基于HART总线的智能涡街流量计的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现场总线作为过程自动化、制造自动化等领域现场智能设备之间的互连通信网络,建立了生产过程现场控制设备之间以及与更高控制管理层网络之间的联系。而HART总线技术成功的将数字信号通信迭加到现有的现场控制系统上,对改进智能仪表间的通信提供了无风险的解决方案。因此,基于HART总线技术的智能仪表应用最为广泛。
     随着数字信号处理器的发展和广泛应用,其高速及对数据的强处理能力日益为人们所认识,将数字处理器运用于参数的实时检测和分析已成为一种发展趋势,它为进一步提高系统的可靠性,实现更为复杂、精确的控制智能创造了条件。
     本论文结合长沙矿山研究院的技改项目,研究开发了一种基于HART总线的智能涡街流量计,采用TI公司的新一代超低功耗的混合型信号处理器(MixedSignal Microcontroller)MSP430f149来对流量产生的涡街频率信号进行处理,利用f149芯片的低功耗特性以及片内丰富的外设模块,用纯硬件的方法解决了HART总线设备的低功耗这一技术难关,完全符合HART通信协议技术规范要求。
     传统的涡街流量计由施密特触发器产生与流量成正比的脉冲信号(也就是涡街频率信号),再通过计数器累计得到流量值;但是触发的门限电压在抑制门限电压以下的干扰的同时也限制了仪表的量程下限。本文中设计的智能涡街流量计采用硬件和软件相结合的方案来扩大仪表量程下限。
     由涡街产生的原理可知,涡街信号频率与流速成正比,强度与流速的平方成正比。而同一个信号在不同的时期强度相差悬殊。本论文提出在前置的信号调理电路中加入跨导放大器,通过由数字信号处理器产生的PWM信号反馈调节跨导放大器的偏置电流来实现信号调理,力求在到达MD转换模块时都有大致相同的幅值,以便充分的利用MD的字长并减小量化误差。然后,通过自适应陷波滤波算法实时地跟踪涡街信号频率的变化。自适应陷波滤波算法是一种基于预测误差的自适应递归算法,这种陷波滤波器能抑制一个特定频率的窄带信号(陷波频率也就是涡街信号频率),并且几乎不受带宽以外频率的影响。从而保证对信号频率的精确估计。
     由仿真分析可知智能涡街流量计的抗干扰能力强,不但提高了测量精度,而且扩大量程比,适用于气体、蒸汽和低粘度液体等多种介质,具有较高的性价比。
Field bus, make relationships between the process control devices and even the high control management network, as a communication network among intelligent instruments in the field of process control automation, manufacturing automation. As HART field bus proposals a solution superimposing the digital signal at the present field control system without risk, the intelligent instruments based on HART technique are widely used.
    With the development and appliance of the Digital Signal Processing, its high speed and powerful faculty of processing of data are recognized by people. It is a trend to use Digital Signal Processing for a real-time supervisory control and data analysis. The Digital Signal Processing has unexampled predominance in improving reliability, and realizing more complex and more exact control.
    The intelligent Vortex Flowmeter based on HART field bus, which is introduced in the paper measures the Vortex frequency made from flow signal, combining with the project of ChangSha mining research institute.
    The intelligent Vortex Flowmeter makes use of powerful processor faculty and abundant module of the newly Ultralow-power consumption Mixed Signal Microcontroller(MSP430fl49) in accord with the technological criterion of HART communication protocol, solving the most difficult technological problem only with device in hardware.
    The traditional Vortex Flowmeter counts the pulse signals produced by Schmitt trigger that is proportional to Vortex frequency, but the door Voltage that can give rise to trigger not only restrains the noise but also limits the low limitation of the Flowmeter. The intelligent Vortex Flowmeter introduced in this paper expands the low limitation through hardware combining with software.
    It is proved by the theory of Vortex signal that Vortex frequency is proportional to liquid speed and the amplitude of signal is proportional to the square of liquid speed. The signal amplitude is quite different in the different period.
    The project of the Vortex Flowmeter adds Transconductance amplifier in the input circuit,and adjusts Transconductance amplifier's amplifier coefficients realizing the automatic gain control function through PWM signal with feedback.
    hi addition, the software method traces the frequency of Vortex signal through the adaptive notch filter algorithm, the character of the adaptive notch filter algorithm can be described as below: it is of recursive prediction error(RPE)form and uses a special constrained model(etc. constrained poles and zeros) of infinite impulse response(IIR) with anumber of parameters; The convergent filter is characterized by highly narrow bandwidth and uniform notches of desired shape ;The filter has a transfer function that is 1 almost everywhere but at the site of notch frequency.
    Through emulation it has a good character of anti-intrusion, and it not only improves the precision but also expends the limitation of Flowmeter. It is applicable to gas,vapor and liquid and it has more performance than cost.
引文
[1] 蔡昌.流量测量方法和仪表选择的考虑因素.自动化仪表,1996,16(3):23~26
    [2] 孙淮清,姜仲霞.流量测量技术与仪表选用.自动化仪表,1998,(5):46~49
    [3] 张枫屏,朱华.卡曼旋涡流量计测量误差分析用使用.计量技术 1997,(9):16~18
    [4] 池兆明.流量仪表系数K及其影响因素.自动化仪表,1998,19(3):8~11
    [5] 夏顺新.应力式涡街流量计测量原理及其应用.现代计量测试,1994,(4):19~21
    [6] 姜川涛.涡街流量计选型与安装方面的几个问题.自动化与仪器仪表,2000,17(6):33~36
    [7] 王京安.涡街流量传感器应用问题的探讨.仪表技术与传感器 1996,19(6):29~33
    [8] 尹玉国,段慧明.新型涡街流量计二次仪表.计量技术,1997,(8):17~21
    [9] 王继元.磁敏式涡街流量计在氧气计量中的应用.自动化仪表,1993,(6):31~34
    [10] 宗家胜.涡街流量计的原理及f/I变换电路.化工自动化及仪表,1993,(5):43~46
    [11] 郑建英,孙坚,朱云.智能涡街流量计的研制.现代计量测试,1999,(4):35~38
    [12] Zheng Jianying. Research For Intelligent Vortex Flow Meter. China Institute of Metrology,1994,12(3):23~26
    [13] 徐爱钧.智能化测量控制仪表原理与设计.北京:北京航空航天大学出版社,1995
    [14] 蒙建波,朱林章.自适应频率测量方法(AMF)及其在涡街流量计中的应用.自动化学报,1992,18(3)
    [15] 张贤达.现代信号处理.北京:清华大学出版社,2000
    [16] 李素芝,万建伟.时域离散信号处理.湖南:国防科技大学出版社,1986
    [17] 胡广书.数字信号处理.北京:清华大学出版社,1997
    [18] 胡广书.数字信号处理理论、算法与实现.北京:清华大学出版社,1997
    [19] A.V.奥本海姆,R.W.谢弗.数字信号处理.北京:科学出版社,1980
    [20] 吴麒.自动控制原理.北京:清华大学出版社,1987
    [21] 沈福民.自适应信号处理.陕西:西安电子科技大学出版,2000
    [22] 舒迪前,饶立昌,柴天佑.自适应控制.辽宁:东北大学出版社 1992
    [23] D.V. BHASKAR RAO AND SUN-YUAN KUNG Adaptive Notch Filtering for the Retrieval of Sinusoids in Noise. IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 1984,VOL .ASSP-32(NO. 4):983~496
    [24] ARYE NEHORAI. A Minimal Parameter Adaptive Notch Filter With Constrained Poles and Zeros.IEEE Transactions on Acoustics, Speech and Signal Processing, 1985,Vol, Assp-33 (No.4):791~802
    [25] PETRE STOICA AND ARYE NEHORAI. Performance Analysis of an Adaptive Notch Filter with Constrained Poles and Zeros. IEEE Transactions on Acoustics, speech. And Signal Processing, 1988,Vol. 36 (No.6):911~919
    [26] BENJAMIN FRIEDLANDER. Analysis and Performance Evaluation of an Adaptive Notch Filter. IEEE Transactions on Information Theory, 1984,Vol. It-30(No.2):688~499
    
    
    [27] 徐科军,汪枫.涡街流量计信号处理的软件方法.仪表技术与传感器,1995,(4):22~25
    [28] 徐科军,汪安民,吕迅雄,苏建微,张崇巍.基于自适应陷波的涡街流量计信号处理系统.计量学报,2000,21(3):199~204
    [29] 徐科军,吕迅雄,陈荣保,苏建微,张崇巍.基于DSP、具有谱分析功能的涡街流量计信号处理系统.仪器仪表学报,2001,22(3):255~259
    [30] 刘来福,何青,黄海洋,柯小伍.用Maple和MATLAB解决科学计算问题.北京:高等教育出版社,1999
    [31] 胡大可.MSP430系列Flash型超低功耗16位单片机.北京:北京航空航天大学出版社,2001
    [32] 潘卫江,胡大可.新一代超低功耗单片机:MSP430F13x/F14x系列.单片机与嵌入式系统应用,2001,(3):56~59
    [33] 潘卫江,胡大可.MSP43单片机Flash存储器的特性及应用.单片机与嵌入式系统应用,2001.(4):38~41
    [34] 徐科军,陈荣保,张崇巍.自动检测和仪表中的共性技术.北京:清华大学出版社,2000
    [35] 沈兴伍.应力式涡街流量传感器振动噪声抑制方式探讨.自动化仪表,1991,12(3):18~22
    [36] 张崇巍.涡街流量计输入电路的设计.自动化仪表,1996,19(7),8~10
    [37] 马凤英.应力式涡街流量传感器的信号处理.自动化仪表,1998,9(3):10~14
    [38] 刘伯春,顾擎明.分布式微机数据采集系统.自动化仪,1991,(5):33~36
    [39] 李庆波,徐勇.采样计算式测量方法的特点及应用.电测与仪表,1996,(5):11~14
    [40] 梁恩主,梁恩维.电路设计与仿真应用.北京:清华大学出版社,2000
    [41] 赵晶.电路设计与制版.北京:人民邮电出版社,2001
    [42] 陈清山,陈科燕,张文灿.最新世界数字集成电路及互换大全.湖南:中南工业大学出版社,1987
    [43] 王福瑞.单片微机测控系统设计大全.北京:北京航空航天大学出版社,1999
    [44] 孙涵芳,徐爱卿.MCS051/96系列单片机原理及应用.北京:北京航空航天大学出版社,1996
    [45] 李秉操,张登举,付寿英,徐飞.单片机接口技术及其在工业控制中的应用.陕西:陕西电子编辑部,1991
    [46] 刘焕成,刘智勇,尹征琦,林森.基于HART协议的智能变送器设计.单片机与嵌入式系统应用,2001,(6):15~20
    [47] 郭吉祥,郭荣祥,吴星明.AD421 16位串行输入4~20mA电流环路输出数模转换器的原理及其应用.电子技术应用,1997,(6):49~51
    [48] 顾伟俊,金建祥,褚健.基于HART协议的1151智能变送器的开发.自动化仪表,1998,19(3):5~7
    [49] 蔡立虹,庞彦斌.HT2012 HART Modem在HART协议中的应用.工业仪表与自动化装置,2001,(2):63~65
    [50] 何军,赵鹏程,施一明,孙敏.符合HART协议的无纸记录仪.自动化仪表.1999,20(12):23~24
    [51] 蔡建新,卢爱明.HART调制解调器HT2012的原理和应用.通信与电视,1999,(4):43~44
    
    
    [52] 李喜刚.HART通信多站监控仪HM301及其应用.为计算机信息,1996,13(1):43~47
    [53] Albert O'Grady.Adding HART Capability to the AD421,Loop-Powered 4mA-20mA DAC Using the 20C15* HART Modem.ANALOG DEVICES,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700