取向多孔导电聚乙烯醇(聚氨酯)基复合材料的制备及气敏行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为气敏材料的导电高分子复合材料通常被热压或浇铸成数十至数百微米厚的薄膜使用,这是由于薄膜形状有利于有机气体对基体树脂特别是心层树脂的浸入与溶胀,以实现高气敏强度。然而,对于监测管道中流动气体的气敏材料而言,如此厚度的薄膜形态存在易破裂、作用面积小、稳定性不高等缺点。这成为阻碍导电高分子气敏材料进一步拓展其应用范围的重要因素。
     从结构上看,如果在实体导电高分子材料内构建取向多孔气体通道,且孔径和孔壁尺寸小至微米或纳米级,那么这种取向多孔导电高分子材料将是一种理想的气敏材料。首先,超细泡孔的存在极大地增加了材料比表面积,从而加强了材料表面对气体分子的接触与吸附;其次,比普通薄膜材料更薄的聚合物层可提供更高的气敏响应强度;再者,取向通孔结构对气体流动影响较小,有利于高速流动气体的通过与检测;最后,三维构架材料可提供比薄膜材料更大的耐压性能,更适合于在具有一定气压差的环境下使用。
     然而,取向多孔导电高分子材料结构的实现必须解决两个基本问题。其一是取向多孔结构在聚合物基体中的构建问题;其二是导电网络通路在取向多孔结构中的形成问题。就第一个问题而言,目前已有多种方法可用于实现在聚合物中构建取向微孔结构,如微加工法、光刻法、软光刻技术等。但这些方法所固有的成本高、效率低、对聚合物选择性强等缺点阻碍了其在聚合物加工中的应用。相比而言,新近发展起来的定向凝固干燥技术因其制备装置简单、效率高、不存在化学反应等优点而受到人们的广泛关注。
     本文拟用定向凝固干燥法,构建具有取向多孔结构的导电高分子材料,并在获得了这种新型取向多孔导电高分子材料之后,研究了材料的制备参数与形态结构的关系、形态结构与电学性能关系、导电机理及对于动态有机气体的气敏响应行为及机理。
     本研究主要结果有:
     ①聚乙烯醇取向多孔材料的制备
     当PVA溶液以2mm/min的速度浸入液氮中,经定向凝固干燥后,观察到以1%的PVA溶液制备的样品断面呈纤维网状结构;而以5%的PVA溶液制备的样品呈比较规则的取向孔洞结构;随着PVA溶液浓度的增加,含PVA10%的溶液获得的样品呈现一种特殊的“鱼骨头”结构;当PVA溶液浓度高至15%时,样品断面结构呈仅有一定的取向趋势的微孔结构。
     当PVA水溶液浸入液氮速度加快时(10mm/min),样品结构会有变化。同样是1%的PVA水溶液,以10mm/min的速度浸入液氮中,样品断面不再是纤维网状结构;PVA溶液浓度为5%时,以10mm/min浸入速度获得样品取向孔洞结构没有2mm/min的样品取向结构规整,孔洞之间有少量的桥接出现;PVA溶液浓度为10%时,样品断面形貌呈现特殊的“鱼骨头”结构;当PVA溶液浓度高至15%时,样品断面微孔结构的取向趋势没有2mm/min浸入液氮中的样品取向趋势明显。
     对不同浓度的PVA溶液以4mm/min的速度浸入-70℃冷冻乙醇中所制备的样品断面微观组织分析后发现,当PVA溶液浓度极稀时(1%),与定向浸入液氮中所获得的样品断面呈纤维网状结构不同,断面呈团絮状结构;随着PVA溶液浓度的增加,浓度为5%及7.5%时,断面呈特殊的“鱼骨”形状,且“鱼骨”有增粗的趋势,取向趋势明显,这些“鱼骨”状结构的分支是由PVA溶质在大块冰晶边缘的排斥下形成的;在溶液浓度增加至10%及以上时,断面形貌逐渐转变为片层结构,取向趋势逐渐减弱,片层之间的间距也逐渐缩小。
     ②聚氨酯取向多孔材料的制备
     a.以Bayer Impranil1380水性聚氨酯分散体为原料,对该溶液采用定向凝固干燥法制备样品。对于稀的Impranil1380水性聚氨酯分散体(5%),以4mm/min浸入液氮后,与用稀PVA溶液(1%)制备的样品断面结构类似,断面呈纤维网状结构,纤维直径约2-3μm。而对于20%的Impranil1380水性聚氨酯分散体,浸入液氮定向凝固干燥后,获得的样品呈一定取向的多孔形貌,当Impranil1380水性聚氨酯分散体固含量增加至40%时,样品断面形貌仅呈一定的取向趋势,且只能观察到少量孔洞形貌。20%的Impranil1380水性聚氨酯分散体以4mm/min的速度浸入-50℃乙醇中,经定向凝固干燥后获得样品断面形貌呈解理状,无取向孔洞产生。
     b.以Bayer UH240水性聚氨酯分散体为原料,用定向凝固干燥法制备样品。不同浓度的UH240水性聚氨酯溶液以4mm/min的速度浸入-70℃乙醇定向凝固干燥,以10%的UH240水性聚氨酯溶液制备的样品断面结构仅有一定取向趋势,而以20%的UH240溶液为原料所获得的样品断面呈非常规整的取向多孔结构,孔洞直径约为25μm,孔壁厚度约为4μm,孔洞结构在视场范围内保持连续,当UH240溶液浓度升高至40%时,样品断面显微组织仅呈一定的取向趋势。
     把UH240水性聚氨酯溶液分别以1mm/min、10mm/min的速度浸入-70℃乙醇中发现,以10mm/min的速度浸入冷冻乙醇中后获得的样品孔洞直径、孔洞壁厚度要比1mm/min的速度浸入冷冻乙醇中后获得的样品略低。把20%的UH240水性聚氨酯溶液以4mm/min的速度分别浸入-50℃、-70℃、-90℃、-110℃的冷冻乙醇中,经定向凝固干燥后,所获得的样品断面都呈非常规整的取向多孔结构,且冷冻液温度越低,样品孔洞直径越小,孔洞壁厚度越薄。
     ③取向多孔导电聚乙烯醇基、聚氨酯基材料的制备及导电性能
     在5%的PVA水溶液中添加炭黑、碳纳米管,20%的水性聚氨酯中添加碳纳米管后,以4mm/min的速度浸入-70℃乙醇,经定向凝固干燥后,成功获得了取向多孔导电炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯材料。复合材料(炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯)的电阻率与导电填料含量(炭黑或碳纳米管)关系曲线表明,在导电填料的含量增加到一定程度后,材料的电阻率显著降低;在降低到一定程度后,随着导电填料含量的继续增加,电阻率变化不大。用经典的逾渗理论方程对复合材料(炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯)的电阻率与导电填料含量(炭黑或碳纳米管)关系进行拟合,得出复合材料导电填料的逾渗值分别为12.5vol.%、6.2vol.%、2.0vol.%,临界电阻率指数分别为2.8、6.1、2.7,临界电阻率指数不在经典的逾渗理论所定义的范围之内,这是由于复合材料具有的特殊取向孔洞结构所导致。
     ④取向多孔导电聚乙烯醇基、聚氨酯基材料对流动气体的气敏行为
     在利用定向凝固干燥法制备的取向多孔导电炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯复合材料的基础上,研究取向多孔导电炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯复合材料对流动气体的气敏行为。研究结果表明,取向多孔导电炭黑/聚乙烯醇、碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯复合材料对苯、四氢呋喃、丙酮等有机气体都具有很强的气敏响应,且对上述气体的响应率依次降低。对取向多孔导电碳纳米管/聚乙烯醇、碳纳米管/水性聚氨酯材料在不同温度的有机气体中的气敏响应研究发现,温度越高,响应率也就越高。
In the current practice, the conductive polymer composites as gas sensor are usuallyfabricated as films with the thickness from decades to hundreds of microns through hotpressing or casting, which is beneficial to vapor permeating, and resulting in high vaporsensitivity. However, when being used to monitor the flowing vapors in the pipes, thefilmy polymer sensors are seriously limited by easily getting ruptured, less operationarea, instability, and so on. Thus, it is still a tough challenge to establish alternativetechniques to fabricate polymer based gas sensor for flowing vapors in practicalapplication.
     Structurally, the conductive polymer composites with an aligned porous structurewill be an ideal sensor when the diameter of the pores and thickness of the wall is tomicrons or to the nanometer level. Compared with the ordinary film-like polymer gassensors, this new aligned micro-porous composite sensor is much more suitable formonitoring flowing organic vapors based on the following reasons:
     (1)The micro-pores greatly increase the surface area of the materials and intensifythe contact between the gas molecules and materials.
     (2)The even thinner pore walls in the new aligned micro-porous sensor can result inhigher vapor sensitivity.
     (3)One-dimensional micro-porous structure can facilitate the high speedtransportation of flowing vapors and benefit detection.
     (4)This kind of sensor has stronger pressure resistance than the film sensors and ismore applicable under the condition of pressure difference.
     However, there are two basic questions must be solved to achieve the alignedporous conductive composites. One is the construct of the aligned porous structure inpolymer matrix. The other is the formation of the conductive network in an alignedporous structure. For the first question concerned, there are a variety of methods can beused to realize the construction of an aligned porous structure in a polymer matrix, suchas micro processing method, photolithography, soft lithography, etc. But these methodshave shortcomings such as high cost, low efficiency and polymer selectivity andhindered the application in polymer processing. In contrast, the newly developeddirectional freeze-drying process has been paid much attention by the people because ofthe advantages such as simple preparation device, efficient and does not exist chemical reaction.
     Herein, a conductive polymer composite with an aligned micro-porous structure isobtained through directional freeze-drying process. And, the relationship between thepreparation parameters and structure, the conductivity property and structure,conductivity mechanism, vapor-sensitive response behavior and mechanism are studiedin this paper.
     The main results are listed below:
     ①Preparation of an aligned porous poly (vinyl alcohol)
     When poly (vinyl alcohol)(PVA) solution was immersed in liquid nitrogen with thevelocity of2mm/min, after freeze-drying process, the fiber structure was observed inthe specimen’s cross section prepared from1%PVA solution. Regular aligned porousstructure was obtained from the specimen prepared from5%PVA solution. With theincrease of PVA solution concentration, the specimen prepared from10%PVA solutionis fish-bone like structure. And the micro-porous structure of the specimen preparedfrom15%PVA solution is only a trend to orientation.
     The results show that the structure will change with the immersing velocity. WhenPVA solution was immersed in liquid nitrogen with the velocity of10mm/min, thespecimen prepared from1%PVA solution no longer is fiber network structures.Regular aligned porous structure can also be obtained from5%PVA solution, but thereare some bridges appeared between the pores. The specimen prepared from10%PVAsolution presents special fish-bone like structure. When the concentration of PVAsolution increased to15%, compared with the specimen prepared from2mm/min, theorientation trend of the specimen decreased.
     When PVA solution was immersed into-70℃ethanol with the velocity of4mm/min, the structure of the specimen prepared from1%PVA solution is floe in group,that is different from the fiber structure. When the concentration of PVA solutionincreased to5%and7.5%, the structure of the specimen presents fish-bone likestructure and the fish-bone has the trend to been thicker. The branches of the fish-bonesare formed by the edge of the large ice crystals. When the concentration of the solutionincreased to10%or above, the morphology changed gradually to a layer structure andthe orientation trend decreased.
     ②Preparation of an aligned porous polyurethane
     a. Bayer Impranil1380water-borne polyurethane dispersion was used as the rawmaterials for directional freeze-drying process in this section. When polyurethane dispersion was immersed in liquid nitrogen with the velocity of4mm/min, thespecimen prepared from5%polyurethane dispersion by directional freeze-dryingprocess is fiber network structures and the diameter of the fibers is about2-3μm. That issimilar to the structure of the specimen prepared from1%PVA solution. The specimenprepared from20%polyurethane dispersion presents an unobvious aligned porousstructure. And, when the concentration of polyurethane dispersion increased to40%,there are a few holes and only a trend to orientation in the micro-structure of thespecimen. When polyurethane dispersion was immersed in-50℃ethanol with thevelocity of4mm/min, the specimen presents a cleavage morphology and there is noaligned pores in it.
     b. Bayer UH240water-borne polyurethane dispersion was used as the raw materialsfor directional freeze-drying process. When polyurethane dispersion was immersed in-70℃ethanol with the velocity of4mm/min, there are only a trend to orientation in themicro-structure of the specimen prepared from10%and40%polyurethane dispersionby directional freeze-drying process. However, the specimen prepared from20%polyurethane dispersion by directional freeze-drying process presents regular alignedporous structure, and the diameter of the pores is about25μm and pore wall thickness isabout4μm. When polyurethane dispersion was immersed in-70℃ethanol with thevelocity of1and10mm/min respectively, the result showed that the diameter of poresand pore wall thickness prepared by10mm/min were smaller than1mm/min. Whenpolyurethane dispersion was immersed in-50℃,-70℃,-90℃and-110℃respectively,the specimen prepared by directional freeze-drying process presents regular alignedporous structure. And the temperature of cryogenic lower, the smaller of diameter ofpores and pore wall thickness.
     ③Preparation and conductivity of aligned porous conductive poly (vinyl alcohol)and polyurethane composite
     After carbon black or carbon nanotubes were added into5%PVA solution orcarbon nanotubes were added into20%polyurethane dispersion, the solutions wereimmersed in-70℃ethanol with the velocity of4mm/min. In this way, aligned porousconductive carbon black/poly (vinyl alcohol), carbon nanotube/poly (vinyl alcohol) andcarbon nanotube/polyurethane composites can be obtained by directional freeze-dryingprocess. Electrical conductivity of composites such as black/poly (vinyl alcohol),carbon nanotube/poly (vinyl alcohol) and carbon nanotube/polyurethane composites asa function of carbon black or carbon nanotubes content is obtained in this paper. These curves showed that the resistivity of the composite decrease significantly when theconductive filler increased to certain content. When the resistivity decreased to a certaindegree, as the conductive filler continue to increase, the resistivity change is not large.When these curves are fit using the percolation concept, the volume percolationconcentration of these composites were obtained as12.5%,6.2%and2.0%respectively.And, the resistivity critical exponents are2.8,6.1and2.7respectively and not in therange of percolation theory described.
     ④Aligned porous conductive poly (vinyl alcohol) or polyurethane composite usedas a sensor for flowing vapors.
     When aligned porous conductive black/poly (vinyl alcohol), carbon nanotube/poly(vinyl alcohol) and carbon nanotube/polyurethane composites were obtained bydirectional freeze-drying process, the gas sensitive property of these composites toflowing vapors were studied in this paper. The electrical resistance responses of thesesaligned porous conductive composites against different flowing organic vapors weremeasured. The maximum response of these materials against benzene, tetrahydrofuranand acetone in turn reduced. The maximum response increased as the flowing vapourtemperature increase.
引文
[1]付东升,张康助,张强.导电高分子材料研究进展[J].现代塑料加工应用.2004.16(1):55-59.
    [2]陈孟奇.碳纳米管填充PC复合材料结构与性能研究[D].浙江工业大学硕士学位论文.2010.
    [3]王可.复合型导电高分子材料PTC/NTC效应的研究[D].吉林大学博士学位论文.2006.
    [4] A. A. Zakhidov, R. H. Baughman, Z. Lqbal. Carbon structures with three-dimensionalperiodicity at optical wavelengths[J]. Science.1998.282:897.
    [5] E. G. Judith, J. Wijndhoven, L. Wi11em. Preparation of photonic crystals made of air spheresin titania[J]. Science.1998.281:802.
    [6] B. T. Holland, C. F. Blandford, A. Stein. Synthesis of highly ordered three-dimensionalmineral honeycombs with macropores[J]. Science.1998.281:53.
    [7] H. Masuda, K. Fukuda. Arrays made by a two step replication of honeycomb structures ofanodie alumina[J]. Science.1995.268:146.
    [8] T. Z. Ji. Preparation and Electrical Properties of Carbon Black/Ultra-High Molecular WeightPolythylene Composites[J]. Berlin. Verlag Dr. Koster.2004.
    [9] D. Stauffer. Introduction to Percolation theory[M]. Taylor and Francis.1985.
    [10] M. Sumita, H. Abe, H. Kayaki. Effect of Melt Viscosity and Surface Tension of Polymers onthe Percolation Thresholds of Conducive-Particle-Filled Polymeric Composites[J]. Journal ofMacromolecular Science-Physics.1986. B25(1-2):171-184.
    [11] M. Sumita, K. Sakata, Y. Hayakawa. Double Percolation Effect on the ElectricalConductivity of Conductive Particles Filled Polymer Blends[J]. Colloid and Polymer Science.1992.270:134-139.
    [12] R. Zallen. The physics of Amorphous Solids[M]. New York. Wiley.1983.
    [13] S. Kirkpatrick. Percolation and Conduction[M]. Reviews of Modern Physics.1973.45:574-588.
    [14]贾向明,杨其,李光宪.填充型导电高分子复合材料的逾渗理论进展[J].中国塑料.2003.17:9-14.
    [15] J. Janzen. On the Critical Conductive Filler Loading in Antistatic Composites[J]. Journal ofApplied Physics.1975.46:966-969.
    [16] F. Bueche. Conductive Polymer Composites[J]. Journal of Applied Physics.1972.:43.
    [17] D. S. Mclachlan. Measurement and Analysis of a Model Dual Conductivity Medium Using aGeneralized Effective Medium Theory[J]. Physica A: Statistical and theroetical Physics.1989.157:188.
    [18] D. S. Mclachlan, M. Blaszkiewicz, R. E. Newnham. Electrical Resistivity of Composites[J].Journal of the American Ceramics Society.1990.73:2187-2203.
    [19] D. S. Mclachlan. A Quantitative Analysis of the Volume Fraction Dependence of theResistivity of Cermets Using a General Effective Media Equation[J]. Journal of AppliedPhysics.1990.68:195-199.
    [20] R. Landauer. In Electrical Transport and Optical Properties of inhomolgenous Media[M].New York. Academic Press.1978.
    [21] J. W. Hu, M. W. Li, M. Q. Zhang. Preparation of Binary Conductive Polymer Compositeswith Very Low Percolation Threshold By latex Blending[J]. Macromolecular RapidCommunications.2003.24:889-893.
    [22] F. Gubbels, R. Jerome, P. Teyssie. Selective Localization of Carbon Black in ImmisciblePolymer Blends:A Useful Tool To Design Electrical Conductive Composites[J].Macromolecules.1994.27:1972-1974.
    [23] F. Gubbels, Blacher S., E. Vanlathem. Design of Electrical Conductive Composites: KeyRole of the Morphology on the Electrical Properties of Carbon Black Filled PolymerBlends[J]. Macromoleculars.1995.28:1559-1566.
    [24] A. Voet. Temperature Effect of Electrical Resistivity of Carbon Black Filled Polymers[J].Rubber Chemistry and Technology.1981.54:42-50.
    [25] L. E. Levine, G. G. Long, J. Ilavsky. Self-assembly of Carbon Black into Nanowires thatform a Conductive Three Dimensional Micronetwork[J]. Applied Physics Letters.2007.90:141011.
    [26] C. Rajagopal, M. Satyam. Studies on Electrical Conductivity of insulator-conductorComposites[J]. Journal of Applied Physics.1978.49:5536-5542.
    [27] H. M. Al-Allak, A. W. Brinkman, J. Woods. I-V Characteristics of Carbon Black-loadedCrystalline Polyethylene[J]. Journal of Materials Science.1993.28:117-120.
    [28]王新雷.碳素纤维/聚合物复合材料电性能及PTC行为研究[D].吉林大学博士学位论文.2008.
    [29]黄旭,许向彬,王旭.碳纳米管填充导电橡胶的研究进展[J].合成橡胶工业.2009.32(4):339-344.
    [30] D. Toker, D. Azulay, N. Shimoni. Tunneling and Percolation in Metal-insulator CompositeMaterials[J]. Physical Review B.2003.68:414034.
    [31] I. Balberg, D. Azulay, D. Toker. Percolation and Tunneling in Composite Materials[J].International Journal of Modern Physics B.2004.18:2091-2121.
    [32] E. K. Sichel, J. I. Gittleman, Sheng P. Transport Properties of the Composite MaterialCarbon-Poly(vinychloride) Composites[J]. Physical Review Letters.1978.40:1197-1200.
    [33] P. Sheng. Fluctuation-induced Tunneling Conduction in Disorderd Materials[J]. PhysicalReview B.1980.21:2180-2195.
    [34] Z. Rubin, S. A. Sunshine, M. B. Heaney. Critical Behavor of the Electrical TransportProperties in a Tunneling-Percaolation System[J]. Physical Review B.1999.59:12196-12199.
    [35] C. Grimaldi, I Balberg. Tunneling and Nonuinversality in Continuum Percolation Systems[J].Physical Review Letters.2006.96:666026.
    [36] J. G. Simmons. Generalized formua for the Eletric Tunnel Effect between Similar ElectrodesSeperated by a Thin Insulating Film[J]. Journal of Applied Physics.1963.34:6.
    [37] A. C. Partridge, M. L. Jansen, M. W. Amold. Conducting polymer-based sensors[J]. Mater.Sci. Eng.2000.12:37-42.
    [38]李莉维,罗延龄,牛莉.高分子基导电复合材料气敏响应机理研究[J].高分子通报.2007.(9):23-30
    [39] J. Chen, N. Tsubokawa. A novel gas sensor from polymer-grafted carbon black: effects ofpolymer, crystalline organic compound, and carbon black on electric response totetrahydrofuran vapor[J]. Journal of Macromolecular Science, Part A: Pure and AppliedChemistry.2001.38(4):383-398.
    [40] J. Chen, N. Tsubokawa. Electric properties of conducting composite from poly(ethyleneoxide) and poly(ethylene oxide)-grafted carbon black in solvent vapor[J]. Polymer journal.2000.32(9):729-736.
    [41] J. Chen, N. Tsubokawa. Novel gas sensor from polymer-grafted carbon black: Vaporresponse of electric resistance of conducting composites prepared frompoly(ethylene-block-ethylene oxide)-grafted carbon black[J]. Journal of Applied PolymerScience.2000.77(11):2437-2447.
    [42] O. Masaki, M. Kiyotaka, T. Maski, N. Tsubokawa. A novel gas sensor from poly(ethyleneglycol)-grafted carbon black. Responsibility of electric resistance of Poly(ethyleneglycol)-grafted carbon black against humidity and solvent vapor[J]. Polymer journal.1999.31(8):672-676.
    [43] N. Tsubokawa, S. Yukio, O. Masaki, M. Kiyotaka. A novel gas sensor from crystallinepolymer-grafted carbon black: responsibility of electric resistance of composite fromcrystalline polymer-grafted carbon black against solvent vapor[J]. Polymer Bulletin.1999.42(4):425-431.
    [44] N. Tsubokawa, S. Yoshikawa, K. Maruyama, T. Ogasawara, K. Saitoh. Responsibility ofelectric resistance of polyethyleneimine-grafted carbon black against alcohol vapor andhumidity[J]. Polymer Bulletin.1997.39(2):217-224.
    [45] J. Chen, N. Tsubokawa. A novel sensor from crystalline polymer-grafted carbonblack:responsibility of electric resistance of LDPE and PE-b-PE-grafted carbon clack invarious vapor[J]. Polym. Adv. Technol.2000.11:101-107.
    [46] J. H. Chen, H. Iwata, N. Tsubokawa, Y. Maekawa, M. Yoshida. Novel vapor sensor frompolymer-grafted carbon black: effects of heat-treatment and gamma-ray radiation-treatmenton the response of sensor material in cyclohexane vapor[J]. Polymer.2002.43(8):2201-2206.
    [47]孙业斌,张新民.填充型导电高分子材料的研究进展[J].特种橡胶制品.2009.30(3):73-78.
    [48] P. Xiao, M. Xiao, K. C. Gong. Preparation of exfoliated graphite/polystyrene composite byPolymerization-filling technique[J]. Polymer.2001.42:4813-4816.
    [49] N. C. Das, T. K. Chaki, D. Khastgir. Conductive rubbers made by adding conductive carbonblack to EVA,EPDM,and EVA-EPDM blends[J]. Plast. Rubber Compos.2001.30:162-169.
    [50] X. Jing, W. Zhao, L. Lan. The effect of particle size on electric conducting The effect ofparticle size on electric conducting percolation threshold in polymer/conducting particlecomposites[J]. J. Mater. Sci.Lett.2000.19:377-379.
    [51]韩蕾蕾.炭黑填充聚乙烯导电复合材料气敏性能研究[D].华中科技大学硕士学位论文.2007.
    [52]李军荣,许家瑞,章明秋,容敏智.填充型聚合物基气敏导电复合材料[J].材料导报.2002.16(11):48-51.
    [53]陈仕国,戈早川.聚合物/碳黑气敏导电复合材料的研究进展[J].工程塑料应用.2006.34(3):65-68.
    [54]乐正想.纳米碳纤维复合材料电阻-应变传感性能研究[D].武汉理工大学硕士学位论文.2007.
    [55]陈仕国. CB/WPU导电复合材料的制备及其气敏性能研究[D].中山大学博士学位论文.2005.
    [56] M. Appello. Characterisation of dispersion of carbon black in high density polyethyleneusing dielectric measurements[J]. Plast. Rubber Compos.2000.29:207-211.
    [57] G. M. Javier, M. Q. Luis, M. Alfredo. Carbon black-filled PET/HDPE blends:Effect of theCB structure on rheological and electric properties[J]. J. Appl. Polym. Sci.2001.81:562-569.
    [58] G. Yu, M. Q. Zhang, H. M. Zeng. Effect of filler treatment on temperature dependence ofresistivity of carbon-black-filled polymer blends[J]. J. Appl. Polym. Sci.1999.73:489-494.
    [59] G. Yu, M. Q. Zhang, H. M. Zeng. Carbon-black-filled polyolefine as a positive temperaturecoefficient material: Effect of composition, processing, and filler treatment[J]. J. Appl.Polym. Sci.1998.70:559-566.
    [60] P. J. Mather, K. M. Thomas. Carbon black/high density polyethylene conducting compositematerials:Part I Structural modification of a carbon black by gasification in carbon dioxideand the effect on the electrical and mechanical properties of the composite[J]. J. Mater. Sci.1997.32:401-407.
    [61] P. J. Mather, K. M. Thomas. Carbon black/high density polyethylene conducting compositematerials:Part II The relationship between the positive temperature coefficient and thevolume resistivity[J]. J. Mater. Sci.1997.32:1711-1715.
    [62] J. Chen, M. Yoshida, Y. Maekawa, N. Tsubokawa. Temperature-switchable vapor sensormaterials based on N-isopropylacrylamide and calcium chloride[J]. Polymer.2001.42:9361-9365.
    [63] X. M. Dong, R. W. Fu, M. Q. Zhang. Vapor-induced variation in electrical performance ofcarbon black/poly(methyl methacrylate)composites prepared by polymerization filling[J].Carbon.2003.41:371-374.
    [64] J. Chen, H. Iwata, Y. Maekawa. Grafting of polyethylene byγ-radiation grafting ontoconductive carbon black and application as novel gas and solute sensors[J]. Radiat. Phys.Chem.2003.67:397.
    [65] N. Tsubokawa, M. Tsuchida, J. Chen, Y. Nakazawa. A novel contamination sensor insolution:the response of the electric resistance of a composite based on crystallinepolymer-grafted carbon black[J]. Sens. Actuators, B: Chem.2001.79:92-97.
    [66] M. C. Lonergan, E. J. Severin, B. J. Doleman. Array-based vapor sensing using chemicallysensitive,carbon black-polymer resistors[J]. Chem. Mater.1996.8:2298-2312.
    [67] B. J. Doleman, R. D. Sanner, E. J. Severin. Use of compatible polymer blends to fabricatearrays of carbon black-polymer composite vapor detectors[J]. Anal. Chem.1998.70:2560-2564.
    [68] B. J. Doleman, M. C. Lonergan, E. J. Severin. Quantitative study of the resolving power ofarrays of carbon black-polymer composites in various vapour-sensing tasks[J]. Anal. Chem.1998.70:4177-4190.
    [69] E. J. Severin, R. D. Sanner, B. J. Doleman, N. S. Lewis. Differential detection ofenantiometric gaseous analytes using carbon black-chiral polymer composite, chemicallysensitive resistors[J]. Anal. Chem.1998.70:1440-1443.
    [70] B. J. Doleman, E. J. Severin, N. S. Lewis. Trends in odor intensity for human and electronicnoses:relative roles of odorant vapor pressure vs. molecularly specific odorant binding[J].Proc. Natl. Acad. Sci. USA.1998.95:5442-5447.
    [71] E. J. Severin, B. J. Doleman, N. S. Lewis. An investigation of the concentration dependenceand response to analyte mixture of carbon black/insulating organic polymer composite vapordetectors[J]. Anal. Chem.2000.72:658-668.
    [72] E. J. Severin, N. S. Lewis. Relationships among resonant frequency changes on a coatedquartz crystal microbalance,thickness changes,and resistance responses of polymer-carbonblack composite chemiresistors[J]. Anal. Chem.2000.72:2008-2015.
    [73] T. P. Vaid, M. C. Burl, N. S. Lewis. Comparison of the performance of different discriminantalgorithms in analyte discrimination tasks using an array of carbon black-polymer compositevapor detectors[J]. Anal. Chem.2001.73:321-331.
    [74] A. R. Hopkins, N. S. Lewis. Detection and classfication characteristics of arrays of carbonblack/organic polymer composite chemiresistive vapor detectors for the nerve agentsimulants dimethylmethylphosphonate and diisopropylmethyl-phosponate[J]. Anal. Chem.2001.73:884-892.
    [75] B. J. Doleman, N. S. Lewis. Comparison of odor detection thresholds and odordiscriminablities of a conducting polymer composite electronic nose versus mammalianolfaction[J]. Sens. Actuators B, Chem.2001.72:41-50.
    [76] M. E. Koscho, R. H. Grubbs, N. S. Lewis. Properties of vapor detector arrays formed throughplasticization of carbon black-organic polymer composites[J]. Anal. Chem.2002.74:1307-1316.
    [77] E. S. Tillman, M. E. Koscho, R. H. Grubbs, N. S. Lewis. Enhanced sensitivity to andclassification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbonblack composite vapor detectors[J]. Anal. Chem.2003.75:1748-1753.
    [78] E. S. Tillman, N. S. Lewis. Mechanism of enhanced sensitivity of linearpoly(ethylenimine)-carbon black composite detectors to carboxylic acid vapors[J]. Sens.Actuators B:Chem.2003.96:329-342.
    [79] S. V. Patel, M. W. Jemkins, R. C. Hughes. Differentiation of chemical components in abinary solvent vapor mixture using carbon/polymer composite-based chemiresistors[J]. Anal.Chem.2000.72:1532-1542.
    [80] F. Zee, J. W. Judy. Micromachined polymer-based chemical gas sensor array[J]. Sens.Actuators B: Chem.2001.72:120-128.
    [81]陈仕国,陈旭东,等.高分子基气敏导电复合材料[J].合成树脂及塑料.2002.19(6):57-61.
    [82] J. A. Covington, J. W. Gardner, D. Briand. A polymer gate FET sensor array for detectingorganic vapours[J]. Sensors and Actuators B: Chem.2001.77:155-162.
    [83] N. Tsubokawa. Functionalization of carbon black by surface grafting of polymers[J]. Prog.Polym. Sci.1992.17:417-470.
    [84] J. Chen, N. Tsubokawa, Y. Maekawa, M. Yoshida. Vapor response properties of conductingcomposites prepared from crystalline oligomer-grafted carbon black[J]. Carbon.2002.40:1602-1605.
    [85] J. Chen, Y. Maekawa, N. Tsubokawa. Radiation grafted of polyethylene onto conductivecarbon black and application as a novel gas sensor[J]. Polym. J.2002.34:30.
    [86] S. Srivastava, R. Tchoudakov, M. Narkis. A preliminary investigation of conductiveimmiscible polymer blends as sensor materials[J]. Polym. Eng. Sci.2000.40:1522-1528.
    [87] A. Marquez, J. Uribe, R. Cruz. Conductivity variation induced by solvent swelling of anelastomer-carbon black-graphite composite[J]. J. Appl. Polym. Sci.1997.(66):2221-2232.
    [88] X. M. Dong, R. W. Fu, M. Q. Zhang. A novel sensor for organic solvent vapors based onconductive amorphous polymer composites:carbon black/poly(butyl methacrylate)[J]. Polym.Bull.2003.50:99-106.
    [89] J. R. Li, J. R. Xu, M. Q. Zhang. Carbon black/polystyrene composites as candidates for gassensing materials[J]. Carbon.2003.41:2353-2360.
    [90] X. M. Dong, R. W. Fu, M. Q. Zhang. Carbon black filled poly(2-ethylhexyl methacrylate)asa candidate for gas sensing material[J]. J. Mater. Sci. Lett.2003.22:1057-1059.
    [91] B. J. Doleman, E. J. Severin, N. S. Lewis. Trends in odor intensity for human and electronicnoses: Relative roles of odorant vapor pressure vs. molecularly specific odorant binding[J].Sens. Actuators B.1998.95:5442-5448.
    [92] N. Ando, M. Takeuchi. Electrical receptivity of the polymer layers with polymer graftedcarbon blacks[J]. Thin Solid Film.1998.334:182-185.
    [93]程根水,胡继文,姚海松,李明威,章明秋.填充型聚合物基气敏导电复合材料[J].应用化学.2004.21(4):325-331.
    [94] J. H. Chen, N. Tsubokawa. A novel gas sensor from polymer-grafted carbon black: effects ofpolymer, crystalline organic compound, and carbon black on electric response totetrahydrofuran vapor[J]. Macromol. Sci.-PureAppl. ChemA.2001.38:383-398.
    [95] J. H. Chen, N. Tsubokawa. Novel gas sensor from polymer-grafted carbon black: vaporresponse of electric resistance of conducting composites prepared frompoly(ethylene-block-ethylene oxide)-grafted carbon black[J]. Journal of Polymer Sciences.2000.77:2437-2447.
    [96] S. Yoshikawa, J. H. Chen, T. Tsubokawa. Polymer grafting into carbon black by use ofTEMPO-terminated polystyrene with controlled molecular weight[J]. Journal of PolymerScience, Part A: Polymer Chemistry.1998.18:163-165.
    [97] S. G. Chen, J. W. Hu, M. Q. Zhang. Gas sensitivity of carbon black/waterborne polyurethanecomposites[J]. Carbon.2004.42:645.
    [98] X. M. Dong, R. W. Fu, M. Q. Zhang. Electrical resistance response of carbon black filledamorphous polymer composite sensors to organic vapors at low vapor concentrations[J].Carbon.2004.42:2551.
    [99] N. S. Lewis. Comparisons between mammalian and artificial olfaction based on arrays ofcarbon black-polymer composite vapor detectors[J]. Accounts Chem Res.2004.37:663.
    [100] G. Wei, K. Shirai, K Fujiki. Grafting of vinyl polymers onto VGCF surface and the electricproperties of the polymer-grafted VGCF[J]. Carbon.2004.42:1923.
    [101] J. R. Li, J. R. Xu, M. Q. Zhang. The role of crystalline phase in triblock copolymerPS-PEG-PS based gas sensing[J]. Polymer.2005.46:11051.
    [102] S. G. Chen, X. L. Hu, J. Hu. Sensor Actuat B-Chem[J].2006.119:110.
    [103] S. G. Chen, X. L. Hu, J. Hu, M. Q. Zhang, M. Z. Rong, Q. Zheng. Relationships betweenorganic vapor adsorption behaviors and gas sensitivity of carbon black filled waterbornepolyurethane composites[J]. Sens. Actuators B: Chem.2006.119:110-117.
    [104] T. Gao, M. D. Woodka, B. S. Brunschwig, N. S. Lewis. Chemiresistors for array-based vaporsensing using composites of carbon black with low volatility organic molecules[J].Chemistry of Materials.2006.18(22):5193-5202.
    [105] B. C. Sisk, N. S. Lewis. Vapor sensing using polymer/carbon black composites in thepercolative conduction regime[J]. Langmuir.2006.22(18):7928-7935.
    [106]许向彬.导电原位微纤化聚合物复合材料及其形态、结构与性能[D].四川大学博士学位论文.2007.
    [107] H. Zhang, A. I. Cooper. Aligned porous structures by directional freezing[J]. AdvancedMaterials.2007.19(11):1529-1533.
    [108] H. F. Zhang, I. Hussain, M. Brust, M. F. Butler, S. P. Rannard, A. I. Cooper. Aligned two-and three-dimensional structures by directional freezing of polymers and nanoparticles[J].Nature Materials.2005.4(10):787-793.
    [109] H. F. Zhang, J. Long, A. I. Cooper. Aligned porous materials by directional freezing ofsolutions in liquid CO2[J]. Journal of the American Chemical Society.2005.127(39):13482-13483.
    [110] S. R. Mukai, Nishihara H., H. Tamon. Formation of monolithic silica gel microhoneycombs(SMHs) using pseudosteady state growth of microstructural ice crystals[J]. ChemicalCommunications.2004.(7):874-875.
    [111] S. Deville, E. Saiz, R. K. Nalla, A. P. Tomsia. Freezing as a path to build complexcomposites[J]. Science.2006.311(5760):515-518.
    [112] M. C. Gutierrez, Z. Y. Garcia-Carvajal, M. Jobbagy, Rubio T., L. Yuste, F. Rojo, M. L.Ferrer, F. Del Monte. Poly(vinyl alcohol) scaffolds with tailored morphologies for drugdelivery and controlled release[J]. Advanced Functional Materials.2007.17(17):3505-3513.
    [113] H. W. Gu, R. K. Zheng, X. X. Zhang, B. Xu. Using soft lithography to pattern highlyoriented polyacetylene (HOPA) films via solventless polymerization[J]. Adanced Materials.2004.16(15):1356.
    [114] S. R. Quake, A. Scherer. From micro-to nanofabrication with soft materials[J]. Science.2000.290:1536-1540.
    [115] A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, N. Teramae.Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane[J]. NatureMaterials.2004.3(5):337-341.
    [116] R. Adelung, O. C. Aktas, J. Franc, A. Biswas, R. Kunz, M. Elbahri, J. Kanzow, U.Schurmann, F. Faupel. Strain-controlled growth of nanowires within thin-film cracks[J].Nature Materials.2004.3(6):375-379.
    [117] C. Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna. Aligned biodegradable nanotibrous structure:a potential scaffold for blood vessel engineering[J]. Biomaterials.2004.25(5):877-886.
    [118] W. Mahler, M. F. Bechtold. Freeze-formed silica fibres[J]. Nature.1980.285:27-28.
    [119] J. B. Recknor, J. C. Recknor, D. S. Sakaguchi, S. K. Mallapragada. Oriented astroglial cellgrowth on micropatterned polystyrene substrates[J]. Biomaterials.2004.25(14):2753-2767.
    [120] S. Dogu, O. Okay. Tough organogels based on polyisobutylene with aligned porousstructures[J]. Polymer.2008.49:4626-4634.
    [121] W. Thomas, O. Rainer, J. H. Michael. Control of Lamellae Spacing During Freeze Casting ofCeramics Using Double-Side Cooling as a Novel Processing Route[J]. J. Am. Ceram. Soc.2009.92(S1): S79-S84.
    [122] L. Qian, H. F. Zhang. Green synthesis of chitosan-based nanofibers and their applications[J].Green Chemistry.2010.12:1207-1214.
    [123] G. R. Li, D. L. Qu, W. X. Zhao, Y. X. Tong. Electrochemical deposition of (Mn,Co)-codoped ZnO nanorod arrays without any template[J]. ElectrochemistryCommunications.2007.9(7):1661-1666.
    [124]李玲,向航.纳米技术和功能材料[M].化学工业出版社.2002.
    [125]夏川茴. ZnO基稀磁半导体的制备与性质研究[D].重庆大学博士学位论文.2010.
    [126]林星星. Zn_(1-x)Mn_xO磁性球壳结构的制备及光学磁学性质研究[D].上海交通大学硕士学位论文.2009.
    [127]范东华. ZnO纳米结构的制备、表征及其光学性质研究[D].上海交通大学博士学位论文.2008.
    [128]高乐怡.基于磷化镓衬底的氧化镓纳米线膜制备与性能研究[D].上海交通大学硕士学位论文.2009.
    [129]钟苗.氧化铟纳米结构制备与性能研究[D].上海交通大学硕士学位论文.2008.
    [130]何双虎.电化学法制备ZnO纳米结构及其性能研究[D].上海交通大学硕士学位论文.2010.
    [131]李严波.多孔阳极氧化铝的制备、表征及其在氧化锌纳米结构制备中的应用[D].上海交通大学硕士学位论文.2007.
    [132]董丽娟.聚乙烯醇生物降解性能的研究[D].南京理工大学硕士学位论文.2005.
    [133]郭丽.退浆废水中聚乙烯醇的回收研究[D].东华大学硕士学位论文.2007.
    [134]王世琴.印染退浆废水中聚乙烯醇的降解研究[D].西北师范大学硕士学位论文.2010.
    [135]何洪,张丁非,许向彬,陈宏.用定向冷冻干燥法制备具有一维取向微孔结构的炭黑/聚乙烯醇导电复合材料.功能材料.2012.43(1):130-132.
    [136] S. Deville, E. Saiz, A. P. Tomsia. Freeze casting of hydroxyapatite scaffolds for bone tissueengineering[J]. Biomaterials.2006.27(32):5480-5489.
    [137] L. Shen, S. Cao, J. J. Wu, J. Zhang, H. Li, N. J. Liu, X. H. Qian. A revisit to the Hantzschreaction: Unexpected products beyond1,4-dihydropyridines[J]. Green Chemistry.2009.11(9):1414-1420.
    [138] W. Qian, Z. Q. Chen, S. Cottingham, W. A. Merrill, N. A. Swartz, A. M. Goforth, T. L. Clare,J. Jiao. Surfactant-free hybridization of transition metal oxide nanoparticles with conductivegraphene for high-performance supercapacitor[J]. Green Chemistry.2012.14(2):371-377.
    [139] L. Qian, E. Willneff, H. F. Zhang. A novel route to polymeric sub-micron fibers and their useas templates for inorganic structures[J]. Chemical Communications.2009.(26):3946-3948.
    [140] H. Zhang, J. Y. Lee, A. Ahmed, I. Hussain, A. I. Cooper. Freeze-align and heat-fuse:Microwires and networks from nanoparticle suspensions[J]. AngewandteChemie-International Edition.2008.47(24):4573-4576.
    [141] T. Inada, S. S. Lu. Inhibition of recrystallization of ice grains by adsorption of poly(vinylalcohol) onto ice surfaces[J]. Crystal Growth&Design.2003.3(5):747-752.
    [142] M. L. Ferrer, R. Esquembre, I. Ortega, C. R. Mateo, F. Del Monte. Freezing of binarycolloidal systems for the formation of hierarchy assemblies[J]. Chemistry of Materials.2006.18(2):554-559.
    [143] H. Nishihara, S. R. Mukai, D. Yamashita, H. Tamon. Ordered macroporous silica by icetemplating[J]. Chemistry of Materials.2005.17(3):683-689.
    [144] S. J. Babinec, R. D. Mussel, R. L. Lundgard, R. Cieslinski. Electroactive Thermoplastics[J].Advanced Materials.2000.12:1823-1834.
    [145] J. C. Grunlan, A. R. Mehrabi, M. V. Bannon, J. L. Bahr. Water-basedsingle-walled-nanotube-filled polymer composite with an exceptionally low percolationthreshold[J]. Adanced Materials.2004.16(2):150.
    [146] Xu X. B., Li Z. M., Shi L., Bian X. C., Xiang Z. D. Ultralight conductivecarbon-nanotube-polymer composite[J]. Small.2007.3(3):408-411.
    [147] Y. C. Zhang, K. Dai, J. H. Tang, X. Ji, Z. M. Li. Anisotropically conductive polymercomposites with a selective distribution of carbon black in an in situ microfibrillar reinforcedblend[J]. Materials Letters.2010.64(13):1430-1432.
    [148] K. Dai, X. B. Xu, Z. M. Li. Electrically conductive carbon black (CB) filled in situmicrofibrillar poly(ethylene terephthalate)(PET)/polyethylene (PE) composite with aselective CB distribution[J]. Polymer.2007.48(3):849-859.
    [149] K. Dai, Z. M. Li, X. B. Xu. Electrically conductive in situ microfibrillar composite with aselective carbon black distribution: An unusual resistivity-temperature behavior uponcooling[J]. Polymer.2008.49(4):1037-1048.
    [150] K. Levon, A. Margolina, A. Z. Patashinski. Multiple percolation in conductive polymerblends[J]. Macromolecules.1993.26:4061.
    [151] Y. Wang, M. F. Rubner. Electrically conductive semiinterpenetrating polymer networks ofpoly(3-octylthiophene)[J]. Macromolecules.1992.25:3284-3290.
    [152] N. Inaba, K. Sato, S. Suzuki, T. Haehimoto. Morphology control of binary polymer mixturesby spinodal decomposition and crystallization.1. Principle of method and preliminary resultson PP/EPR[J]. Macromolecules.1986.19:1690-1695.
    [153] S. H. Foulger. Electrical properties of composites in the vicinity of the percolation threshold.Journal of Applied Polymer Science[J].1999.72:1573-1582.
    [154] Z. Rubin, S. A. Sunshine, M. B. Heaney, I. Bloom, I. Balberg. Critical behavior of theelectrical transport properties in a tunneling-percolation system[J]. Physical Review B.1999.59:12196-12199.
    [155] I. Balberg. A comprehensive picture of the electrical phenomena in carbon black–polymercomposites[J]. Carbon.2002.40:139-143.
    [156] L. Karasek, B. Meissner, S. Asai, M. Sumita. Percolation concept: Polymer-filler gelformation, electrical conductivity and dynamic electrical properties of carbon-black-filledrubbers[J]. Polymer Journal.1996.28:121-126.
    [157] T. A. Ezquerra, M. Kulescza, Cruz. Carlos Santa, Baltá-Calleja. Francisco J. Chargetransport in polyethylene–graphite composite materials[J]. Advanced Materials.1990.2:597-600.
    [158] S. Deville. Freeze-casting of porous ceramics: A review of current achievements andissues[J]. Advanced Engineering Materials.2008.10(3):155-169.
    [159] G. Gay, M. A. Azouni. Forced migration of nonsoluble and soluble metallic pollutants aheadof a liquid-solid interface during unidirectional freezing of dilute clayey suspensions[J].Crystal Growth&Design.2002.2(2):135-140.
    [160] H. Ishiguro, B. Rubinsky. Mechanical Interactions between Ice Crystals and Red Blood Cellsduring Directional Solidification[J]. Cryobiology.1994.31:483-500.
    [161] Worster M. G., Wettlaufer J. S. Natural Convection, Solute Trapping, and ChannelFormation during Solidification of Saltwater[J]. The Journal of Physical Chemistry B.1997.101(6132-6136).
    [162] R. Z. Wang, Z. Suo, A. G. Evans, N. Yao, I. A. Aksay. Deformation mechanisms in nacre[J].Journal of Materials Research.2001.16:2485-2493.
    [163] S. Iijima. Helical microtubes of graphitic carbon[J]. Nature.1991.354:56-68.
    [164] P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth. Aligned Carbon Nanotube Arrays Formedby Cutting a Polymer Resin-Nanotube Composite[J]. Science.1994.265(1212-1214).
    [165]何方岳.2,2-二羟甲基丙酸的合成及其应用[D].浙江工业大学硕士学位论文.2003.
    [166]吴少明.高固含聚氨酯分散体的合成以及在真空吸塑胶中的应用[D].华南理工大学硕士学位论文.2010.
    [167]董祥亭.水性聚氨酯的制备及其对复合薄膜的粘接作用[D].南京工业大学硕士学位论文.2003.
    [168]吴国志,陈建兵.水性聚氨酯胶粘剂的研究及应用现状[J].池州师专学报.2005.19(5):47-50.
    [169]王焕,徐恒志,鲍俊杰,许戈文.水性聚氨酯胶粘剂应用进展[J].涂料技术与文摘.2009.(12):10-14.
    [170]康永,柴秀娟.合成革用水溶性改性聚氨酯的研究与应用进展[J].精细化工原料及中间体.2011.(10):21-23.
    [171]康永,柴秀娟.合成革用水溶性改性聚氨酯的研究与应用进展[J].精细化工原料及中间体.2011.(11):16-20.
    [172]江连营.物理改性腈纶抗起毛起球性能研究[D].东华大学硕士学位论文.2006.
    [173]黄松.水性含氟聚氨酯的合成及膜性能的研究[D].苏州大学硕士学位论文.2007.
    [174] M. F. Butler. Growth of Solutal Ice Dendrites Studied by Optical Interferometry[J]. Crystalgrowth and design.2002.2(1):59-66.
    [175] M. F. Butler. Freeze Concentration of Solutes at the Ice/Solution Interface Studied by OpticalInterferometry[J]. Crystal growth and design.2002.2(6):541-548.
    [176] M. F. Butler. Instability Formation and Directional Dendritic Growth of Ice Studied byOptical Interferometry[J]. Crystal growth and design.2001.1(3):213-223.
    [177] C. Chan, C. Cheng, M. F. Yuen. Electrical Properties of Polymer Composites Prepared bySintering a Mixture of Carbon Black and Ultra-High Molecular Weight PolyethylenePowder[J]. Polymer Engineering and Science.1997.37:1127-1136.
    [178] C. J. Capozzi, R. A. Gerhardt. Novel percolation mechanism in PMMA matrix compositescontaining segregated ITO nanowire networks[J]. Advanced Functional Materials.2007.17(14):2515-2521.
    [179] B. Zhang, X. M. Dong, R. M. Fu, B. Zhao, M. Q. Zhang. The sensibility of the compositesfabricated from polystyrene filling multi-walled carbon nanotubes for mixed vapors[J].Composites Science and Technology.2008.68(6):1357-1362.
    [180] E. Segal, R. Tchoudakov, I. Mironi-Harpaz, M. Narkis, A. Siegmann. Chemical sensingmaterials based on electrically-conductive immiscible polymer blends[J]. PolymerInternational.2005.54(7):1065-1075.
    [181] Y. Y. Xiu, Z. P. Zhang, D. N. Wang. Hydrogen bonding and crystallization behaviour ofsegmented polyurethaneurea:effects of hard segment concentration[J]. Polymer.1992.33:1335-1338.
    [182] B. K. Kim, T. K. Kim, H. M. Jeong. Aqueous dispersion of polyurethane anionomers fromH12MDI/IPDI,PCL,BD,and DMPA[J]. J. Appl. Polym. Sci.1994.53:371-378.
    [183] Ramesh, Radhakrishan Ganga. Polyurethane anionomers using phenolphthalins[J]. J. Appl.Polym. Sci.1996.60(2273-2277).
    [184] G. N. Mahesh, P. Banu, R. Ganga. Investigations on polyurethane ionomers.II.3,4-dihydroxycinnamic acid-based anionomers[J]. J. Appl. Polym. Sci.1997.65:2105-2109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700