铁路路基边坡降雨冲刷行为与规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近30年来,我国铁路由于水灾平均每年断道159次之多,平均每年中断行车2000多小时,对国民经济、旅客的生命财产及日常生活造成了重大影响。据统计其中80%的水害是路基的水力冲刷造成的,路基的水力冲刷研究成为关键问题。对于冲刷问题,目前的研究大多是从水土保持角度出发,在降雨特征、土壤性质、侵蚀模式等方面研究较多,而且一般针对较大的区域,对于铁路路基的冲刷规律尚缺乏系统的理论研究。本文以铁路路基为研究对象,考虑路基结构、填料及降雨和汇水特征,运用土力学、水力学和泥沙运动力学原理,系统分析了铁路路基坡面水力冲刷的基本规律。主要内容有:
     (一)系统分析了目前不同等级铁路路基的坡高、坡率、路基顶面宽度等结构特征,确定了路基坡面冲刷分析的典型结构和计算参数;归纳分析了铁路路基坡面的水力冲刷破坏类型;明确了降雨是坡面冲刷的主要动力因素,结合铁路路基断面的形态和汇水过程特征,提出了以分钟降雨量作为路基坡面冲刷分析的降雨特征参数。
     (二)分析了冲刷水流作用下,坡面上无粘性均匀土颗粒的受力情况,根据颗粒受力平衡的极限状态,分析土颗粒粒径大小、坡面流深度、坡度等诸因素对路基坡面土颗粒冲刷起动的影响,建立了无粘性均匀颗粒填料路基坡面冲刷水流速度与起动粒径的关系;根据填料渗透稳定的骨架原理和粒子干涉理论,提出以颗粒级配d23作为冲刷起动界限粒径,判断无粘性非均匀填料的冲刷稳定性;分析了路基边坡粘性土冲刷破坏的特征,给出了铁路路基边坡粘性土起动粒径与冲刷流速的关系。
     (三)推导了铁路路基平整坡面流速与降雨强度的关系;分析了无粘性均匀颗粒填料和粘性土填料的坡面,在无顶面汇水、单双线路基顶面汇水三种冲刷条件下,坡面流速及起动粒径随降雨强度的变化规律,得出了坡面冲刷起动粒径与降雨强度关系的回归公式;分析了坡高及坡度对坡面流速的影响规律。
     (四)建立了折曲坡面路基冲刷计算模型,分析了折曲坡面不同凹陷深度情况下,对于无粘性填料和粘性土填料的坡面,分别在无顶面汇水、单双线路基顶面汇水三种冲刷条件下,坡面流速及起动粒径随降雨强度的变化规律,得出了折曲坡面冲刷起动粒径与降雨强度、凹陷深度关系的回归公式。
     (五)建立了路基坡面沟槽冲刷计算模型,分析了冲刷沟槽不同分布间距情况下,对于无粘性填料和粘性土填料的坡面,分别在无顶面汇水、单双线路基顶面汇水三种冲刷条件下,坡面流速及起动粒径随降雨强度的变化规律,得出了沟槽坡面冲刷起动粒径与降雨强度、沟槽间距关系的回归公式。
     (六)建立了路肩沟槽冲刷量分析计算模型,分析了单双线路基路肩冲刷沟槽不同分布和降雨条件下,细砂、中砂及粗砂三种不同填料的路肩冲刷破坏时间,得出了路肩冲刷破坏时间和降雨强度、沟槽分布间距关系的回归公式。
In the past30years, the average annual railway interruption in China caused byflood was159times. The average annual traffic interruption was over2000hours,which had great impact on the national economy, as well on the lives and property ofpassengers and daily life. Statistics shows that80percent of the water hazard is watererosion of the roadbed, which suggests that the key issue be the research of watererosion of the embankment.Hydraulic erosion of embankment is affected by manyfactors, such as slope complex boundary conditions, variation in rainfall and thecharacteristics of slope flow hydraulics.the process of erosion is complex. Most of thecurrent study are starting from the soil and water conservation, such as the soil erosionmodel, rainfall characteristics, slope shape, soil properties etc.The systematictheoretical of railway embankment siope erosion is still a lack. This thesis, taking therailway embankment as the research object, gives a systematic analysis of the basiclaw of the railway embankment slope hydraulic erosion, considering thecharacteristics of the embankment structure, packing, slope morphology, rainfallfactor, combined with hydraulics, soil mechanics and principles of sedimentmovement mechanics. The main contents are as follows:
     1. It summarizes the different levels of the railway embankment slope height,slope ratio, roadbed width of the top surface and other technical indicators, proposesthe index value of the analysis of embankment slope erosion; sums up the type ofhydraulic erosion damage of railway embankment slope. It puts forward, on the basisof the present railway engineering classification of filling and the hydraulic stabilityof the packing, that the filler be divided into four types as non cohesive homogeneoussoil, non cohesive and non homogeneous soil, clay and dispersive clay. It indicatesthat the rainfall characteristics are the major dynamic factors of the slope surfaceerosion, and that the minute’s rainfall be used as reasonable indicators in the analysisof embankment slope erosion.
     2. A comprehensive analysis is made of the stress state of the non cohesive homogeneous soil particles on the slope under the effect of scouring flow. Based onthe limit state of power balance, taking the starting drag force as an indicator, analysisis also made of the effect on the starting drag force of the embankment slope soilparticles under such factors as the particle size of soil particles, the depth of overlandflow, the flow resistance of the slope surface and the slope grade. The relationshipbetween the slope surface water flow rate of non cohesive uniform filler and thestarting particle size is established. It puts forward, by using the skeleton principle offiller penetration stability and particle interference theory, that the d23be used as theindex of judgment for non homogeneous and non cohesive filler erosion stability. Itanalyses the characteristics of cohesive soil erosion damage and establishes therelationship between the cohesive soil starting particle size and the erosion velocity.
     3. Hydraulics principle is used to deduce the relationship between the smoothslope flow rate of the roadbed and rainfall intensity. Comparative analysis is given tothe variation law of slope flow rate and starting particle size for non cohesivehomogeneous filler and cohesive filler in three erosion status: the roadbed top withoutcatchment, singlet roadbed and two-lane roadbed. It also analyzes the effect law ofslope height and gradient to the slope velocity.
     4. Calculation model of bending slope embankment erosion is established.Analysis is made on the variation law of slope flow rate and starting particle size fornon cohesive homogeneous filler and cohesive filler in three erosion status (theroadbed top without catchment, singlet roadbed and two-lane roadbed) whendepression of the bending slope is different.
     5. Calculation model of the flow erosion of the roadbed slope groove. Analysis ismade on the variation law of slope flow rate and starting particle size for non cohesivehomogeneous filler and cohesive filler in three erosion status (the roadbed topwithout catchment, singlet roadbed and two-lane roadbed) when erosion groovesdistribution density is different.
     6. Calculation model of analysis of the shoulder grooves erosion is established.Analysis is made on the shoulder gully damage time for the different filer particlesizes, when shoulder erosion grooves density is different for the single-line roadbed and two-lane roadbed erosion status.
引文
[1]关君蔚.水土保持原理[M].北京:中国林业出版社,1996.4-10
    [2]唐克丽.中国水土保持[M].北京:科学出版社,2004:3-32
    [3] M J柯比克,R P C摩根(王礼先等译).土壤侵蚀[M].北京:水利电力出版杜,1987
    [4] Hudson N W. Soil conservation[M]. London: Batsford,1981
    [5] Laws J O. Recent studies in raindrop and erosion. Aric. Eng.,1940,21:431-433
    [6] Laws J O. Measurement of fall-velocity of waterdrop and raindrop. Trans. Of theAmerican Geophysical Union,1947,22:709-720
    [7] Laws J O, Parsons D A. The relationship of raindrop size to intebsity. Trans.Am. Geophy. Union,1943,22:452-459
    [8] Ellison W D. Studies of raindrop erosion. Aric. Eng.,1944,25:131-136
    [9] Ellison W D. Soil erosion study—Part Ⅰ. Aric. Eng.,1948,27:145-146
    [10] Ellison W D. Soil erosion study—Part Ⅱ. Soil detachment hazard by raindropsplash. Aric. Eng.,1947,28:197-201
    [11] Ellison W D. Soil erosion study—Part Ⅴ. Soil transport in the splash process.Aric. Eng.,1947,28:349-351,353
    [12] Ellison W D, Ellison O T. Soil erosion study—Part Ⅵ. Soil detachment bysurface flow.Aric. Eng.,1947,28:402-405,408
    [13] Wischmeier W H, Rainfall erosion potential. Aric. Eng.,1962,43(4):212-215
    [14] Wischmeier W H, Smith D D. A universal soil loss equation to guide conservationfarm pianning.Trans.7thInternational Cong.Soil Sci.1960, Ⅰ:418-425
    [15] Meyer L D, Foster G R. Mechanics of soil erosion by rainfall and overlandflow.Trans.of ASAE,1965,8(4):689-693
    [16] Meyer L D, Foster G R. Romkens M J M. Source of soil eroded by water from uplandslopes.In:Present and prospective technology for prediction sediment yield andsources.Proc, Sediment Yield Workshop,USDA Sedimentation Lab.,Oxford, MS.Agric. Res.Service ARS-S40,1975.177-189
    [17] Nearing M A,Bradford J M.Single waterdrop splash detachment and mechanicalproperties of soils. Soil Sci. Soc.Am.J.,1970, Ⅰ:418-425
    [18] Nearing M A, Foster G R, Lane L J. A process-based soil erosion model forUSDA-water erosion prediction project technology. Trans. of ASAE,1989,32(5):1587-1593
    [19] Foster G R, Huggins L F, Meyer L D. A Laboratory study of rill hydraulics:Ⅰ.Velocity relationships. Trans. of ASAE,1984,27:790-796
    [20] Foster G R, Huggins L F, Meyer L D. A Laboratory study of rill hydraulics:Ⅱ.Shear relationships. Trans. of ASAE,1984,27:797-804
    [21] Foster G R. Modeling the erosion process. In: Haan C T. Hydrologic modelingof small watershed. ASAE. Monograph. No.5St.1982.297-360
    [22] Al-Durrach M M, Bradford J M. New methods of studying soil detachmentdue towaterdrop impact. Soil Sci. Soc.Am.J.,1981,45:949-953
    [23] Al-Durrach M M, Bradford J M. Parameters for describing soil detachmentdue tosingle waterdrop impact. Soil Sci. Soc.Am.J.,1981,46:836-840
    [24] Gilly J E,Finkner S C. Effect of water depth on soil detachment caused byraindrop impact. Am. Soc. Agricultural Engineering,1984,84:2587
    [25] Gilly J E, Kittwitz E R, Simanton J R. Hydraulic characteristics of rills. Trans.of ASAE,1990,33:1900-1906
    [26]张科利,彭文英,张竹梅.日本近50年来土壤侵蚀及水土保持研究评述[J].水土保持学报,2005,19(2):61-64,68
    [27]三原义秋.雨滴と土壤浸食[J].农技研报,1951, A1:1-59
    [28]种田行男.农地保全工学[M].农科技术出版社,1971.
    [29]细山田健三,藤原辉男.侵食流亡土量の予测に关すゐUSLEの适用につぃて(Ⅰ)USLE适用の背景ぉょひ降雨系数[J].农土学会讠志,1984,52:315-321.
    [30]芦田和男,高桥保.道上正河川の土砂灾害と对策[M].森北出版社,1983.
    [31]日下达朗、田中宏平.表层流に对すゐ粘性土の抵抗条件头侵食量雨水流にょゐ土の侵食特性(Ⅱ)[J].农土论集,1981,92:1-7.
    [32]福樱盛一.水滴の打击にゐ破の影につぃて水滴の打击と土壤散に关すゐ基础的研究(Ⅰ)[J].农土论集,1982,101:26-32.
    [33]松本康夫,五十崎恒.造田に伴ゥガリ侵食の发生形态につぃて[J].农土论集,1980,85:19-27.
    [34]高木东.雨裂カケの土砂流出に关すゐ解析[J].农土论集,1986,126:51-58.
    [35]藤原辉男,南信弘.降雨ェネルキの算定式に关すゐ研究[J].农土论集,1984,114:7-13.
    [36]深田三夫、藤原男.裸地斜面に发育しリル网パタソの数值化[J].山口大工研报,1989,40(1):189-196.
    [37]张科利.浅沟发育对土壤侵蚀作用的研究[J].中国水土保持,1991,1:17-19
    [38]张科利,唐克丽.黄土坡面细沟侵蚀能力的水动力学试验研究[J].土壤学报.2000年2月:9-15
    [39]张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究。水土保持学报,1991,5(2):8-13
    [40]周佩华,王占礼.黄土高原土壤侵蚀暴雨的研究[J].水土保持学报,1992,6(3):1-5
    [41]周佩华,郑世清.黄土高原土壤抗冲性的试验研究[J].水土保持研究,1997(5)
    [42]蔡强国.坡长在坡面侵蚀产沙过程中的作用[J].泥沙研究,1989(4).
    [43]蔡强国,陈浩.降雨历时和前期土壤含水量对浅蚀的影响[A].黄河粗泥沙来源及侵蚀产沙机理研究文集北京:气象出版社,1989.48-56
    [44]蔡强国.坡面细沟发生临界条件研究[J].泥沙研究,1998,(1):52-59
    [45]郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持,1989,(8):23-24
    [46]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989,26
    [47]唐克丽.黄土高原地区土壤侵蚀区域特征及其治理途径[M]。北京:中国科学技术出版社,1990,63-65
    [48]贾志军,李俊义,王小平.地面坡度对坡耕地土壤侵蚀的影响[A].晋西黄土高原土壤侵蚀规律实验研究文集[C].北京:水利电力出版社,1990,26-31
    [49]郑粉莉.细沟侵蚀量测算方法的探讨[J].水土保持通报,1989,9(4):41-45
    [50]郑粉莉,唐克丽,周佩华.黄土区坡耕地细沟间侵蚀与细沟侵蚀的研究[J].土壤学报,1998,35(1):95-103
    [51]郑粉莉,高学田.坡面土壤侵蚀过程研究进展[J].地理科学,2003(2).
    [52] K.太沙基,R.泼克.工程实用土力学.蒋彭年译,北京:水利出版社,1960:21坡面土壤侵蚀过程研究进展[J].地理科学,2003(2).
    [53]刘杰.土的渗透稳定与渗流控制[M].水利电力出版社,1992;
    [54] E.A.鲁布契柯夫.无粘性非管涌土.水利学报,1960(3)
    [55]沙金煊.多孔介质中的渗流和管涌.水利水运科学研究,1981(3)
    [56]毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003
    [57] Costa.J E, Baker V R.Surficial Geology: Building with the earth[M]. NewYork:John Wiley,1981
    [58] Lal R ed. Soil Erosion: Research Methods[M].1994.[12] Mac Donald, L H, R WSampson et al. Run off and Road Erosion at the Plot and RoadSegmentscales[J].2001(26):251-272.
    [59] Richard T, Forman T. Road Ecology: Science and Solutions, Houghton MifflinCompany,2002
    [60] Chapuis, Robert P.Use of rotational erosion device on cohesivesoils[J].Transportation Research Record,1986:23-28
    [61] Thoms R B, Megahan. Peak flow responses to clear-cutting and roads in smalland large basins, western Cascades, Oregon: A second opinion[J]. WaterResources Research,1998,34(6):3393-3403.
    [62] Luce C H, T A Black. Sediment production from forest roads in western Oregon[J].Water Resources Research,1999,35(8):2561-2570
    [63] Anderson, Bradley A, Simons, Daryl B. Soil erosion study of exposed highwayconstruction slopes and roadways[J]. Transportation Research Record,1984:40-47,
    [64] MacDouald, L H,R W Sampson, et al. Runoff and road erosion at the plot androad segmentscales St John. U S Virgin. Island Earth Surface Process andLandforms.2001(26):251-272
    [65] Moorish R. H. The Establishment and Comparative Wear Resistance of VariousGrasses and Grass-Legume Mixture to Vehicular Traffic. Highway Res. Bd. Roadside Dev. Com. Repor ts,1949:70-71.
    [66]奚成刚,杨成永.铁路工程施工期路堑边坡面产流产沙规律研究[J].中国环境科学.2002年22卷2期:174-178
    [67]杨成永,王美芝,许兆义.秦沈客运专线路堤边坡土壤侵蚀预报研究[J].水土保持学报.2001,15(2):14-16
    [68]汪益敏.路基边坡坡面冲刷特性与加固材料性能研究[D].华南理工大学2003
    [69]汪益敏,韩大建,王秉纲.广东地区花岗岩风化残积土路堑边坡的冲刷稳定性模糊评价[J].华南理工大学学报:自然科学版.2005,33(1).27-31
    [70]罗斌,胡厚田.吕小平.南方花岗岩残积层路堑边坡坡面冲蚀研究[J].铁道工程学报。1999年9月,第3期(总63):82-85
    [71]罗斌,胡厚田.清连公路堑边坡坡面冲刷影响因素分析[J].路基工程.2000(2):11-13
    [72]罗斌,王秉纲,王选仓.路基边坡坡面冲刷基本理论[J].公路交通科技,2002(4).
    [73]沈波,郑南翔,田伟平.路基压实黄土坡面降雨冲蚀试验研究[J].重庆交通学院学报,2003(4).
    [74]王书斌.高等级公路路堤边坡冲刷防护临界坡度的研究[J].中南公路工程2004,(3).
    [75]高民欢等.高等级公路边坡冲刷理论与植被防护技术[M].北京:人民交通出版社
    [76]李家春,崔世富,田伟平.公路边坡降雨侵蚀特征及土的崩解试验[J].长安大学学报(自然科学版)第27卷第1期,2007年1月:23-26,49
    [77]李家春,田伟平.黄土路堤坡顶及土路肩暴雨冲蚀破坏机理试验[J].长安大学学报(自然科学版),2004(2).
    [78]张擎,沈波,艾翠玲.黄土路基坡面侵蚀影响因素试验研究.公路交通科技.2005,22(9):20-22
    [79]李志刚,王春辉.公路边坡冲刷机理初探[J].解放军理工大学学报(自然科学版),2003(3).
    [80]李志刚,邓学钧,等.基于神经网络的公路边坡冲刷量模拟计算[J].东南大学学报,2002(6).
    [81]李志刚,邓学钧,陈云鹤.基于能量法的高等级公路路堤边坡冲刷临界坡度研究[J].东南大学学报:自然科学版.2003,33(3)
    [82]李志刚,吴伟,陈云鹤.高速公路路堤边坡冲刷防护临界高度初探[J].公路交通科技,2003(2).
    [83]李志刚,刘建民.高等级公路路堤边坡冲刷防护临界高度野外模拟试验研究[J].公路,2003(10).
    [84]李志刚,陈云鹤,钱国超.高速公路边坡野外模拟冲刷实验研究[J].公路交通科技,2004(1)
    [85]蒋德松,陈昌富,赵明华,等.岩质边坡植被抗冲刷现场试验研究[J].中南公路工程,2004,29(1):55-58
    [86]路基.铁路工程设计技术手册.中国铁道出版社.北京:1995
    [87]《铁路路基设计规范》(TBJ447-2005).中国铁道出版社,2006
    [88]《高速铁路设计规范》(试行)(TBJ971-2009).中国铁道出版社,2010
    [89]《铁路特殊路基设计规范》(TBJ158-2002).中国铁道出版社,2003
    [90]《高速铁路路基工程施工质量验收标准》(TB10751-2010).中国铁道出版社,2010
    [91]钱家欢,殷宗泽土工原理与计算[M].北京:中国水利水电出版杜,1996
    [92]《水利水电工程天然建筑材料勘察规程》(SL251-2000)北京:中国水利水电出版杜,1992
    [93]巨娟丽.粘土分散性鉴定试验研究[D].西北农林科技大学.2007.06.
    [94]周华国,魏庆朝等.近十几年来中国铁路水害的时空统计特征[[J],自然灾害学报,19954(4):76-81
    [95]王礼先,于志民.山洪及泥石流灾害预报[M],北京:中国林业出版社,2001
    [96]曹华昌.实施十分钟雨强控制取得防洪成果[J],路基工程,1998(6):52-56
    [97]铁道部防洪指挥部办公室.铁路防洪工作手册[M],北京:中国铁道出版社,1999,35
    [98]铁道科学研究院铁道建筑研究所.国内外泥石流预报警报系统研制概述一兼论铁路泥石流防灾警戒避难体制[J],水土保持通报,19899(3):57-62
    [99]张科利,徐宪利,罗丽芳.国内外道路侵蚀研究回顾与展望[J].地理科学.2008,28(1):119-123
    [100] Wischmeier W H, Smith D.D. Predicting rainfall erosion losses: A guide toconservation planning. U. S. Dep. Agric. Handbook.1978, No.537
    [101]日本地理学会访华学术报告,论坡面上的细沟网.陈永宗译.水土保持译丛,1980,
    [102]王美芝.北方土石山区铁路工程施工期水力侵蚀规律与预测方法研究[D].北京:北京交通大学,2004.
    [103]郑美兰.南方红壤区铁路工程水力侵蚀规律及预测方法研究[D].北京:北京交通大学,2007
    [104]刘元保,朱显谟,周佩华等.黄土高原坡面沟蚀的类型及其发生规律[J].西北水土保持研究所集刊.1998(7):9-18
    [105]高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992(5).
    [106]张科利,秋吉康宏.坡面细沟侵蚀发生的临界水力条件研究[J].土壤侵蚀与水土保持学报.1998,4(1):41-46
    [107]陈力.坡面水流和细沟侵蚀的动力学研究[D].中国科学院力学研究所.博士学位论文.2001
    [108]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社。2003
    [109]刘青泉李家春陈力向华.坡面流及土壤侵蚀动力学(II)[J].力学进展.2004,34(4):493-506
    [110]韩其为,何明民.泥沙起动规律[M].北京:科学出版社.1999
    [111]何文社,曹叔尤,刘兴年,杨具瑞,方铎.泥沙起动临界切应力研究[J].力学学报.2003,35(3)
    [112]刘青泉,安翼.土壤侵蚀的3个基本动力学过程[J].科技导报.2007,25(14):28-37.
    [113]张光辉.国外坡面径流分离土壤过程水动力学研究进展[J].水土保持学报.2000年9月:112-115
    [114]何文社,曹叔尤,袁杰,戴会超.斜坡上非均匀沙起动条件初探[J].水力发电学报,2004,23(4)
    [115]何文社,曹叔尤,袁杰,戴会超.非均匀推移质输移特性研究[J].第38卷第6期2006年11月四川大学学报(工程科学版):1-5
    [116]陆永军、张华庆、张贵荣.非均匀沙推移质输沙率及其级配计算[J].交通部天津水运工程科学研究所.1990
    [117]王立久,刘慧.矿料级配设计理论的研究现状与发展趋势[J].公路,第1期,2008年1月;
    [118]彭波.基于变i法理论的级配组成设计方法[J].武汉理工大学学报,2005,29(5)
    [119]陈忠达等.多级嵌挤密实级配设计方法研究[J].中国公路学报.2006,19(1).1
    [120]沙玉清.泥沙运动引论[M].北京:中国工业出版社,1965
    [121]华景生、万兆惠.粘性土及粘性土夹沙的起动规律研究[J].水科学进展,1992(4)
    [122]何文社,曹叔尤,刘兴年,杨具瑞,方铎.泥沙起动临界切应力研究[J].力学学报.2003,35(3)
    [123] Fan Jenchen, Wu Min Fon. Estimation of interrill soil erosion on steepslopes[J]. Transactions of the American Society of Agricultural Engineers,v44, n6,2001, p1471-1477
    [124]窦国仁.再论泥沙起动流速[J].泥沙研究.1999(6):1-9
    [125]刘清泉,陈力.坡度对坡面土壤侵蚀的影响分析[J].应用数学和力学,2001(5).
    [126]陈法扬.不同坡度对土壤冲量影响试验.中国水土保持[J].1995,(2)
    [127]勒长兴.坡度在坡面侵蚀中的作用.地理研究[J].1996(9):57-61
    [128]胡世雄,勒长兴.坡面土壤侵蚀临界坡度的理论与实验研究[J].地理学报,1999(4).
    [129]曹文洪.土壤侵蚀的坡度界限研究.水土保持通报.1993,13(4)
    [130]匡星.铁路工程边坡水力侵蚀规律与评价方法研究[D].北京:北京交通大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700