活性污泥模型ASM2的简化及优化控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性污泥法是当前最常用的一种污水处理方法,国际水协会(IWA)针对活性污泥法提出了ASM系列机理模型。ASM系列中的ASM2模型包含了活性污泥过程的去除COD,BOD和脱氮除磷的机理过程,比较完整的描述了活性污泥过程的污水处理机理,广泛应用于工业和市政污水处理。因此基于ASM2模型研究污水处理过程模型简化及优化控制策略具有重要的理论研究意义和实际应用价值。
     本文综述了活性污泥法模型的研究现状和活性污泥法应用于工业控制的现状,描述了污水处理的ASM2模型,并以一个典型的污水处理工艺A~2/O工艺处理过程作为背景,将ASM2模型应用于A~2/O过程中,建立起A~2/O过程的整体系统的机理模型;分别采用时标分解算法和聚类及PLS算法,对ASM2模型进行简化研究,由时标分解方法得到一个较为简化的非线性模型,由聚类和PLS算法对模型进行简化得到一组适用于模型预测控制的多线性模型;然后,以溶解氧浓度和污泥回流量作为操作变量,以出水的硝态氮和氨氮的浓度作为输出变量,将多线性模型作为预测模型,采用广义预测控制算法对该A~2/O工艺过程的出水水质进行设定点控制和区间控制;最后,结合大量国内外文献中的资料,得出了一种衡量典型污水处理过程的经济性能指标,并将该经济性能指标融入广义预测控制的目标函数中,得到一个双层的优化过程,上层对出水水质进行区间控制,得到的输出作为约束加入到下层的考虑经济性能指标的预测控制中,最后得出输入变量的序列。从仿真结果可以看出,考虑了经济性能指标的预测控制在经济成本上较为节约,并能达到水质标准,从而达到在满足出水水质要求的前提下尽量减小能耗。
In the wastewater treatment processes, the activated sludge method is a mostly useful method. The activated sludge model series, which are proposed by International Water Association, are the mechanism models corresponding to the activated sludge process. In the series, Activated Sludge Model No.2(ASM2) describes the dynamic processes of COD, BOD, nitrogen and phourospher removal in the activated sludge process. Therefore, the ASM2 is abroadly used in the industrial and municipal wastewater treatment.
    Firstly, the status quo of the activated sludge model and the industrial application of
    the activated sludge method is summarized. Secondly, the Activated Sludge Model NO.2(ASM2) is described detailedly, and based on ASM2, a whole mechanism model of a typical A~2/O treatment process is established. Thirdly, the reduction of ASM2 is researched. In allusion to the multi-scale of ASM2, we apply the time-scale decomposition method to get a reduced nonlinear model—a group of differential algebra equations. As to nonlinearity of ASM2, we introduce the clustering and PLS algorithm to get multi linear models suitable for model predictive control. Fourthly, the generalized predictive control(GPC) algorithm is applied in the A~2/O process, In the predictive control, dissolved oxygen concentration and sludge refluence are used as manipulated variables, the ammonia and nitrate concentration in the effluent are used as output variables, and the multi models from the third section are used as the predictive model. Lastly, based on many correlative papers, an index measures the economic capacity of the A~2/O process is obtained. The index is then absorbed in the objective function of the predictive control, and the objective is changed into the energy cost saving when the effluent quality is up to par. The objective function is constituted of two levels: the upper level is about the effluent quality, and the appropriate output is then used as a constraint of the lower level which is about the economic capacity. The simulation result shows that the predictive control considering economic capacity helps to save the energy cost in the wastewater treatment process while the effluent quality according with standard.
引文
[1] Henze, M. et al., Activated Sludge Models ASM1, ASM2, ASM2D and ASM3, Scientific and technical report No .9,2000
    [2] Use Y. Smets, Jeroen V. Haegebaert, Ronald Carrette, Jan F. Van Impe, Linearization of the activated sludge model ASM1 for fast and reliable predictions, Water Research 37(2003) 1831-1851
    [3] Gujer W. et al, The Activated Sludge Model No.2: Biological Phosphorus Remova, Water Sci&Tec,31(2): 1-11, 1995
    [4] Gujer, W, et al, Activated Sludge Model No.3, Water Sci&Tec, 1999, 39(1): 183-193.
    [5] Henze, M., et al, Activated Sludge Model No.1, IAWPRC Scientific and Technical report. No.1, London: IAWPRC, 1987
    [6] Mogens Henze, et al, Activated Sludge Model No.2D, ASM2D, Wat. Sci. Tech. Vol. 39, No.1, pp.165-182, 1999
    [7] DeCarlo R.A. and Saeks R., A Root Locus Technique for Interconnected Systems. I.E.E.E.Trans>Sys.Man.Cyb.SMC-9(1), 53, 1979
    [8] Wasynczuk O. and DeCarlo R.A., The component connection model and structure preserving model order reduction. Automatica 17(4), 619, 1981
    [9] Steffens MA, Lant PA, Newell RB, A systematic approach for reducing complex biological Wastewater treatment models. Water Res 1997,31(3):590-606.
    [10] Keesman KJ, Spanjers H, van Straten G. Analysis of endogenous process behaviour. Water Sci Technol 1998, 37(12):227-35.
    [11] Cheruy A, Panzarella L, Denat JP, Multimodel simulation and adaptive stochastic control of an activated sludge process. In: Proceedings of the IFAC symposium on modelling and control of biotechnological processes. Helsinki, Finland, 1982.
    [12] Ulf Jeppsson, et al, Reduced Order Moldes for On-line Parameter Identification of the Activated Sludge Process [J], Wat. Sci. Tech., 1993, 28(11/12): 173-183
    [13] Hong Zhao. Modeling Nutrient Dynamics in Sequencing Batch Reactor[J]. Journal of Environment Engineering, 1997(4):311-319.
    [14] Hong Zhao. Approaches to Modeling Nutrient Dynamics: ASM2, Simplified Model and Netural Netsp[J]. Wat. Sci. Tech., 1999, 39(1): 98-104
    [15] Hyunook Kim. SBR System for Phosphorous Removal: Linear Model Based Optimization[J]. Journal of Environment Engineering, 2001 (2): 105- 111.
    [16] G.A.Robertson, I.T.Cameron, Analysis of dynamic process models for structural insight and model reduction — Part 1. Structural identification measures, Computers chem. Engng Vol.21, No. 5, pp 475-488, 1997
    [17] G.A.Robertson, I.T.Cameron, Analysis of dynamic models for structural insight and model reduction-Part 2: A multi-stage compressor shutdown case-study, Computers chem. Engng Vol.21, No5, pp 455-473, 1997
    [18] Robertson G.A., Mathematical Modeling of Startup and Shutdown Operation of Process Plants. Ph. D. Dissertation, the University of Queensland, Brisbane, QLD, Australia, 1992
    [19] Michela Mulas, Modelling and Control of Activated Sludge Processes, Universit'a degli Studi di Cagliari, 2006
    [20] Carl-Fredrik Linberg, Bengt Carlsson, Nonlinear and Set-point Control of the Dissolved Oxygen Concentration in an Activated Sludge Process, Wat. Sci. Tech. Vol. 34, No. 3-4, pp. 135-142, 1996
    [21] M.A. Steffens, P.A. Lant, Multivariable control of nutrient-removing activated sludge systems, Wat. Res. Vol. 33, No. 12, pp. 2864-2878, 1999
    [22] Tewfik Sari, Claude Lobry, Singular Perturbation Methods in Control Theory, Pisa, May 25-31,2006
    [23] D. Subbaram Naidu, Singular Perturbations and Time Scales in Control Theory and Applications: an Overview, Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications & Algorithms 9 (2002) 233-278
    [24] Zhou lu'wen, Zhou lifang, Multi-Model Predictive control based on clustering modeling method, International Conference on Intelligent Computing, 2006
    [25] Lulling zhao, Lifang zhou, and Luwen zhou. Modeling of the Activated Sludge Process by Multi-model Approach, International Workshop on Open Source Software SCILAB and its Engineering Applications, 2006
    [26] W. Chotkowski, M.A. Brdys, K. Konarczak , Dissolved oxygen control for activated sludge processes, International Journal of Systems Science, Vol.36, No. 12, 10 October 2005, 727-736
    [27] R. Piotrowski K. Duzinkiewicz, M.A. Brdys, Dissolved oxygen tracking and control of blowers at fast time scale. W materialach: IFAC 10th Symposium Large Scale Systems: Theory and Applications, July 26-28, 2004
    [28] Tomasz Gminski, Mietek A. Brdys, et al, Model Predictive Controller for integrated Wastewater treatment systems. W materialach: IFAC 10th Symposium Large Scale Systems: Theory and Applications, July 26-28, 2004
    [29] Rosana K. Tomita, Song W. Park, Oscar A.Z. Sotomayor, Analysis of activated sludge process using multivariate statistical tools-a PCA approach, Chemical Engineering Journal 90(2002) 283-290
    [30] Satu-Pia Mujunen, Pentti Minkkinen, Pekka Teppola, Riitta-Sisko Wirkkala, Modeling of activated sludge plants treatment efficiency with PLSR: a process analytical case study, Chemometrics and Intelligent Laboratory Systems 41(1998) 83-94
    [31] P. Teppola, S.-P.Mujunen, P. Minkkinen, Partial least squares modeling of an activated sludge plant: A case study, Chemometrics and Intelligent Laboratory Systems 38(1997) 197-208
    [32] Peter A.Vanrolleghem, Ulf Jeppsson, et al, Integration-of wastewater treatment plant design and operation-a systematic approach using cost function, Water Science and Technology, vol: 34, issue: 3, pages: 159-171, 1996
    [33] Benchmark - http://www.benchmarkwwtp.org
    [34] Pons M.N., Spanjers H., Jeppsson U., Towards a benchmark for evaluating control strategies in wastewater treatment plants by simulation, Escape 9, Budapest, June 1999
    [35] 赵欣,生物法脱氮除磷工艺特点分析,邯郸职业技术学院学报,第19卷第1期,2006年3月
    [36] 吴俊奇,汪慧贞,活性污泥法二号模型(ASM2)简介,给水排水,24(6),1998
    [37] 钱易等,现代废水处理新技术,中国科学技术出版社,1993
    [38] 郑兴灿,李亚新,污水除磷脱氮技术,中国建筑工业出版社,1998
    [39] 卢培利,张代钧,刘颖,王飞,活性污泥法动力学模型研究进展和展望,重庆大学学报,Vol.25,No.3,2002
    [40] 彭永臻,高景峰等,活性污泥法动力学模型的研究与发展,给水排水,V26,No.8,15-19,2000
    [41] 任海英,城市污水活性污泥处理系统模拟预测及设计(ASM2),西安建筑科技大学硕士论文,2004
    [42] 顾夏生,废水生物处理数学模式,清华大学出版社,1998
    [43] 张志群,王梓先,活性污泥模型研究及其工艺软件的发展,环境污染治理技术与设备,2(6):38-44,2001
    [44] 国际水协废水生物处理设计与运行数学模型课题组编,张亚雷,李咏梅译.活性污泥数学模型[M].上海:同济大学出版社,2002年3月
    [45] 周立芳,钱积新具有区间控制要求的预测控制算法研究.Proceedings of the 4th World Congress on Inteligent Control and Automation,717—721,2002
    [46] 徐祖华,赵均,钱积新,基于软约束方法的区间预测控制,机床与液压,2004年第3期
    [47] 王峰,张启平等,可实现单边区间控制的模型预测控制算法,计算机与应用化学,第22卷第5期,2005年5月
    [48] 杨青,刘遂庆,城市水处理厂动态模拟研究,上海环境科学,Vol.21 No.5,2002
    [49] 汪慧贞、吴俊奇,活性污泥数学模型的发展和使用,中国给水排水,Vol.15 No.5,1999
    [50] 王磊,城市污水厂模拟基础研究,同济大学硕士学位论文,2002年
    [51] 余颖,乔俊飞,活性污泥法污水处理过程的建模与仿真技术的研究,信息与控制 第33卷第6期,2004年12月
    [52] 商敏儿,杜树新,吴铁军,活性污泥法污水处理过程自动控制的研究现状,环境污染 治理技术与设备,第3卷第1期,2002年1月
    [53] 刘季飞,污水处理A/O过程的ASM2机理建模及网络监控研究,浙江大学硕士学位论文,2004年
    [54] 张自杰,周帆,活性污泥生物学与反应动力学,北京:中国环境科学出版社,1989
    [55] 王建龙,生物脱氮新工艺及其技术原理,中国给水排水,No.2,2000
    [56] 郑敏洁,杨马英,污水处理过程的多变量预测控制,华东理工大学学报,Vol.32 No.7, 2006年7月
    [57] 杜树新,污水生化处理过程建模与控制,控制理论与应用,第19卷第5期,2002年10月
    [58] 李国勇,智能控制及其MATLAB实现,[北京]电了工业出版社,2006
    [59] 预测控制系统及其应用,舒迪前,[北京]机械工业出版社,1996
    [60] 王伟,广义预测控制理论及其应用,[北京]科学出版社,1998
    [61] 刘芳,顾国维,活性污泥法简化数学模型的研究与进展,环境科学与技术,第26卷,第6期,2003年11月
    [62] 刘芳,陈秀华,顾国维,简化活性污泥数学模型在城市污水厂中的应用,环境工程,2005年4月第23卷第2期
    [63] 姚重华,环境工程仿真与控制,高等教育出版社,2001
    [64] Henze, M. et al, A General Model for Single-Sludge Wastewater Treatment SYWSTEMS, War. Res., 21: 505-515, 1987
    [65] D.Sinic and J.E. Bailey., Optimal Periodic Control of an Activated Sludge Process I. Result for the Base Case with Monod, Decay Kinetics, War. Res., 12:47-53, 1978
    [66] J.C.Kabouris and A.P. Georgakakos, Optimal Control of the Activated Sludge Process, Wat. Res., 24(10): 1197-1208, 1990
    [67] J.C.Kavouris and A.P.Georgakakos, Optimal Control of the Activated Sludge Process: Effect of Sludge Storage, War. Res., 26(4): 507-517, 1992
    [68] S.Joaquin, X.Ostoaza, E.Ayesa., Dissolved Oxygen Control and Simultaneous Estimation of Oxygen Uptake Rate in Activated Sludge Plants, Wat.Environment Res., 70(3):316-322, 1998
    [69] Paul H.Garthwaite. An Interpretation of Partial Least Squares, Journal of the American Statistical Association, Vol.89, No. 425(Mar. 1994), 122-127
    [70] Busby, V.B., J. F. Andrew, Dynamic modeling and control strategies for the activated sludge process, J.WPCF, 47(5): 1055, 1975
    [71] Zhao H, Isaacs SH, S^eberg H, K.ummel M. An analysis of nitrogen removal and control strategies in an alternating activated sludge process. Water Res 1995, 29(2):535-44.
    [72] Ayesa E, Oyarbide G, Larrea L, Garcia-Heras JL. Observability of reduced order models—application to a model for control of Alpha process. Water Sci Technol 1995, 31(2):161-70.
    [73] Khan S S, Ahmad A, Cluster centerinitialization algorithm for k-means clustering [J], Pattern Recognition Letter, 2004, 25:1 293-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700