大豆分离蛋白/壳聚糖可食膜的制备及其形状记忆性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是国家高技术研究发展计划(863计划)(编号:2008AA10Z308)和吉林省科技发展计划项目(编号:20060717)的部分内容,主要研究大豆分离蛋白、壳聚糖的改性,以及以大豆分离蛋白和改性壳聚糖为基质的二元复合可食膜的形状记忆性。
     本文以大豆分离蛋白和壳聚糖为成膜基材,首先研究了成膜材料配比、甘油添加量、膜液pH值和干燥温度对膜厚度、抗拉强度、断裂伸长率、水蒸气透过系数等性能的影响,确定因素水平表,通过计算机直接试验设计,优化工艺条件;其次,分别研究了以成膜材料配比、甘油添加量、干燥温度和膜液pH对膜pH敏感性的影响,并通过均匀正交试验优化工艺条件;最后,通过单因素试验,分析了成膜材料配比、甘油添加量、回复温度对膜温度敏感性的影响。
This thesis mainly studied the preparation technics and intelligence of the compound edible film based on soy protein isolate and chitosan, which was part of the project“Investigation of Intelligent Structure of Protein-Based Edible Biopolymers”. This project was financially supported by Grant from Hi-Tech Research and Development Program of China and International Corporation Project of Jilin Provincial Science&Technology Department Development Program.
     Recently, the polymeric materials of good environmental acceptability have received increasing attention. Edible packaging films have become a major hot spots in food, pharmaceuticals and packaging, and other fields because of their extensive source of raw materials, edible property, non-polluting, and other advantages. Modern packaging materials have been developing in intelligent investigation, which is the materials have certain intelligent properties, in addition to some essential project characters, such as shape memory, self diagnosis, adaptive, self restoration and so on.
     In this thesis, the author take the soy protein isolate and chitosan as film-forming material, by the effect assisting the agent and technologic conditions, develop out the advantageous function intelligence composite film, satisfied wrapping material.
     The main contents and conclusions are as follows:
     1) The concentration of the film-forming liquid plays an important role in determine film’performance, too big or too small concentration all go against film-forming. In this experiment, the choosing of its concentration is 2%.
     2) Through the single factor experiment, the study ascertain the technical conditions of film’s preparation as follows: the commercial mix of the soy protein isolate and chitosan is 3:3, the proper glycerin dosages are 2.0%, proper film liquid pH value is 3, the best drying temperature is 60℃.
     3) The author used computer to test that design procedures carries out an optimization on composite film system film handicraft directly, adopt the SPSS software to carry out regression analysis on test result, gets two return models taking tensile strength and tearing elongation rate as index and. Be informed that two return models and experiment data fit from verifying an experiment, fairly good. Owe the experiment having tested design procedures, having fallen off number of times, may get fairly good system film technological conditions.
     4) The author tested the expanding rate designing dissolving getting the composite film under different pH value by homogeneous orthogonality, the expanding rate curve diagram makes an explanation the composite film has the flexibility principle, comes to a conclusion and according to dissolving: This is that are what self's molecular structure decides from composite film mainly, the soy protein isolate and chitosan forms the big molecule polymer after getting together, owe a polymer the network structure taking form in the film, electrified condition of base group in network structure is different, the hydrophily leading to a film is different, and then can by the fact that changing pH value makes the composite film display flexibility under different pH value.
     5) The study give the optimum factor level combination as A2B3C2D2, which is takes the water-preserve rate as test index. The most important factor for water-preserve rate is glycerol content, the next is commercial mix of film-forming material and the drying temperature. However, pH has less effect within the range of experiment.
     6) The study give the optimum factor level combination as A1B2C3D2, which is takes deformation preserve rate as test index. The most important factor for deformation preserve rate is the pH of film liquid; the next is glycerol content and commercial mix of film-forming material. However, drying temperature has less effect on deformation preserve rate within the range of experiment.
     7) Methods used to measure the glass transition temperature (Tg) of food system were reviewed in this article including theory calculate, differential scanning calorimetric (DSC), dynamic mechanical thermal analysis (DMTA), nuclear magnetic resonance (NMR), and etc.
     8) The author passed the single factor experiment, taked the deformation recovery rate as testing index. The single factor experiment showed that the deformation recovery rate was affected by the amount of soy protein isolate, glycerol concentration and recovery temperature. The more soy protein isolate, glycerol content and recovery temperature, the bigger deformation recovery rate. The deformation recovery rate is more than 95%.
     The innovation points of the thesis:
     1) This thesis studied the film-forming mechanism based on soy protein isolate and chitosan, then analysed the best technical conditions of film-forming.
     2) The author optimized of preparation conditions for composite film using random-arranged experimental designs with aid of computer
     3) The author studied the soy protein isolate / chitosan composite film temperature sensitive property and pH sensitive property.
引文
[1] 杨大智. 智能材料与智能系统[M]. 天津:天津大学出版社,2000:1~7
    [2] 袁海涛,苗汉明,陶学红等. 可食性膜研究进展[J]. 粮油食品科技,2002,10(2):17~18
    [3] 李超,李梦琴,赵秋艳. 可食性膜的研究进展[J]. 食品科学,2005,26(2):264~269
    [4] 毕会敏,闫革华,马中苏,等. 大豆分离蛋白基可食膜[J]. 吉林大学学报(工学版),2004,34(1):159~162
    [5] 毕会敏,马中苏,闫革华,等. 膜液的高压处理对大豆分离蛋白膜性能的影响[J]. 食品科学,2004,25(3):49~51
    [6] 康宇杰,欧仕益,黎明庆. 几种多糖和交联剂对可食性大豆分离蛋白膜性能的影响[J]. 食品科技,2004,(2):66~69
    [7] Tang Chuan-He, Jiang Yan, Wen Qi-Biao, et al. Effect of transglutaminase treatment on the properties of cast films of soy protein isolates [J]. Journal of Biotechnology, 2005, (120): 296~307
    [8] Cho S Y, Rhee C. Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration [J]. Lebensmittel-Wissenschaft-Technologie, 2004, (37): 833~839
    [9] Longares A., Monahan F J, O’Riordan E D, et al. Physical properties and sensory evaluation of WPI films of varying thickness [J]. Lebensmittel Wissenschaft Technologie, 2004, (37): 545~550
    [10] Rhim, J.W., Gennadios, A., Weller, C.L., Hanna, M.A. Solubility, tensile, and color properties of modified soy protein iso-latefilms [J]. Food Chem., 2000, 48: 4937~4941
    [11] Rhim, J.W., Gennadios, A., Weller, C.L., Hanna, M.A. soy protein isolate-dialdehyde starch films [J]. Industrial Crops and products, 1998, 8: 195~203
    [12] Mariniello, L., Pierro, P.D. Esposito, C. Sorrentino, A., Masi, P., Porta, R. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase [J]. Journal of biotechnology, 2003, 102: 191~198
    [13] 王若兰. 植物蛋白类食品保鲜膜特性及保鲜效果的研究[J]. 食品科学,2000,21(3):58~61.
    [14] 郭乾初,欧仕益. 阿魏酸在大豆分离蛋白制备可食性膜中的应用[J]. 食品工业科技,2002,23(1):24~26
    [15] 彭海萍,王兰. 小麦面筋蛋白在食品工业中的应用[J]. 西部粮油科技,2002,27(2):32~33
    [16] 董炎明,阮永红,丘蔚碧等. 甲壳素/壳聚糖及其衍生物在食品工业中的应用[J]. 食品科技,2000,(5):28~31
    [17] 岳晓华,沈月新,寿霞,等.壳聚糖-甲基纤维素复合膜的制作研究与性能测定[J]. 农产品加工(学刊),2005,34(3):28~30,34
    [18] 吉伟之,张峻,熊何建等. 壳聚糖成膜特性的研究[J]. 食品科学,2001,22(9):33~35
    [19] Pranoto Y, Rakshit S K, Salokhe V M. Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin [J]. LWT, 2005, (38): 859~865
    [20] Durango A M, Soares N F F, Andrade N J. Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots [J]. Food Control, 2006(17): 336~341
    [21] Matuska M, Lenart A, Lazarides H N.On the use of edible coatings to monitor osmotic dehydration kinetics for minimal solids uptake [J]. Journal of Food Engineering, 2006, 72(1): 85~91
    [22] Suyatma N E, Tighzert L, Copinet A. Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films [J]. J. Agric. Food Chem., 2005(53): 3950~3957
    [23] 仇厚援,贺利民. 可食性木薯淀粉复合膜研究[J]. 食品科学,2000,22(7):19~21
    [24] 刘邻渭,陈宗道,王光慈. 多糖-脂质双层可食膜的制作及性质研究[J]. 包装工程,1995,16(4):14~18
    [25] 刘国琴,李琳,胡松青,等. 共混改性对大豆分离蛋白膜物理性能影响的研究[J]. 食品工业科技,2005,26(6):76~78
    [26] 包惠燕,李爱军,欧仕益,等. 冷冻保藏对大豆分离蛋白膜机械性能的影响[J]. 食品科学,2005,26(1):57~59
    [27] 郭新华. 大豆分离蛋白与小麦面筋蛋白共混的可食性复合包装膜研究[J]. 包装工程,2006,4(2):45~47
    [28] Longares A, Monahan F J, O’Riordan E D, et al. Physical properties of edible films made from mixtures of sodium caseinate and WPI [J]. International Dairy Journal, 2005, (15): 1255~1260
    [29] Tomás S A, Cruz-Orea A, Stolik S, et al. Determination of the Thermal Diffusivity of Edible Films [J]. International Journal of Thermophysics, 2004, 25(2): 611~620
    [30] Fishman M L, Coffin D R, Onwulata C I, et al. Extrusion of pectin and glycerol with various combinations of orange albedo and starch [J]. Carbohydrate Polymers, 2004, (57): 401~413
    [31] Shcllhammer, T.H., Krochta, J. M. Whey protein emulsion film performances as affected by lipid type and amount [J]. Journal of Food Science, 1997, 62(2): 390~394
    [32] Huey-Min Lai.P.G.W., Lun Shin Wei. Properties and microstructure of zein sheet plasticized with palmitic and stearic acids [J]. Cereal Chemistry, 1997, 74(1): 83~90
    [33] Gennadios.A., Weller.C.L., Hanna.M.A., Morrison, K.E. Soy protein/fatty acid films and coatings [J]. INFORM, 1997, 8(6): 624
    [34] Balasubramaniam.V.M, Chinan.M.S., Malikarjunan.P., Phillips.R.D. The effect of edible film on oil uptake and moisture retention of a deep-fat fried poultry product [J]. Journal of Food Process Engineering, 1997, 20(1): 17~29
    [35] Hoffman A S, Stayton P S. Bioconjugates of smart polymers and proteins: Synthesis and applications [J]. Macromolecular Symposia, 2004, 207(4): 139~151
    [36] 戈进杰. 生物降解高分子材料及其应用[M]. 北京:化学工业出版社,2002:1~7
    [37] Liu Yiping, Gall Ken, Dunn Martin L, Mc Cluskey. Thermo mechanics of shape memory polymer nano composites [J]. Mechanics of Materials, 2004, 36(10): 929~940
    [38] Tobushi H, Matsui R, Shimada D. The influence of shape-holding conditions on shape recovery of polyurethane-shape memory polymer foams [J]. Smart Materials and Structure, 2004, 13(4): 881~887
    [39] Congalton D. Shape memory alloys for use in thermally activated clothing protection against flame and heat [J]. Fire and Materials, 1999, 23: 223~2261
    [40] 杨青,郑百林,武秀根等. 形状记忆高分子材料记忆行为机理的理论分析[J]. 材料工程,2006(1):492~494
    [41] 白代军,代敏,李兴明. 形状记忆该分子材料的研究及应用[J]. 精细石油化工进展,2006,7(5):55~57
    [42] 沈新元. 智能纤维的设计思路及制备技术[J]. 高分子通报,2005,(5):135~141
    [43] 王春华,曲荣君,孙昌梅等.羧甲基壳聚糖/聚乙烯醇/甘油环氧树脂蛇笼型复合螯合膜的制备及对金属离子的吸附性能[J]. 离子交换与吸附,2004,20(6):494~500
    [44] 朱华跃,肖玲. 戊二醛交联对壳聚糖/聚乙烯醇共混膜结构和性能的影响[J]. 浙江海洋学院学报,2005,24(6):126~129
    [45] 付晶. 大豆蛋白基可食膜智能性能的研究. [D]. 长春:吉林大学学士学位论文,2007
    [46] 滕进丽. 智能高分子材料的发展[J]. 山东省农业管理干部学院学报,2006,22(5):171
    [47] 朱华跃,肖玲. 戊二醛交联对壳聚糖/聚乙烯醇共混膜结构和性能的影响[J]. 浙江海洋学院学报,2005,24(6):126~129
    [48] Petruccelli S, non M C. Relationship between the Method of Obtention and the Structural and Functional Properties of Soy Protein Isolates [J]. Food Chem., 1994, 42(10): 2170~2176
    [49] 张春红,郭永,唐宁,等. 热烘改性对大豆分离蛋白功能性的影响[J]. 食品科学和技术,2004,30(3):30~32
    [50] 徐修成,黄子勋,罗士剑,等. NR/LDPE 材料形状记忆性能的研究[J]. 航空制造工程,1997,4:15~17
    [51] 杨黎明. 壳聚糖的改性及其智能水凝胶的研制[D]. 上海:上海大学博士学位论文,2005
    [52] 王海燕. 塑料包装材料阻隔性能的测试方法[J]. 出口商品包装,2005,(7):51~54
    [53] 金关泰. 高分子化学的理论与应用进展[M],北京中国石化出版社,1995
    [54] 宋清华,陈晓军. 壳聚糖/甲壳素及其衍生物的食品应用[J]. 中国食品添加剂,2001,(2):37~41
    [55] 邓扬悟. 大豆分离蛋白的成膜特性[D]. 郑州工程学院硕士学位论文,2002
    [56] 牟光庆,张亚川. 可食性蛋白膜的形成与特性[J]. 黑龙江八一农垦大学学报,1997,9(4):73~77
    [57] Gennadios, A.etal. Effect of pH on properties of wheat gluten and soy protein isolate film [J]. Food Chemistry. 1993(41): 1836~1839
    [58] 王雅芬,王慧俐. 可食性壳聚糖包装膜的制备及其性质研究[J]. 东海海洋,2001,19(2):32~38
    [59] 岳晓华,沈月新. 可食性壳聚糖膜性能的研究[J]. 食品科学,2002,23(8):62~67
    [60] 陈新建,刘通讯. 可食性小麦面筋蛋白膜机械性能的研究[J]. 广东工业大学学报,1998,15(1):23~26
    [61] 陈新建. 可食性小麦蛋白膜的透湿性能研究[J]. 湖南农业大学学报(自然科学版),2000,26(6):471~473
    [62] 方开泰,马长兴. 正交与均匀试验设计[M]. 科学出版社,2001:10~15
    [63] 方开泰. 均匀设计与均匀设计表[M]. 科学出版社,1994:58~62
    [64] 陈坚锐,彭海媛,曾振辉等. 用直接实验设计方法优化聚丙烯腊基膜的制备条件[J]. 计算机与应用化学,2004,4(21):599~603
    [65] 胡晖,范晓东. pH 敏感性高分子材料[J]. 化学与生物工程,2004,5:1~3
    [66] 吴振,吴立军,田代真一等. 紫草素诱导细胞凋亡经过激活的机制[J]. 中国药理学通报,2004,20(5):540~544
    [67] 黄河,刘宗潮. 紫草素及其衍生物的抗肿瘤作用[J]. 肿瘤防治杂志,2005,12(1):75~78
    [68] Judy Rice. What's New in Edible Film? [J]. Food Processing, 1994, (7): 61~62
    [69] 朱选,许时婴,王璋. 可食用膜的通透性及其应用[J]. 食品与发酵工业,1998,23(3):50~55
    [70] 连丽娜,张平,纪淑娟等. 果蔬可食性涂膜保鲜研究现状与展望[J]. 保鲜与加工,2003,4:14~16
    [71] Dufes C., Schatzlein A.G., Tetley L. et al., Niosome and polymeric chitosan based vesicles bearing transferrin and glucose ligands for drug targeting [J]. Pharm Res, 2000, 17(10): 1250~1258
    [72] 汪玉庭,刘玉红,张淑琴,甲壳素、壳聚糖的化学改性及其衍生物应用研究进展[J]. 功能高分子学报,2002,(1):107~114
    [73] 邵键,杨字民,香草醛改性壳聚糖的制备及其吸附性能[J]. 中国环境科学,2000,(1):61~64
    [74] 马宁,汪琴,孙胜玲,王爱勤,甲壳素和壳聚糖化学改性研究进展[J]. 化学进展,2004,16(4):643~653
    [75] Tharanathan R.N. Biodegradable films and composite coatings:past,present and future Trends [J]. Food Science &Technology, 2003, 14(3): 7l~78
    [76] Debeaufort F.,Quezada-Gallo J.A.,Voilley A. Edible films and coatings:tomorrow's packagings: a review [J]. Critical Reviews in Food Science, 1998, 38(4): 299~313
    [77] Jeffries E. Bio films face an uphill battle [J]. Packaging Magazine, 2003, 6(3): 19
    [78] 莫文敏. 抗微生物食品包装[J]. 食品与机械,2001,6:36~38
    [79] Quintavalla S., Vicini L. Antimicrobial food packaging in meat industry [J]. Meat Science, 2002, 62(3): 373~380
    [80] 齐军茹,杨晓泉,彭志英. 蛋白-多糖复合物的制备及乳化性能的研究[J]. 食品科学,2003,24(11):34~37
    [81] 李欣欣,宋艳翎. 食品可食用膜技术[J]. 农业与技术,1999,19(3):30~32
    [82] 邱伟芬. 活性可食性膜在食品包装中的应用[J]. 包装与食品机械,2003,21(6):13~17
    [83] 王海鸥. 可食性膜及其在食品工业中的应用[J]. 食品与机械,2002,5:4~8
    [84] 于晓. 不同拉伸比的形状记忆纤维的结构与性能研究[D]. 天津工业大学硕士学位论文,2007
    [85] 曾名勇. 食品保藏原理与技术[M]. 化学工业出版社,2007:191~205
    [86] Karel, M, Kikini, J. L. Glass transition in low moisture and frozen food [J]. Food technology, 1996, 11: 95~105
    [87] Mizuno, K., Mitsuiki, M., Motoki, M. Effect of transglutaminase treatment on the glass transition of soy protein [J]. Food Chem. 2000, 48: 3286~3291
    [88] 朱明华. 仪器分析[M]. 高等教育出版社,2000:128~159
    [89] Vodovotz, Y., Chinachoti, P. Glassy-Rubbery transition and recrystallization during aging of wheat starch gels [J]. Food Chem. 1998, 46: 446~453
    [90] Kalichevsky, M. T., Jaroszkiewicz, E. M. The glass transition of amylopectin measured by DSC, DMTA and NMR [J]. Carbohydrate Polyers, 1992, (18): 77~88
    [91] 管军军. 大豆蛋白的玻璃化转变[J]. 广州食品工业科技,2003,19(3):73~78
    [92] 董炎明,阮永红,赵雅青. N-烷基壳聚糖玻璃化转变温度的研究[J]. 物理化学学报,2005,21(11):1307~1310
    [93] 李兆丰,顾正彪,洪雁. 食品体系中玻璃化转变温度的测定方法及其比较[J]. 冷饮与速冻食品工业,2005,11(1):31~34
    [94] 沈奇英. pH 敏感性高分子材料及其作为水凝胶在药物控释体系的应用简介[J]. 杭州师范学院学报(医学版),2007,27(5):330~332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700