铝合金四棱锥点阵夹芯材料的制备及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用拼装工艺制备6061铝合金四棱锥点阵夹芯材料,将带有插针插孔的基本拼装单元按一定顺序拼装成四棱锥点阵夹芯体,并采用钎焊工艺互连芯体与面板,通过选择不同的芯体杆元宽度制备不同相对密度(0.052~0.068)的四棱锥点阵夹芯材料。通过准静态压缩性能测试,研究不同相对密度的四棱锥点阵夹芯材料的准静态压缩性能以及能量吸收性能。根据压缩结果结合三个力学模型进行峰值压缩强度的分析比较,并提出力学性能强化方案,从形状优化、拓扑优化两方面进行四棱锥点阵夹芯材料的设计、制备及力学性能研究。研究表明四棱锥点阵夹芯材料的压缩过程包括线弹性变形、塑性屈服、致密化三个阶段。随着芯体相对密度的增加,其峰值压缩强度也在增加。非弹性屈曲模型根据相对密度、基体材料屈服强度、应变硬化能力成功预测了铝合金四棱锥点阵夹芯结构的峰值压缩强度,预测值与测量值有良好的一致性。四棱锥点阵夹芯材料的能量吸收能力在整个压缩过程中单调增加,随着夹芯相对密度的增加,能量吸收能力也在增加。不同相对密度的四棱锥点阵夹芯材料能量吸收效率曲线形状相似,呈现先升后降的现象,均在应变0.25左右达到峰值,能量吸收效率很高,在一个宽应变范围内(0.15~0.35)维持在70%以上。形状优化中将四棱锥点阵结构的开孔角度由30°减少为15°,使得四棱锥点阵夹芯材料力学性能得到进一步的改善,其比强度和单位质量能量吸收相较于之前未优化的点阵夹芯材料分别提高了25%和30%左右;拓扑结构优化在减轻四棱锥点阵夹芯材料质量的同时,进一步的提高了峰值压缩强度,结构的比强度、单位质量能量吸收均有较大的提高,为未优化设计前的点阵夹芯材料的2倍左右,也高于形状优化后的点阵夹芯材料。
A pyramidal lattice truss structure of 6061 aluminum alloy has been fabricated by assembly of slotted metal sheets, followed by air brazing to join the structure with aluminum plates on top-and-bottom making a sandwich structure. Structures with different cellular core relative densities ranging between 0.052 and 0.068 were obtained by changing the widths of the lattice truss. The static compressive mechanical behaviors and energy absorption performance of the fabricated pyramidal lattice truss sandwich samples were studied by the quasi-static compression tests. According to the results of the measured static compressive properties and theoretical estimates based on three mechanical analytical models, optimizing schemes were proposed to strengthen the mechanical properties of pyramid lattice truss sandwich structures from three aspects including shape optimization and topology optimization.The result shows that pyramidal lattice truss cores exhibited similar compressive stress strain to those of many cellular metals, their compression process included three stages:linear elastic stage, softening stage and densification stage. With the adding of core relative density, the measured peak compressive strengths have increased obviously. A model based on inelastic column-buckling theory incorporating strain hardening was able to predict the pyramidal lattice core's compressive peak strength over a range of relative densities, parent alloy yield strengths, and strain hardening capacities. The energy absorption capacity in the compression process increased monotonically with the adding of core relative density, while the energy absorption efficiency exhibited a rising and descending curve with a peak at the strain of 0.25. In a wide range of strain (varied from 0.15 to 0.35), the energy absorption efficiency of the pyramidal lattice truss sandwich structures maintained in 70% above. After decreasing the opening angle of the pyramid lattice cores from 30°to 15°, the mechanical properties of pyramidal lattice truss sandwich structures were well strengthened. The specific strength was enhanced about 25%, while the energy absorbed per unit mass was improved about 20%. An innovative topology structure provided a further strengthen of the pyramidal lattice truss sandwich structures. The value of their specific strength and energy absorbed per unit mass were both about twice of the pyramidal lattice truss sandwich structures without optimization, and higher than the shape-optimized sandwich structures also.
引文
[1] 卢天健,何德坪,陈常青,赵长颖,方岱宁,王晓林.超轻多孔金属材料的多功能特性及应用[J].力学进展,2006,36(4):517-535
    [2] Gibson L J, Ashby M F. Cellular solids:structure and properties[M].2nd Ed. Cambridge(UK):Cambridge University press,1999,1-13
    [3] John Banhart. Manufacture, characterization and application of cellular metals and metal foams[J]. Progress in Materials Science,2001,46:559-632
    [4] Ashby M F, Mehl Medalist R F. The mechanical properties of cellular solids[J]. The metallurgical Society of AIME,1983,14A:1755-1769
    [5] Yang Dong-hui, He De-ping. Porosity of porous Al alloys[J]. Science in China(series B),2001,44(4):411-418
    [6]许庆彦,陈玉勇,李庆春.多孔铝合金材料吸声性能的研究[J].宇航材料工艺,1998,2:39-43
    [7] 何德坪,何思渊,尚金堂.超轻多孔金属的进展与物理学[J].物理学进展,2006:26(3):346-350
    [8] Ashby M F, Lu Tian-jian. Metal foams:A survey[J]. Science in China(series B),2003, 46(6):521-532
    [9] Albanakis C, Missirlis D, Michailidis N, et al. Experimental analysis of the pressure drop and heat transfer through metal foams used as volumetric receivers under concentrated solar radiation[J]. Experimental Thermal and Fluid Science,2009,33: 246-252
    [10] Zhao C Y, Lu T J, Hodson H P. Natural convection in metal foams with open cells[J]. International Journal of Heat and Mass Transfer,2005,48:2452-2463
    [11]卢子兴,郭宇.金属泡沫材料力学行为的研究概述[J].北京航空航天大学学报,2003,29(11):976-983
    [12] Ashby M F, Evans A G, Fleck N A, et al. Metal Foams:A design Guide[M]. Boston: Butterworth-Heinemann,2000,157-161
    [13] 阎军.超轻金属结构与材料性能多尺度分析与协同优化设计[D].大连:大连理工大学,2007:1-16
    [14] Wadley H N G. Cellular metals manufacturing[J].Advanced Engineering Materials, 2002,4(10):726-733
    [15]刘玲.超轻质材料和结构的协同分析与优化[D].大连:大连理工大学,2006:1-6
    [16] Wadley H N G. Multifunctional periodic cellular metals[J]. Philosophical Transactions
    of the royal society,2006,364:31-68
    [17] An Houl, Kurt Gramoll. Design and fabrication of CFRP interstage attach fitting for launch vehicles[J]. Journal of Aerospace Engineering,1999,12(3):83-91
    [18] Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs[J]. ASME Journal of Engineering Materials and Technology,2004, 126(2):137-156
    [19] Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending[J]. International Journal of Solids and Structure,2001,38:6275-6305
    [20] Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octet-truss lattice material[J]. Journal of the Mechanics and Physics of Solids,2001,49(8):1747-1769
    [21] Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium[J]. Acta Materialia, 2004,52:4229-4237
    [22] Wang Bing*, Wu Linzhi*, Ma Li, Sun Yuguo, Du Shanyi. Mechanical behavior of the sandwich structures with carbon fiber-reinforced pyramidal lattice truss core [J]. Materials and Design,2010,31:2659-2663
    [23] Wang J, Evans A G, Dharmasena K, Wadley H N G. On the performance of truss panels with Kagome cores[J]. International Journal of Solids and Structures,2003,40: 6981-6988
    [24] 郑华勇3D-Kagome点阵夹芯板的力学性能研究[D].哈尔滨:哈尔滨工业大学,2006:1-10
    [25] Symons D D, Hutchinson R G, Fleck N A. Actuation of the Kagome Double-Layer Part 1:Prediction of performance of the perfect structure[J]. Journal of the Mechanics and Physics of Solids,2005,53:1855-1874
    [26] Sypeck D J, Wadley H N G. Cellular metal truss core sandwich structures [J]. Advanced Engineering Materials,2002,10:759-764
    [27] Kooistra G W, Wadley H N G. Lattice truss structures from expanded metal sheet[J]. Materials and Design,2007,28:507-514
    [28] Queheillalt D T, Wadley H N G, et al. Mechanical properties of an extruded pyramidal lattice truss sandwich structure[J]. Scripta Materialia,2008,58:76-79
    [29] Lee Y H, Lee B K, et al. Wire-woven bulk Kagome truss cores[J]. Acta Materialia, 2007,55(18):6084-6094
    [30] 范华林,杨卫.轻质高强点阵材料及其力学性能研究进展[J].力学进展,2007,37(1):99-112
    [31] Wadley H N G, Fleck N A, Evans A G. Fabrication and structural performance of periodic cellular metal sandwich structures[J]. Composites Science and Technology, 2003,63:2331-2343
    [32] 苑世剑.轻量化成形技术[M].北京:国防工业出版社,2010,1-10
    [33] 方岱宁,张一慧,崔晓东.轻质点阵材料力学与多功能设计[M].北京:科学出版社,2009,1-9
    [34] Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels[J]. International Journal of Solids and Structures,2002,39: 4093-4115
    [35] Queheillalt D T, Wadley H N G. Titanium alloy lattice truss structures[J]. Materials and Design,2009,30:1966-1975
    [36] Radford D D, Deshpande V S, Fleck N A. The use of metal foam projectiles to simulate shock loading on a structure[J]. International journal of Impact Engineering, 2005,31(9):1152-1171
    [37] Xue Z Y, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads[J]. International Journal of Mechanical Sciences,2004,45:687-705
    [38] Kim T, Hodson H P, Lu T J. Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material[J]. International Journal of Heat and Mass Transfer, 2004,47:1120-1140
    [39] Kim T, Zhao C Y, Lu T J, Hodson H P. Convective heat dissipation with lattice-frame materials[J]. Mechanics of Materials,2004,36:767-780
    [40] Lu T J, Hess A, Ashby M F. Sound absorption in metallic foams[J]. Journal of Applied Physics,1999,85:7528-7539
    [41] Wang X L, Lu T J. Optimized acoustic properties of cellular solids. Journal of the Acoustical Society of America,1999,106(2):756-765
    [42] Park K Y, Lee S E, Kim C G, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structure [J]. Composites Science and Technology,2006,66:576-584
    [43] Shelby R A, et al. Experimental verification of a negative index of refraction [J]. Science,2001,292:77-79
    [44] 张卫红,吴琼,高彤.周期性金属桁架夹芯板的力学性能研究进展[J].昆明理工大学学报(理工版),2005,30(6):24-28
    [45] Kooistra G W, Queheillalt D T, Wadley H N G. Shear behavior of aluminum lattice truss sandwich panel structures[J]. Materials Science and Engineering A,2008,472:
    242-250
    [46]泮世东,冯吉才,吴林志.金字塔点阵夹芯结构的精细优化设计[J].哈尔滨工业大学学报,2011,43:29-33
    [47] Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses[J]. Acta Materialia,2005,53:303-313
    [48] Queheillalt D T, Wadley H N G. Pyramidal lattice truss structures with hollow trusses[J]. Materials Science and Engineering A,2005,397:132-137
    [49] Wallach J C, Gibson L J. Mechanical behavior of a three-dimensional truss material[J]. International Journal of Solids and Structure,2003,40:6989-6998
    [50] Evans A G, Hutchinson J W, Fleck N A, Ashby M F, Wadley H N G. The topological design of multifunctional cellular metals[J]. Progress in Materials Science,2001,46: 309-327
    [51]王展光,刘利军,应建中,何德坪.金字塔形栅格材料的静态压缩力学性[J].材料热处理技术,2011,40(10):27-29
    [58] 徐胜利,王博程,耿东.多层析架夹层结构与蜂窝夹层结构的比及优化[J].首届全国航空航天领域中的力学问题学术研讨会论文集(下册),2004:263-266
    [53] Yungwirth C J, Radford D D, Aronson M, Wadley H N G. Experiment assessment of the ballistic response of composite pyramidal lattice truss structures [J]. Composites: Part B,2008,39:556-569
    [54] Xue Z Y, Hutchinson J W. A comparative study of impulse-resistant metal sandwich plates[J]. International Journal of Impact Engineering,2004,30:1283-1305
    [55] Qiu X, Deshpande V S, Fleck N A. Finite element analysis of the dynamic response of clamped sandwich beams subject to shock loading[J]. European Journal of Mechanics-A/Solids,2003,22(6):801-814
    [56] Qiu X, Deshpande V S, Fleck N A. Impulsive loading of clamped monolithic and sandwich beams over a central patch[J]. European Journal of the mechanics and Physics of Solids,2005,53(5):1015-1046
    [57] Yin S, Ma L, Wu L Z. Carbon fiber composite lattice structure filled with silicon rubber [J]. Procedia Engineering,2011,10:3191-3194
    [58]郑华勇,吴林志,马力,王新筑Kagome点阵夹芯板的抗冲击性能研究[J].工程力学,2007,24(8):86-92
    [59] Ashby M F. Drivers for material development in the 21st century[J]. Progress in Materials Sciences,1999,46:191-199
    [60] 王家淳.激光焊接技术的发展与展望[J].激光技术,2001,25(1):48-53
    [61] 张贵锋,张建勋,王士元,邱凤翔.瞬间液相扩散焊与钎焊主要特点之异同[J].焊接学报,2002,23(6):92-96
    [62]姚凯,范振红,李玉国.瞬时液相扩散焊的发展及应用前景[J].石油工程建设,2007,33(2):1-4
    [63]张钱城,卢天健,闻婷.轻质高强点阵金属材料的制备及其力学性能强化的研究进展[J].力学进展,2010,40(2):157-169
    [64]蓝领锋,袁英.采用排液法测量多孔材料的密度[J].粉末冶金材料科学与工程,1998,3(1):77-80
    [65] Zok FW, Waltner SA, Wei Z, Rathbun HJ, McMeeking RM, Evans AG. A protocol for characterizing the structural performance of metallic sandwich panels:application to pyramidal truss cores. International Journal of Solids and Structures,2004,41: 6249-6271
    [66] Davies G J, Zheng Shu. Metallic foams:their production, properties and applications[J]. Journal of Materials Science,1983,18:1899-1911
    [67] McIntyre A, Anderton G E. Fracture properties of a rigid polyurethane foam over a range of densities[J]. Rolymer,1979,20(2):247-253
    [68] Evans A G, Hutchinson J W, Ashby M E. Multifunctionality of cellular metal Systems[J]. Progress in Materials Science,1999,43:171-221
    [69] Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams compressive measurements [J]. Polymer Engineering & Science,1981,21(15): 1010-1014
    [70] 吴琼.超轻质夹芯结构的力学性能分析及优化[D].西安:西北工业大学,2006:1-8
    [71]王兵,吴林志,杜善义,孙雨果,马力.碳纤维增强金字塔点阵夹芯结构的抗压缩性[J].复合材料学报,2010,27(1):133-138
    [72] Fan H L, Meng F H, Yang W. Sandwich panels with Kagome lattice cores reinforced by carbon fibers [J]. Composite Structures,2007,81:533-539
    [73] Deshpande V S, Ashby M F, Fleck N A. Foam topology bending versus stretching dominated architectures[J]. Acta Materialia,2001,49:1035-1040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700