journal of Material Science and technology, 2002, 18(5): 480-488.
    61 S.L. Lopatnikov, B.A. Gama, M.J. Haque, C. Krauthauser. Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Composite Structures, 2003,61(1-2): 61-71.
    62 S.L. Lapotnikov, B.A. Gama, M.J. Haque, C. Krauthauser. High-velocity plate impact of metal foams. International Journal of Impact Engineering, 2004, 30(4): 421-445.
    63 P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, S. Li. Dynamic compressive strength properties of aluminium foams. Part II—‘shock’theory and comparison with experimental data and numerical models. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206-2230.
    64 H. Zhao, I. Elnasri, S. Abdennadher. An experimental study on the behaviour under impact loading of metallic cellular materials. International Journal of Mechanical Sciences, 2005, 47(4-5): 757-774.
    65 S. Shahbeyk, N. Petrinic, A. Vafai. Numerical modelling of dynamically loaded metal foam-filled square columns. International Journal of Impact Engineering, 2007, 34(3): 573-586.
    66 C. Czarnota, N. Jacques, S. Mercier, A. Molinari. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum. Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1624-1650.
    67陈成军,谢若泽,张方举,赵亚斌,卢子兴. Taylor撞击实验在泡沫铝合金力学特性研究中的应用.爆炸与冲击, 2008, 28(2): 166-171.
    68陈永涛,楼志华,郑钢铁.开孔和闭孔泡沫铝的力学与吸能特性研究.高能量密度物理, 2006(2): 47-49.
    69杨东辉,何德坪.高比强度多孔铝合金的压缩性能和能量吸收特性.机械工程材料, 2005, 29(9): 13-16.
    70刘耀东,虞吉林,郑志军.惯性对多孔金属材料动态力学行为的影响.高压物理学报, 2008, 22(2): 119-123.
    71 C. Motz, O. Friedl, R. Pippan. Fatigue crack propagation in cellular metals. International Journal of Fatigue, 2005, 27(10-12): 1571-1581.
    72 A.C.F. Cocks, M.F. Ashby. Creep buckling of cellular solids. Acta Materialia, 2000, 48(13): 3395-3400.
    73 J.S. Huang, L.J. Gibson. Creep of open-cell Voronoi foams. Materials Science and Engineering A, 2003, 339(1-2): 220-226.
    74 J.Y. Lin, J.S. Huang. Creep of hexagonal honeycombs with Plateau borders. Composite Structures, 2005, 67(4): 477-484.
    75 M.L. Hunt, C.L. Tien. Effects of thermal dispersion of forced convection in fibrous media. International Journal of Heat and Mass Transfer, 1988, 31(2): 301-309.
    76 T.J. Lu, H.A. Stone, M.F. Ashby. Heat transfer in open-cell metal foams. Acta Materialia, 1998, 46(10): 3619-3635.
    77 C.Y. Zhao, T.J. Lu, H.P. Hodson. Thermal radiation in ultralight metal foams with open cells. International Journal of Heat and Mass Transfer, 2004, 47(14-16): 2927-2939.
    78 C.Y. Zhao, T.J. Lu, H.P. Hodson. Natural convection in metal foams with open cells. International Journal of Heat and Mass Transfer, 2005, 48(12): 2452-2463.
    79 C.Y. Zhao, T.J. Lu. Analysis of microchannel heat sinks, for electronics cooling. International Journal of Heat and Mass Transfer, 2002, 45(24): 4857-4869.
    80 C.Y. Zhao, S.A. Tassou, T.J. Lu. Analytical considerations of thermal radiation in cellular metal foams with open cells. International Journal of Heat and Mass Transfer, 2008, 51(3-4): 929-940.
    81 W. Lu, C.Y. Zhao, S.A. Tassou. Thermal analysis on metal-foam filled heat exchangers. Part I: Metal-foam filled pipes. International Journal of Heat and Mass Transfer, 2006, 49(15-16): 2751-2761.
    82 C.Y. Zhao, T.J. Lu, H.P. Hodson. Thermal transport in high porosity celular metal foams. Journal of thermophysics and heat transfer, 2004, 18(3): 309-317.
    83 C.Y. Zhao, W. Lu, S.A. Tassou. Thermal analysis on metal-foam filled heat exchangers. Part II: Tube heat exchangers. International Journal of Heat and Mass Transfer, 2006, 49(15-16): 2762-2770.
    84 W. Azzi, W.L. Roberts, A. Rabiei. A study on pressure drop and heat transfer in open cell metal foams for jet engine applications. Materials and Design, 2007, 28(2): 569-574.
    85 C. Albanakis, D. Missirlis, N. Michailidis, K. Yakinthos. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation. Experimental Thermal and Fluid Science, 2009, 33(2): 246-252.
    86 N. Dukhan, K.C. Chen. Heat transfer measurements in metal foam subjected to constant heat flux. Experimental Thermal and Fluid Science, 2007, 32(2): 624-631.
    87 G. Hetsroni, M. Gurevich, R. Rozenblit. Natural convection in metal foam strips with internal heat generation. Experimental Thermal and Fluid Science, 2008, 32(8): 1740-1747.
    88 S. Mahjoob, K. Vafai. A synthesis of fluid and thermal transport models for metal foam heat exchangers. International Journal of Heat and Mass Transfer, 2008, 51(15-16): 3701-3711.
    89张伟开,李乃哲,何德坪.多孔铝对流换热系数的反演分析.材料研究学报, 2007, 21(1): 20-24.
    90寇东鹏,虞吉林.双重孔径泡沫金属材料的强度和热性能多目标优化设计.金属学报, 2010, 40(1): 104-110.
    91 T.J. Lu, F. Chen, D.P. He. Sound absorption of cellular metals with semiopen cells. Journal of the Acoustical Society of America, 2000, 108(4): 1697-1709.
    92卢天健, I.D.J. Dupère, A.P. Dowling.多孔泡沫材料的声吸收特性.西安交通大学学报,2007, 41(9): 1003-1011.
    93郑明军,陈锋,何德坪.孔结构对多孔铝空气声吸收性能的影响.机械工程材料, 2006, 30(2): 39-41.
    94张波,陈天宁,冯凯,陈花玲.烧结金属纤维多孔材料的高温吸声性能.西安交通大学学报, 2008, 42(11): 1327-1331.
    95于英华,杨春红,徐平.泡沫铝板在机床降噪中的应用研究.机床与液压, 2008, 36(2): 41-43.
    96韩宝坤,安郁熙,鲍怀谦,符俊杰,丁晓.多孔金属材料吸声性能优化分析.山东科技大学学报, 2009, 28(6): 85-88.
    97薛向欣,刘欣,张瑜.泡沫铝基多孔金属复合材料吸波性能.中国有色金属学报, 2007, 17(11): 1755-1760.
    98 H. Bart-Smith, J.W. Hutchinson, A.G. Evans. Measurement and analysis of the structural performance of cellular metal sandwich construction. International Journal of Mechanical Sciences, 2001, 43(8): 1945-1963.
    99 V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-truss lattice material. Journal of the Mechanics and Physics of solids, 2001, 49(8): 1747-1769.
    100 J. Hohe, W. Becker. A mechanical model for two-dimensional cellular sandwich cores with general geometry. Computational Materials Science, 2000, 19: 108-115.
    101 J. Hohe, W. Becker. Effective mechanical behavior of hyperelastic honeycombs and two-dimensional model foams at finite strain. International Journal of Mechanical Sciences, 2003, 45(5): 891-913.
    102 J. Hohe, S. Goswami, W. Becker. Assessment of interface stress concentrations in layered composites with application to sandwich panels. Computational Materials Science, 2003, 26: 71-79.
    103 J. Hohe, L. Librescu. A nonlinear theory for doubly curved anisotropic sandwich shells with transversely compressible core. International Journal of Solids and Structures, 2003, 40(5): 1059-1088.
    104 H.N.G. Wadley, N.A. Fleck, A.G. Evans. Fabrication and structural performance of periodic cellular metal sandwich structures. Composites Science and Technology, 2003, 63(16): 2331-2343.
    105 D. Mohr. On the role of shear strength in sandwich sheet forming. International Journal of Solids and Structures, 2005, 42(5-6): 1491-1512.
    106 H.J. Rathbun, F.W. Zok, A.G. Evans. Strength optimization of metallic sandwich panels subject to bending. International Journal of Solids and Structures, 2005, 42(26): 6643-6661.
    107 H.J. Rathbun, F.W. Zok, S.A. Waltner, C. Mercer. Structural performance of metallic sandwich beams with hollow truss cores. Acta Materialia, 2006, 54(20): 5509-5518.
    108 T. Liu, Z.C. Deng, T.J. Lu. Design optimization of truss-cored sandwiches with homogenization. International Journal of Solids and Structures, 2006, 43(25-26): 7891-7918.
    109 T. Liu, Z.C. Deng, T.J. Lu. Structural modeling of sandwich structures with lightweight cellular cores. Acta Mechanica Sinica, 2007, 23(5): 545-559.
    110 T. Liu, Z.C. Deng, T.J. Lu. Minimum weights of pressurized hollow sandwich cylinders with ultralight celular cores. International Journal of Solids and Structures, 2007, 44(10): 3231-3266.
    111 E. Magnucka-Blandzi, K. Magnucki. Effective design of a sandwich beam with a metal foam core. Thin-Walled Structures, 2007, 45(4): 432-438.
    112 U. Icardi, L. Ferrero. Optimisation of sandwich panels with functionally graded core and faces. Composites Science and Technology, 2009, 69(5): 575-585.
    113张钱城,韩云杰,陈常青,卢天健. X型超轻点阵结构芯体(I):概念的提出、材料制备及实验.中国科学(E辑), 2009, 39(6): 1039-1046.
    114张钱城,陈爱萍,陈常青,卢天健. X型超轻点阵结构芯体(II):细观力学建模与结构分析.中国科学(E辑), 2009, 39(7): 1216-1227.
    115 T. Wen, J. Tian, T.J. Lu, D.T. Queheillalt, H.N.G. Wadley. Forced convection in metallic honeycomb structures. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3313-3324.
    116 J. Tian, T.J. Lu, H.P. Hodson, D.T. Queheillalt, H.N.G. Wadley. Cross flow heat exchange of textile cellular metal core sandwich panels. International Journal of Heat and Mass Transfer, 2007, 50(13-14): 2521-2536.
    117 S. Gu, T.J. Lu, A.G. Evans. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer, 2001, 44(11): 2163-2175.
    118 T.J. Lu. Heat transfer efficiency of metal honeycombs. International Journal of Heat and Mass Transfer, 1999, 42(11): 2031-2040.
    119 R.S. Kumar, D.L. Mcdowell. Rapid preliminary design of rectangular linear cellular alloys for maximum heat transfer. AIAA Journal, 2004, 42:1652-1661.
    120 A.M. Hays, A. Wang, B.M. Dempsey, D.L. Mcdowell. Mechanics of linear cellular alloys. Mechanics of Materials, 2004, 36(8): 691-713.
    121 B.M. Dempaey, S. Eisele, D.L. Mcdowell. Heat sink applications of extruded metal honeycombs. International Journal of Heat and Mass Transfer, 2005, 48(3-4): 527-535.
    122 V.S. Deshpande, N.A. Fleck. Energy absorption of an egg-box material. Journal of theMechanics and Physics of Solids, 2003, 51(1): 187-208.
    123 Z.Y. Xue, J.W. Hutchinson. Preliminary assessments of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 2003, 45(4): 687-705.
    124 Z.Y. Xue, J.W. Hutchinson. A comparative study of impulse-resistant metal sandwich plates. International Journal of Impact Engineering, 2004, 30(10): 1283-1305.
    125 J.W. Hutchinson, Z.Y. Xue. Metal sandwich plates optimized for pressure impulses. International Journal of Mechanical Sciences, 2005, 47(4-5): 545-569.
    126 Z.Y. Xue, J.W. Hutchinson. Crush dynamics of square honeycomb sandwich cores. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2221-2245.
    127 J.P. Dear, H. Lee, S.A. Brown. Impact damage processes in composite sheet and sandwich honeycomb materials. International Journal of Impact Engineering, 2005, 32(1-4): 130-154.
    128 H.J. Rathbun, D.D. Radford, Z. Xue, M.Y. He, J. Yang. Performance of metallic honeycomb-core sandwich beams under shock loading. International Journal of Solids and Structures, 2006, 43(6): 1746-1763.
    129 U.K. Vaidya, S. Pillay, S. Bartus, C.A. Ulven. Impact and post-impact vibration response of protective metal foam composite sandwich plates. Materials Science and Engineering A, 2006, 428(1-2): 59-66.
    130 A. Vaziri, J.W. Hutchinson. Metal sandwich plates subject to intense air shocks. International Journal of Solids and Structures, 2007, 44(6): 2021-2035.
    131 F. Zhu, L.M. Zhao, G.X. Lu, E. Gad. A numerical simulation of the blast impact of square metallic sandwich panels. International Journal of Impact Engineering, 2009, 36(5): 1-13.
    132王展光,单建,何德坪.金字塔栅格夹心夹层板动力响应分析.力学季刊, 2006, 27(4): 707-713.
    133赵桂平,卢天健.多孔金属夹层板载冲击载荷作用下的动态响应.力学学报, 2008, 40(2): 194-206.
    134李斌潮,张钱城,卢天健.基于实验模态分析的点阵夹层结构动态性能预测.固体力学学报, 2008, 29(4): 373-378.
    135田培培,赵桂平,卢天健.具有填充材料的金属格栅夹层板在高速冲击下动态响应的数值模拟.应用力学学报, 2009, 26(4): 788-792.
    136黄桥平,赵桂平,卢天健.考虑应变率效应的复合材料层合板冲击动态响应.西安交通大学学报, 2009, 43(1): 72-76.
    137倪长也,金峰,卢天健.超轻金属点阵三明治板结构抗侵彻性能分析.兵工学报, 2009, 30(S2): 94-97.
    138 D.P. Updike, A. Kalnins. Axisymmetric behavior of an elastic spherical shell compressedbetween rigid plates. Journal of Applied Mechanics, 1970, 37: 635-640.
    139 D.P. Updike. On the large deformation of a rigid-plastic spherical shell compressed by a rigid plates. Journal of Engineering for Inddustry, 1972: 945-955.
    140 D.P. Updike, A. Kalnins. Contact pressure between an elastic spherecal shell and a rigid plate. Journal of Applied Mechanics, 1972, 39(4): 1110-1114.
    141 D.P. Updike, A. Kalnins. Axisymmetric postbuckling and nonsymmetric buckling of a spherical shell compressed between rigid plates. Journal of Applied Mechanics, 1972, 39: 172-178.
    142 J.G. De Oliveira, T. Wierzbicki. Crushing analysis of rotationally symmetric plastic shells. Journal of strain analysis, 1982, 17(4): 229-236.
    143 R. Kitching, R. Houlston, W. Johnson. A theoretical and experimental study of hemispherical shells subjected to axial loads between flat plates. International Journal of Mechanical Sciences, 1975, 17(11-12): 693-703.
    144 A.N. Kinkead, A. Jennings, J. Newell, J.C. Leinster. Spherical shells in inelastic collsion with a rigid wall tentative anslysis and recent quasi-static testing. Journal of Strain Analysis, 1994, 29(1): 17-41.
    145吴连元.板壳理论.上海:上海交通大学出版社, 1989:550-553.
    146 N.K. Gupta, G.L.E. Prasad, S.K. Gupta. Axial compression of metallic spherical shells between rigid plates. Thin-Walled Structures, 1999, 34(1): 21-41.
    147 N.K. Gupta, N.M. Sheriff, R. Velmurugan. Experimental and numerical investigations into collapse behaviour of thin spherical shells under drop hammer impact. International Journal of Solids and Structures, 2007, 44(10): 3136-3155.
    148 N.K. Gupta, N.M. Sheriff, R. Velmurugan. Experimental and theoretical studies on buckling of thin spherical shells under axial loads. International Journal of Mechanical Sciences, 2008, 50(3): 422-432.
    149 N.K. Gupta, Venkatesh. Experimental and numerical studies of dynamic axial compression of thin walled spherical shells. International Journal of Impact Engineering, 2004, 30(8-9): 1225-1240.
    150 W.S. Sanders, L.J. Gibson. Mechanics of BCC and FCC hollow-sphere foams. Materials Science and Engineering A, 2003, 352(1-2): 150-161.
    151 W.S. Sanders, L.J. Gibson. Mechanics of hollow sphere foams. Materials Science and Engineering A, 2003, 347(1-2): 70-85.
    152 S. Gasser, F. Paun, A. Cayzeele, Y. Br echet. Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres. Scripta Materialia, 2003, 48(12): 1617-1623.
    153 S. Gasser, F. Paun. Finite elements computation for the elastic properties of a regular stacking ofhollow spheres. Materials Science and Engineering A, 2004, 379(1-2): 240-244.
    154 T.J. Lim, B. Smith, D.L. Mcdowell. Behavior of a random hollow sphere metal foam. Acta Materialia, 2002, 50(11): 2867-2879.
    155 T. Fiedler, E. Solórzano, A. ?chsner. Numerical and experimental analysis of the thermal conductivity of metallic hollow sphere structures. Materials Letters, 2008, 62(8-9): 1204-1207.
    156 T. Fiedler, R. L?ffler, T. Bernthaler, R. Winkler, I.V. Belova, G.E. Murch, A. ?chsner. Numerical analyses of the thermal conductivity of random hollow sphere structures. Materials Letters, 2009, 63(13-14): 1125-1127.
    157 T. Fiedler, A.O. Chsner. On the anisotropy of adhesively bonded metallic hollow sphere structures. Scripta Materialia, 2008, 58(8): 695-698.
    158 H.H. Ruan, Z.Y. Gao, T.X. Yu. Crushing of thin-walled spheres and sphere arrays. International Journal of Mechanical Sciences, 2006, 48(2): 117-133.
    159 D. Karagiozova, T.X. Yu, Z.Y. Gao. Modelling of MHS cellular solid in large strains. International Journal of Mechanical Sciences, 2006, 48(11): 1273-1286.
    160 Z.Y. Gao, T.X. Yu, D. Karagiozova. Finite element simulations on the mechanical properties of MHS materials. Acta Mechanica Sinica, 2007, 23(1): 65-75.
    161 X.L. Dong, Z.Y. Gao, T.X. Yu. Dynamic crushing of thin-walled spheres: An experimental study. International Journal of Impact Engineering, 2008, 35(8): 717-726.
    162吴承伟,张鹏程,周平.薄壁球壳超轻质结构力学行为研究.大连理工大学学报, 2008, 48(5): 625-630.
    163 S.M.H. Hosseini, M. Merkel, A. ?chsner. Finite element simulation of the thermal conductivity of perforated hollow sphere structures (PHSS): Parametric study. Materials Letters, 2009, 63(13-14): 1135-1137.
    164 E. Solórzano, M.A. Rodríguez-Perez, J.A. De Saja. Thermal conductivity of metallic hollow sphere structures: An experimental,analytical and comparative study. Materials Letters, 2009, 63(13-14): 1128-1130.
    165 P. Lhuissier, A. Fallet, L. Salvo, Y. Brechet. Quasistatic mechanical behaviour of stainless steel hollow sphere foam: Macroscopic properties and damage mechanisms followed by X-ray omography. Materials Letters, 2009, 63(13-14): 1113-1116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700