泥沙颗粒运动规律及非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流中泥沙运动的研究是河流问题的核心内容,而单个泥沙颗粒的运动分析是研究泥沙群体行为的基础。因此,对单个泥沙颗粒的研究具有重要的理论研究意义和实际工程意义。
     本文分析了水流泥沙的两相流模型,总结了混沌的研究现状及在水流泥沙颗粒研究方面的应用。通过研究稀疏颗粒相对流体运动时所受到的各种作用力,建立了任意流场中稀疏泥沙颗粒运动方程一般形式。
     应用非线性动力学方法研究了单颗粒泥沙在紊动水流中周期运动的稳定性,推导了定常周期解的稳定条件,解释了泥沙在紊动水流中存在的跳跃现象。结果表明:在较小紊动激励幅值的作用下,某一粒径颗粒位移运动幅值可以发生从小到大的跳跃。在某些条件下,泥沙颗粒粒径和水流紊动频率的较小变化同样可以造成泥沙颗粒运动幅值的突变。
     用随机Melnikov均方准则研究了随机紊动水流中单颗粒泥沙运动的混沌参数域,用路径积分法求解了单颗粒泥沙随机运动的概率密度函数。研究表明,单颗粒泥沙混沌参数域的大小与水流激励参数密切相关,周期水流激励的幅值、白噪声强度越大,泥沙运动的随机混沌参数域也越大。
     考虑近床面水流结构和泥沙颗粒排列方式的双重影响,采用滚动模式建立了非均匀沙的起动流速公式,通过试验资料验证的结果表明,公式的计算值与实验资料符合较好;从水流动力、粘性泥沙的组成及结构分析了影响粘性细泥沙起动的因素,系统分析总结了粘性细泥沙起动研究现状,并对今后的研究提出展望。
     从泥沙颗粒垂向运动的动力学角度分析,得到了影响泥沙浓度垂线分布有关因素的关系式。研究表明,随着摩阻流速的增大,浓度曲线愈来愈陡,即浓度分布逐渐均匀。且随着颗粒直径、密度和摩阻流速的增大,浓度拐点越来越高。
The study on the laws of flow and sediment transport was the core content ofrivers, and the analysis of single sediment particle motion was the foundation ofsediment microscopic properties. Therefore, the research of a single sediment particlewas important and significance both in theory and practical engineering.
     Two phase flow model of flow and sediment was analyzed in this paper, then thestatus of research on chaos and its application of sediment were summarized. Theforces on rigid particles moving in relation to fluid having been studied, a generalform of equation for discrete particles motion in arbitrary flow field is obtained.
     The stability for single sediment particle in turbulent flows was studied by thenonlinear dynamic methods, the stable conditions for the periodic stationary rollmotion were ascertained, and the jump phenomena are explained analytically. It isfound that the amplitude of particle motion could have mutations, even under asmaller flow turbulence frequency. Under some conditions, the small changes ofsediment particle size or the flow turbulence frequency could also cause the mutationof movement amplitude.
     Considering bottom flow structure and the random position of non-uniformSediment on the bed, formulas for calculating the incipient velocity of non-uniformsediment was established by using the rolling model. The results show that thevalidity of the formula was verified by experiment data. The factors effecting theincipient motion of cohesive fine sediment were analyzed in the view ofhydrodynamic conditions, cohesive sediment composition and structure, the researchstatus of incipient motion of cohesive sediment was summarized systematically, andfurther research methods were discussed.
     Expression of related factors infecting the vertical distribution of sedimentconcentration was obtained through the dynamics analysis of sediment verticalmovement.The results show that with the increase of the friction velocity, theconcentration curve increasingly steep, that the concentration well distributed.And with the increases of particle diameter, density and friction velocity,concentrationsof inflection point became higher.
引文
[1]白玉川,蒋昌波,罗纪生,赵子丹,振荡流底层拟序结构及其与泥沙相互作用研究,力学进展,2003,33(3):347-356.
    [2]王维,李佑楚,颗粒流体两相流模型研究进展,化学进展,2000,12(2):208-217.
    [3] Lu H., Wang S., He Y., Ding J., Liu G., Hao Z., Numerical simulation of flowbehavior of particles and clusters in riser using two granular temperatures,Powder Technology,2008,182(2):282-293.
    [4] Sokolichin A., Eigenberger G., Lapin A., Lübert A., Dynamic numerical simulationof gas-liquid two-phase flows Euler/Euler versus Euler/Lagrange, ChemicalEngineering Science,1997,52(4):611-626.
    [5] Jeong J., Ozar B., Dixit A., Julia J., Hibiki T., Ishii M., Interfacial area transport ofvertical upward air–water two-phase flow in an annulus channel, InternationalJournal of Heat and Fluid Flow,2008,29(1):178-193.
    [6] Jia X., Wen J., Feng W., Yuan Q., Local hydrodynamics modeling of agas-liquid-solid three-phase airlift loop reactor, Industrial&engineeringchemistry research,2007,46(15):5210-5220.
    [7] Wang F., Mao Z.S., Wang Y., Yang C., Measurement of phase holdups inliquid–liquid–solid three-phase stirred tanks and CFD simulation, Chemicalengineering science,2006,61(22):7535-7550.
    [8]郭烈锦.两相与多相流体力学.西安:西安交通大学出版社2002:584-594.
    [9]陈鑫,余锡平,基于两相紊流模型的非平衡输沙研究,力学学报,2012,44(1):65-70.
    [10] Jinren N., Forces on particles and their effects on vertical sediment sorting insolid-liquid two-phase flows,国际泥沙研究:英文版,2001(2):128-138.
    [11] Xiang M., Zhang W.H., Cheung S.C.P., Tu J.Y., Numerical investigation ofturbulent bubbly wakes created by the ventilated partial cavity, SCIENCECHINAPhysics, Mechanics&Astronomy,2012(2):1-8.
    [12]窦国仁.紊流力学(下册).北京I高等教育出版社1987.
    [13] Kendoush A.A., Sulaymon A.H., Mohammed S.A.M., Experimental evaluationof the virtual mass of two solid spheres accelerating in fluids, Experimentalthermal and fluid science,2007,31(7):813-823.
    [14] Sokolichin A., Eigenberger G., Lapin A., Simulation of buoyancy driven bubblyflow: established simplifications and open questions, AIChE Journal,2004,50(1):24-45.
    [15] Zapryanov Z., Tabakova S. Dynamics of bubbles, drops, and rigid particles.Dordrecht: Kluwer Academic,1999:338-343.
    [16]由长福,祁海鹰, Basset力研究进展与应用分析,应用力学学报,2002,19(2):31-33.
    [17] Bombardelli F.A., González A.E., Ni o Y.I., Computation of the particle Bassetforce with a fractional-derivative approach, Journal of Hydraulic Engineering,2008,134:1513.
    [18] Van Hinsberg M., ten Thije Boonkkamp J., Clercx H., An efficient, second ordermethod for the approximation of the Basset history force, Journal ofComputational Physics,2011,230(4):1465-1478.
    [19]黄社华,程良骏,非均匀流场中变速运动颗粒所受Basset力的性质及其数值计算,水利学报,1996(7):54-60.
    [20]黄社华,李炜,程良骏,任意流场中稀疏颗粒运动方程的数值解法及其应用,水动力学研究与进展,1999,14(1):51-61.
    [21] Michaelides E.E., A novel way of computing the Basset term in unsteadymultiphase flow computations, Physics of Fluids A: Fluid Dynamics,1992,4:1579-1582.
    [22]赵建福,李炜,变速运动颗粒所受非恒定作用力分析,力学与实践,1998,20(3):43-44.
    [23] Odar F., Verification of the proposed equation for calculation of the forces on asphere accelerating in a viscous fluid, Journal of Fluid Mechanics,1966,25(3):591-592.
    [24] Mei R., An approximate expression for the shear lift force on a spherical particleat finite Reynolds number, International journal of multiphase flow,1992,18(1):145-147.
    [25] Tsuji Y., Morikawa Y., Mizuno O., Experimental measurement of the Magnusforce on a rotating sphere at low Reynolds numbers, Journal of fluidsengineering,1985,107(4):484-488.
    [26] Happel J., Viscous flow in multiparticle systems: slow motion of fluids relative tobeds of spherical particles, AIChE Journal,2004,4(2):197-201.
    [27]欧阳洁,李静海,孙国刚, The Simulations of Annulus-Core Structure in CFB,Chinese Journal of Chemical Engineering,2004,12(1):27-32.
    [28] Li J., Kuipers J., Gas-particle interactions in dense gas-fluidized beds, ChemicalEngineering Science,2003,58(3):711-718.
    [29]刘大有,王光谦,李洪州,泥沙运动的受力分析——关于碰撞力的讨论,泥沙研究,1993(2):41-47.
    [30] Drew D., Lahey R., Analytical modeling of multiphase flow, Particulatetwo-phase flow,1993.
    [31]刘大有,再论二相流基本方程——关于固相碰撞应力的讨论,中国科学(A辑),1998,28(1):72-79.
    [32] Ouyang J., Li J., Particle-motion-resolved discrete model for simulatinggas–solid fluidization, Chemical Engineering Science,1999,54(13):2077-2083.
    [33] Kuwagi K., Mikami T., Horio M., Numerical simulation of metallic solidbridging particles in a fluidized bed at high temperature, Powder Technology,2000,109(1):27-40.
    [34] Yonemura S., Tanaka T., Tsuji Y., Cluster formation in gas-solid flow predictedby the DSMC method, ASME-PUBLICATIONS-FED,1993,166:303-303.
    [35]沈学会,陈举华,分形与混沌理论在湍流研究中的应用,河南科技大学学报:自然科学版,2005,26(1):27-30.
    [36] Ruelle D., The Claude Bernard Lecture,1989. Deterministic chaos: the scienceand the fiction, Proceedings of the Royal Society of London AMathematical andPhysical Sciences,1990,427(1873):241-248.
    [37] Porporato A, L R., Resonance flow randomization in the K-regime ofboundary-layer transition, Journal of Applied Mechanics and Technical Physics,1990,31(2):239-249.
    [38]王玲玲,金忠青,分形理论及其在紊流研究中的应用,河海大学学报:自然科学版,1997,25(1):1-5.
    [39] Saha A., Muralidhar K., Biswas G., Transition and chaos in two-dimensional flowpast a square cylinder, Journal of engineering mechanics,2000,126(5):523-532.
    [40]郭术义,陈举华, Navier-Stokes方程中的混沌特性,青岛大学学报(自然科学版),2003,16(4):85-87.
    [41]王协康,敖汝庄,泥沙起动条件及机理的非线性研究,长江科学院院报,1999,16(4):39-41.
    [42]何文社,曹叔尤,雷孝章,刘兴年,泥沙起动条件的非线性理论,水利学报,2004(1):28-32.
    [43]王协康,方铎,宽级配卵石泥沙颗粒特性的分维值及其应用,长江科学院院报,1999,16(5):9-12.
    [44]王协康,方铎,姚令侃,非均匀沙床面粗糙度的分形特征,水利学报,1999(7):70-74.
    [45]杨具瑞,方铎,何文社,刘兴年,推移质输沙率的非线性研究,水科学进展,2003,14(1):36-40.
    [46]杨具瑞,方铎,何文社,李文萍,非均匀沙起动的非线性尖点突变模式,水利学报,2003(1):34-38.
    [47]张先起,梁川,刘慧卿,基于混沌相空间技术的输沙量预测BP网络模型,水力发电学报,2007,26(1):24-27.
    [48]白玉川,徐海珏,许栋,推移质运动过程的非线性动力学特性,中国科学: E辑,2006,36(7):751-772.
    [49]汪富泉,曹叔尤,刘兴年,悬移颗粒运动特征值的分形分布,水利学报,2000(9):65-69.
    [50]汪富泉,曹叔尤,湍流猝发作用下悬移颗粒运动轨迹的分形与自组织特征,茂名学院学报,2001,11(3):13-18.
    [51]黄社华,李炜,程良骏,任意流场中稀疏颗粒运动方程及其性质应用数学和力学,2000,21(3):265-276.
    [52] JAN J, RONALD A.工程数学手册.科学出版社2002.
    [53]沈钧涛,陈十一,球形粒子在流体中的跟随性,空气动力学学报,1989,7(1):50-58.
    [54]倪晋仁,曲轶众,固液两相流中固体颗粒的垂直分选模型,水动力学研究与进展,2003,18(3):349-354.
    [55]孟晓刚,倪晋仁,固液两相流中颗粒受力及其对垂向分选的影响,水利学报,2002(9):6-13.
    [56]建新,毛旭锋,曹斌,非均匀颗粒流动垂向分选实验研究,应用基础与工程科学学报,2009,16(6):787-794.
    [57] Wiggins S., Wiggins S., Global bifurcations and chaos: analytical methods:Springer-Verlag New York,1988.
    [58] Wehner M.F., Wolfer W., Numerical evaluation of path-integral solutions toFokker-Planck equations, Physical Review A,1983,27(5):2663-2670.
    [59]张瑞瑾,谢鉴衡,陈文彪,河流动力学:武汉大学出版社,2007.
    [60]窦国仁,论泥沙起动流速,水利学报,1960,4(4):46-60.
    [61]沙玉清,泥沙运动学引论:中国工业出版社,1965.
    [62]唐存本,泥沙起动规律,水利学报,1963(2):1-12.
    [63]窦国仁,再论泥沙起动流速,泥沙研究,1999,6(1):9.
    [64]韩其为,何明民,泥沙运动,泥沙起动规律及起动流速:科学出版社,1999.
    [65] Marsh N.A., Western A.W., Grayson R.B., Comparison of methods for predictingincipient motion for sand beds, Journal of Hydraulic Engineering,2004,130(7):616-621.
    [66] Buffington J.M., The legend of AF Shields, Journal of Hydraulic Engineering,1999,125(4):376-387.
    [67] G ü M., Defne Z., Effect of shape on incipient motion of large solitaryparticles, Journal of Hydraulic Engineering,2005,131(1):38-45.
    [68] Rabinovich E., Kalman H., Incipient motion of individual particles in horizontalparticle–fluid systems: A. Experimental analysis, Powder Technology,2009,192(3):318-325.
    [69] Rabinovich E., Kalman H., Incipient motion of individual particles in horizontalparticle–fluid systems: B. Theoretical analysis, Powder Technology,2009,192(3):326-338.
    [70] Beheshti A., Ataie-Ashtiani B., Analysis of threshold and incipient conditions forsediment movement, Coastal Engineering,2008,55(5):423-430.
    [71]杨奉广,曹叔尤,刘兴年,杨克君,非均匀沙分级起动流速研究,四川大学学报:工程科学版,2008(5).
    [72]徐俊锋,韩其为,方春明,推移质低输沙率,天津大学学报,2012,45(3):191-195.
    [73] Taylor B.D., Temperature effects in alluvial streams,1971.
    [74] Yalin M.S., Selim M., River mechanics: Pergamon Press Oxford,1992.
    [75]韩其为,何明民,泥沙起动标准的研究,武汉水利电力大学学报,1996,29(4):1-5.
    [76] Du P., Ding P., Hu K., Simulation of three-dimensional cohesive sedimenttransport in Hangzhou Bay, China, Acta Oceanologica Sinica,2010,29(2):98-106.
    [77] Chen B., Wang K., Suspended sediment transport in the offshore near YangtzeEstuary, Journal of Hydrodynamics, ser B,2008,20(3):373-381.
    [78] LAI J.S., CHANG F.J., Physical modeling of hydraulic desiltation in Tapureservoir, International Journal of Sediment Research,2001,16(3):363-379.
    [79]韩其为,水库淤积:科学出版社,2003.
    [80]韩其为,杨小庆,我国水库泥沙淤积研究综述,中国水利水电科学研究院学报,2003,1(3):169-178.
    [81]王军,谈广鸣,舒彩文,淤积固结条件下粘性细泥沙起动冲刷研究综述,泥沙研究,2008,6(6):49-55.
    [82] Tan G.M., Jiang L., Shu C.W., Lv P., Wang J., Experimental study of scour rate inconsolidated cohesive sediment, Journal of Hydrodynamics, Ser B,2010,22(1):51-57.
    [83] Zhu Y.H., Lu J.Y., Liao H.Z., Wang J.S., Fan B.L., Yao S.M., Research oncohesive sediment erosion by flow: An overview, Science in China Series E:Technological Sciences,2008,51(11):2001-2012.
    [84]张业民,宋长清,刘义贤,李巍,软粘土流动性的尖顶突变模型分析,岩土工程学报,1995,17(4):67-70.
    [85]刘启贞,李九发,陆维昌,李道季,沈焕庭,河口细颗粒泥沙有机絮凝的研究综述及机理评述,海洋通报,2006,25(2):74-80.
    [86]高红,郑颖人,冯夏庭,材料屈服与破坏的探索,岩石力学与工程学报,2006,25(12):143-150.
    [87]练继建,赵子丹,波浪作用下软泥床面的粘性泥沙悬扬,水利学报,1998(8):47-51.
    [88]肖辉,曹祖德,赵群,韩鸿胜,波,流作用下粘性淤泥的起动试验研究,泥沙研究,2009(3):75-80.
    [89]高学平,秦崇仁,赵子丹,板结粉砂运动规律的研究,水利学报,1994(12):1-6.
    [90]黄岁梁,陈稚聪,粘性类土的起动模式研究,水动力学研究与进展: A辑,1997,12(1):1-7.
    [91]练继建,洪柔嘉,水流作用下粘性泥沙悬扬的动力分析,水利学报,1995(4):25-33.
    [92]秦崇仁,张金凤,铜鼓浅滩泥沙起动和运移形态,水道港口,2003,24(1):8-13.
    [93]张瑞瑾,水利工程,河流泥沙动力学:中国水利水电出版社,1998.
    [94]杨美卿,淤泥的起动公式,水动力学研究与进展: A辑,1996,11(1):58-64.
    [95]张兰丁,粘性泥沙起动流速的探讨,水动力学研究与进展: A辑,2000,15(1):82-88.
    [96]舒彩文,王军,谈广鸣,干容重对粘性淤积物起动和冲刷的影响,武汉大学学报:工学版,2007,40(1):25-28.
    [97]万兆惠,宋天成,水压力对细颗粒泥沙起动流速影响的试验研究,泥沙研究,1990(4):62-69.
    [98]杨铁笙,黎青松,万兆惠,大水深下粘性细颗粒泥沙的起动,面向二十一世纪的泥沙研究—第四届全国泥沙基本理论研究学术讨论会论文集,四川大学出版社,2000.
    [99] Jacobs W., Van Kesteren W., Winterwerp J., Permeability and consolidation ofsediment mixtures as function of sand content and clay mineralogy, InternationalJournal of Sediment Research,2007,22(3):180-187.
    [100]韩其为,何明民,细颗粒泥沙成团起动及其流速的研究,湖泊科学,1997,9(4):307-316.
    [101] Son M., Hsu T.J., Flocculation model of cohesive sediment using variablefractal dimension, Environmental Fluid Mechanics,2008,8(1):55-71.
    [102]钟亮.河道形态阻力分形特征研究[博士论文].重庆交通大学,2011.
    [103]周银军,陈立,刘欣桐,许文盛,河床表面分形特征及其分形维数计算方法,华东师范大学学报:自然科学版,2009(3):170-178.
    [104]周银军,陈立,陈珊,江磊,基于分形理论的河床表面形态量化方法研究,应用基础与工程科学学报,2012,20(3):413-423.
    [105] Krein A., Petticrew E., Udelhoven T., The use of fine sediment fractaldimensions and colour to determine sediment sources in a small watershed,Catena,2003,53(2):165-179.
    [106]王毅力,芦家娟,周岩梅,石宝友,王东升,沉积物颗粒表面分形特征的研究,环境科学学报,2005,25(4):457-463.
    [107] Wang Y., Du B., Dou X., Liu J., Shi B., Wang D., et al., Study on the poresurface fractal dimension and surface acid–base properties of natural particlesaround Guanting reservoir, Colloids and Surfaces A: Physicochemical andEngineering Aspects,2007,307(1):16-27.
    [108]方红卫,陈明洪,陈志和,泥沙颗粒污染前后表面孔隙力学特征分析,中国科学G辑,2008,38(1):1-7.
    [109]李洪,李嘉,李克锋,周鲁,泥沙的分形表面和分形吸附模型,水利学报,2003(3):14-18.
    [110]杨铁笙,熊祥忠,詹秀玲,杨美卿,粘性细颗粒泥沙絮凝研究概述,水利水运工程学报,2003(2):65-77.
    [111]李泳,陈晓清,胡凯衡,何淑芬,泥石流颗粒组成的分形特征,地理学报,2005,60(3):495-502.
    [112] ZHANG R., Yaping W., Jianhua G., Shaoming P., Sediment texture andgrain-size implications: the Changjiang subaqueous delta, Acta OceanologicaSinica2009,28(4).
    [113]武生智,魏春玲,沙粒粗糙度和粒径分布的分形特性,兰州大学学报:自然科学版,1999,35(1):53-56.
    [114] Maggi F., Mietta F., Winterwerp J., Effect of variable fractal dimension on thefloc size distribution of suspended cohesive sediment, Journal of Hydrology,2007,343(1):43-55.
    [115] Hyslip J.P., Vallejo L.E., Fractal analysis of the roughness and size distributionof granular materials, Engineering Geology,1997,48(3):231-244.
    [116] Son M., Hsu T.J., The effect of variable yield strength and variable fractaldimension on flocculation of cohesive sediment, Water research,2009,43(14):3582-3592.
    [117]顾成权,孙艳,土体内聚力随含水量,粘粒含量及干密度变化关系探讨,水文地质工程地质,2005,32(1):34-36.
    [118] McTigue D.F., Mixture theory for suspended sediment transport, Journal of theHydraulics Division,1981,107(6):659-673.
    [119]倪晋仁,梁林,水沙流中的泥沙悬浮(Ⅱ),泥沙研究,2000(1):13-19.
    [120]倪晋仁,梁林,水沙流中的泥沙悬浮(Ⅰ),泥沙研究,2001(2):7-12.
    [121]倪晋仁,周东火,低浓度固液两相流中泥沙垂直分布的摄动理论解释,水利学报,1999(5):1-5.
    [122]王光谦,倪晋仁,再论悬移质浓度垂线分布的两种类型及其产生的原因,水动力学研究与进展: A辑,1991,6(4):60-71.
    [123]夏建新,吉祖稳,湍流中泥沙垂线分布的力学解释,水利学报,2003(1):45-50.
    [124]韩其为,何明民,恢复饱和系数初步研究,泥沙研究,1997(3):32-40.
    [125]韩其为,非均匀沙不平衡输沙的理论研究,水利水电技术,2007,38(1):14-23.
    [126] Velikanov M. Alluvial processes (fundamental principles). State PublishingHouse for Physical and Mathematical Literature, Moscow1958.
    [127]倪晋仁,王光谦,廖谦,高浓度固液两相流中泥沙分布的修正公式,泥沙研究,1999(5):18-20.
    [128]刘大有,关于颗粒悬浮机理和悬浮功的讨论,力学学报,1999,31(6):661-670.
    [129]刘大有,现有泥沙理论的不足和改进——扩散模型和费克定律适用性的讨论,泥沙研究,1996(3):39-45.
    [130]傅旭东,王光谦,传统泥沙扩散方程的误差分析,泥沙研究,2004(4):33-38.
    [131]惠遇甲,胡春宏,水流中颗粒跃移的运动学特征,水利学报,1991(12):59-64.
    [132]刘青泉,曹文洪,泥沙颗粒的扬动机理分析,水利学报,1998(5):1-6.
    [133]李大鸣,吕小海,焦润红,泥沙静水沉降阻力系数,水利学报,2004(1):1-5.
    [134]王光谦.固液两相流和颗粒流的运动理论及实验研究[博士论文].1989.
    [135] Happel J., Brenner H., Low Reynolds number hydrodynamics: with specialapplications to particulate media: Springer,1965.
    [136]蔡树棠,刘宇陆,湍流理论:上海交通大学出版社,1993.
    [137] Tam C.K.W., The drag on a cloud of spherical particles in low Reynolds numberflow, J Fluid Mech,1969,38(4):537-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700