用户名: 密码: 验证码:
新型高氮高能化合物理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高氮高能化合物作为新一代高能量密度材料(HEDM),广泛应用于高能钝感炸药、推进剂、以及气体发生剂等方面,几乎涉及含能材料的各个领域。对其结构和性能开展较为系统和深入的研究有重要意义。本文运用当代理论和计算化学方法,对新型高氮化合物(氮杂环化合物、氮杂笼状化合物、全氮化合物和三嗪胍盐)的几何结构、电子结构、爆轰性能以及晶体结构等进行计算研究。论文主要包括三部分内容:
     1.通过分子设计,采用氮原子取代典型硝胺HMX(环四甲撑四硝胺)、双环HMX(顺式-2,4,6,8-四硝基四氮杂双环[3.3.0]辛烷)、TNAD(反式-1,4,5,8-四硝基四氮杂双环[4.4.0]癸烷)环上的CH基团,并增加硝基数目,提高分子的氮含量和氧平衡。研究分子结构、稳定性和能量变化规律,并兼顾稳定性和爆轰性能的要求,从上述衍生物中筛选出10种具备研制潜力的HEDM候选物。
     基于密度泛函理论方法和分子力学方法,获得了2,4,6,8-四硝基-1,3,5,7-四氮杂立方烷(TNTAC)的优化构型、生成焓、晶体结构、以及爆速和爆压等性质;采用不同密度泛函理论方法比较了两种可能的热分解引发键(骨架C-N键和侧链C-N02键)的离解能,探讨其热解引发机理。与著名的高能化合物CL-20(六硝基六杂氮异伍兹烷)和ONC(八硝基立方烷)相比,TNTAC稳定性略低,但爆轰性能更加优越,是有较高合成价值和应用潜力的HEDM目标物。
     对4,4’,6,6’-四叠氮偶氮基-1,3,5三嗪(TAAT)和4,4’,6,6’-四叠氮-肼基-1,3,5-三嗪(TAHT)等一系列桥连三嗪化合物结构和性能的计算研究表明,叠氮基能够大幅度提高桥连三嗪化合物的生成焓;-NF2、-NO2、-N=N-和-N=N(O)-基团能有效地提高爆轰性能。桥基和三嗪环之间的p→π共轭作用有利于分子稳定。将分子稳定性或感度与电子结构和静电势参数相关联,发现当强吸电子基团-NF2和-NO2引入三嗪环时,分子表面正负静电势平衡程度降低,分子稳定性降低。综合考虑爆轰性能与稳定性,在系列衍生物中筛选出三种具有优良爆轰性能与较低感度的潜在HEDM.
     采用密度泛函理论方法,对已合成的9种N5+盐的几何结构、电子结构、稳定性和能量性能等进行了研究。结果表明(N5)2SnF6、N5PF6、N5BF4和N5SO3F盐在室温下不但具有一定的稳定性,而且爆炸时释放的能量比Pb(N3)2大,是具有开发和应用前景的HEDM候选物。另外对一系列多叠氮胺N-(N3)n (n=1-6)的结构和性质进行了研究,为实验合成新的全氮化合物提供理论指导。
     2.选择偶氮三嗪TAAT和TAHT为研究对象,首次对它们的晶体能带结构和性能进行周期性量子化学计算,并探讨了压力的影响。
     运用CASTEP程序包中的固体密度泛函方法优化晶体结构,计算能带结构。发现LDA/CA-PZ方法较GGA/PW91和GGA/RPBE方法更适用于研究TAAT和TAHT晶体;首次报道了TAAT和TAHT的前沿能带、带隙和态密度及其与感度等性能的关系。计算结果表明晶体的带隙随压力的升高整体上降低,在100GPa时,带隙几乎降低到0eV,预示分子晶体由半导体变为金属态体系。晶体的能带波动幅度随压力的增加而增大,态密度图谱越来越平滑和分散;分析Fermi能级附近导带和价带的组成,预示桥基-N=N-和-NH-NH-上的N原子是化学反应的活性中心;当静水压从0增加到100GPa时,TAAT和TAHT晶胞内分子均发生叠氮基-四唑环异构反应,并出现新的分子结构。
     3.应用色散校正的密度泛函方法(DFT-D),在B97-D/AUG-cc-PVDZ水平下对一系列三嗪胍盐的分子内氢键作用进行了深入的理论研究。通过自然键轨道理论(NBO)、分子中的原子理论(AIM)和能量分解分析(EDA)手段对氢键进行表征、并分析氢键的作用形式和本质;比较了不同阳离子如胍盐、氨基胍盐、二氨基胍盐、三氨基胍盐和胍基甲酰胺和阴离子上的取代基对氢键作用和其它能量性质的影响。计算结果表明分子内氢键来源于阴阳离子中LP(N或O)→σ*(N-H)轨道相互作用,这些氢键与其它原子构成七元或八元环,有利于分子的稳定。阴阳离子之间的相互作用能主要由静电相互作用和轨道作用贡献,色散能贡献很小。胍基甲酰胺阳离子比其它阳离子更有利于提高分子内氢键相互作用,对分子稳定性贡献较大。阴离子不同取代基对稳定性的贡献顺序为:-N02<-NF2<-N3(-ONO2)<-NH2。
The nitrogen-rich energetic compounds, well known as the fourth generation of high energy density materials (HEDM), have been widely used in almost all fields of energetic materials, such as insensitive explosives, propellants, and gas generating agents. Therefore, it is necessary to perform systematic and in-depth studies on their structure and properties. In this thesis, we used several theoretical methods to study the geometric structure, electronic structure, detonation performance, crystal structure, and other properties of nitrogen-rich energetic materials, including aza-heterocyclic compound, aza-cage compounds, all-nitrogen compounds, and triazine guanidinium salts. The contents of the dissertation can be divided mainly into three parts:
     The first part concentrates on molecular design for HEDM. By molecular modification, the CH groups in the ring of typical nitramine HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), bicyclic-HMX (cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8-tetraazabicyclo[3.3.0]octane), and TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin) are replaced by nitrogen atoms, and more nitro groups are introduced. As a result, the increment of nitrogen content and oxygen balance lead to higher density and more internal energy. The variation trends of structure, stability, and energy are discussed. Considering the requirements of HEDMs, we find ten promising HEDM candidates with good explosive performances and stability.
     Based on density functional theory (DFT) and molecular mechanics (MM) methods, the fully optimized structure, heat of formation (HOF), density, crystal structure, detonation velocity, and detonation pressure of cage compound2,4,6,8-tetranitro-1,3,5,7-tetraazacubane (TNTAC) are reported. Pyrolysis mechanism is investigated and ascertained by comparig the bond dissociation energy (BDE) of two possible trigger bonds (C-N in cage and C-NO2on side chain. In comparison with the famous cage explosives CL-20(2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) and ONC (octanitrocubane), TNTAC exhibits better detonation performance and meets the stability requirement. Therefore, TNTAC is expected to be a novel candidate of HEDM with high exploitable values.
     Computational studies on a novel series of bridged triazines such as4,4',6,6'-tetra(azido)azo-1,3,5-triazine (TAAT) and4,4',6,6'-tetra(azido)hydrazo-1,3,5-triazine (TAHT) show that HOF can be increased largely by-N3group, and-NF2,-NO2,-N=N-, and-N=N(O)-groups are effective structural units for improving the detonation performance. p→π conjugation interaction is found between the nitrogen-bridge group and the triazine ring, which makes the bridged triazine molecule stable as a whole. Taking the detonation performance and thermal stability into account, three bridged triazines are recommended as energetic insensitive explosives.
     DFT calculations have been performed on the geometrical structure, electronic structure, stability, and energetic properties of nine synthesized N5+-containing salts. The results show that (N5)2SnF6, N5PF6, N5BF4, and N5SO3F have medium stability and release much more energy than Pb(N3)2and HMX during thermal decomposition. They can be considered as potential candidates of very energetic explosives. In addition, similar studies are carried out on a series of azidamines N-(N3)n (n=1-6). The results provide some useful information for the research of novel all-nitrogen compounds.
     The second part focuses on the periodic quantum mechanics studies on TAAT and TAHT. The influence of pressure on the structures and properties has also been investigated.
     The solid DFT method in the CASTEP program is used to optimize the crystal structure and calculate band structures. The results demonstrate that LDA/CA-PZ is more reliable than GGA/RPBE and GGA/PW91for studying the polyazide crystals. Frontier band structure, band gap, and density of states (DOS) of TAAT and TAHT are reported for the first time. The correlations between them and their sensitivity are discussed in detail. The band gaps decrease generally with the increasing of pressure, and drop to nearly zero at100GPa. This indicates the molecular crystals undergo an electronic phase transition from a semiconductor to metallic systems. The band fluctuation increases with the increment of pressure, and DOS becomes more dispersed and smoother. An analysis of the valence and conduction bands near Fermi level shows that the N atoms of the bridges-N-N-and-NH-NH-act as an active center. What is more, the azide-tetrazole transformation in TAAH and TAHT molecules are observed as the pressure increases, and new structures have formed.
     The third part centers on the dispersion corrected DFT method (DFT-D) studies of the intramolecular hydrogen bonding interactions and properties of a series of nitroamino[1,3,5]triazine-based guanidinium salts at the B97-D/AUG-cc-PVDZ level. By means of natural bond orbital (NBO), atoms in molecules (AIM), and energy decomposition analysis (EDA), the hydrogen bonds are characterized, and the origin of hydrogen bond and the interaction energies are analyzed. The effect of different substituents and cations (including guanidinium, aminoguanidinium, diaminoguanidnium, triaminoguanidinium, and guanylurea cations) on the hydrogen bonding interactions and other properties are also discussed. LP(N or O)→σ*(N-H) orbital interactions are found between the cations and anions, and they are associated with a seven or eight-membered pseudo ring which enhances the molecular stability. The electrostatic and orbital interactions contribute mainly to the stability, and the dispersion energy has very small contributions. Results show that the guanylurea cation is better for improving the thermal stabilities of the ionic salts than other cations. The contributions of different substituents to the thermal stability increase in the order of-NO2<-NF2<-N3(-ONO2)<-NH2
引文
[1]Zhu W H, Zhang X W, Wei T, Xiao H M. First-principles study of crystalline mono-amino-2,4,6-trinitrobenzene,1,3-diamino-2,4,6-trinitrobenzene, and 1,3,5-triamino-2,4,6-trinitrobenzene. J. Mol. Struct. (Theochem.),2009,900:84-89
    [2]Abou-Rachid H, Hu A, Timoshevskii V, Song Y, Lussier L S. Nanoscale high energetic materials:A polymeric nitrogen chain Ng confined inside a carbon nanotube. Phys. Rev. Lett.,2008,100:196401-196404
    [3]Christe K. Recent advances in the chemistry of N5+, N5- and high-oxygen compounds. Propellants, Explos., Pyrotech.,2007,32:194-204
    [4]Byrd B, Mattson W. Computational aspects of nitrogen-rich HEDMs. Struct. Bond., 2007,125:153-194
    [5]Wang L, Warburton P, Mezey P. Theoretical prediction on the synthesis reaction pathway of N6 (C2h). J. Phys. Chem. A,2002,106:2748-2752
    [6]Zhu W H, Zhang C C, Wei T, Xiao H M. Computational study of energetic nitrogen-rich derivatives of 1,1'-and 5,5'-bridged ditetrazoles. J. Comput. Chem.,2011,32: 2298-2312
    [7]Wang F, Wang G X, Du H C, Zhang J Y, Gong X D. Theoretical studies on the heats of formation, detonation properties, and pyrolysis mechanisms of energetic cyclic nitramines. J. Phys. Chem. A,2011,115:13858-13864
    [8]Keshavarz M H. Prediction of enthalpy of fusion of non-aromatic energetic compounds containing nitramine, nitrate and nitro functional groups. propellants, explos., pyrotech., 2011,36:42-47
    [9]Wei T, Zhu W H, Zhang J, Xiao H M. DFT study on energetic tetrazolo-[1,5-b]-1, 2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J. Hazard. mater., 2010,179:581-590
    [10]Xu X J, Zhu W H, Xiao H M. Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J. Mol. Struct. (Theochem.),2008,853:1-6
    [11]Richard R M, Ball D W. Enthalpies of formation of nitrobuckminsterfullerenes: Extrapolation to C60 (NO2) 60.J. Mol. Struct. (Theochem.),2008,858:85-87
    [12]Chavez D E, Hiskey M A, Gilardi R D. Novel high-nitrogen materials based on nitroguanyl-substituted tetrazines. Org. Lett,2004,6:2889-2891
    [13]Gilardi R, Flippen-Anderson J L, Evans R. cis-2,4,6,8-tetranitro-1H,5H-2,4,6,8-tetraazabicyclo[3.3.0]octane, the energetic compound bicyclo-HMX. Acta. Cryst.,2002, Sect. E:972-974
    [14]Chavez D E, Hiskey M A, Gilardi R D.3-3'-Azobis(6-amino-1,2,4,5-tetrazine):A novel high-nitrogen energetic material. Angew. Chem. Int. Ed.,2000,39:1791-1793
    [15]肖鹤鸣.硝基化合物的分子轨道理论.北京,国防工业出版社,1994
    [16]施明达.高能量密度材料的合成的研究进展.火炸药,1992,1:19-25
    [17]Cobbledick R, Small R. The crystal structure of the-form of 1,3,5,7-tetranitro-1,3, 5,7-tetraazacyclooctane (HMX). Acta Crystallogr.,1974, B30:1918-1922
    [18]Wang F, Du. H. C, Zhang J Y, Gong X D. Comparative theoretical studies of energetic azo s-triazines. J. Phys. Chem. A,2011,115:11852-11860
    [19]Fischer A, Antonietti M, Thomas A. Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater.,2007,19:264-267
    [20]Fischer P, Fettig A, Frey W U, Henkel S, Hoier H, Kramer H E A, Roessler M, Birbaum J L. A coupled dual hydrogen bridge system-solution dynamics and crystal structure of 2-dimethylamino-4,6-bis(2-hydroxyphenyl)-1,3,5-triazine. J. Chem. Soc., Perkin Trans.2,2001,90-96
    [21]Bystrom K. The stabilization energy of 1,3,5-triazine derived from measurements of the enthalpies of combustion and sublimation. J. Chem. Thermodyn.,1982,14:865-870
    [22]Fan X W, Qiu L, Ju X H. Cage strain in nitro-substituted 1,3,5,7-tetraazacubanes. Struct. Chem.,2009,20:1039-1042
    [23]Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Phys. Chem. B,2007,111:12715-12722
    [24]Eaton P E, Zhang M X, Gilardi R, Gelber N, Iyer S, Surapaneni R. Octanitrocubane:A new nitrocarbon. Propellants, Explos., Pyrotech.,2002,27:1-6
    [25]Murray J S, Seminario J M, Lane P, Politzer P. Anomalous energy effects associated with the presence of aza nitrogens and nitro substituents in some strained systems. J. Mol. Struct. (Theochem.),1990,207:193-200
    [26]Wang K, Parrish D A, Shreeve J M.3-Azido-N-nitro-lH-1,2,4-triazol-5-amine-based energetic salts. Chem. Eur. J.,2011,17:14485-14492
    [27]Huang Y, Zhang Y, Shreeve J M. Nitrogen-rich salts based on energetic nitroaminodiazido[1,3,5] triazine and Guanazine. Chem. Eur. J.,2011,17:1538-1546
    [28]Wendler K, Thar J, Zahn S, Kirchner B. Estimating the hydrogen bond energy. J. Phys. Chem. A,2010,114:9529-9536
    [29]Klapotke T M, Stierstorfer J, Weber B. New energetic materials:Synthesis and characterization of copper 5-nitriminotetrazolates. Inorg. Chim. Acta.,2009,362: 2311-2320
    [30]Huang Y, Gao H, Twamley B, Shreeve J M. Nitroamino triazoles:nitrogen-rich precursors of stable energetic salts. Eur. J. Inorg. Chem.,2008,2560-2568
    [31]Gao H, Huang Y, Ye C, Twamley B, Shreeve J M. The synthesis of di (aminoguanidine)5-nitroiminotetrazolate:Some diprotic or monoprotic acids as precursors of energetic salts. Chem. Eur. J.,2008,14:5596-5603
    [32]Darwich C, Klapotke T M, Sabate C M.1,2,4-Triazolium-cation-based energetic salts. Chem. Eur. J.,2008,14:5756-5771
    [33]Gao H, Ye C, Gupta O D, Xiao J C, Hiskey M A, Twamley B, Shreeve J M.2,4, 5-Trinitroimidazole-based energetic salts. Chem. Eur. J.,2007,13:3853-3860
    [34]Klapotke T M, Mayer P, Schulz A, Weigand J J.1,5-Diamino-4-methyltetrazolium dinitramide. J. Am. Chem. Soc.,2005,127:2032-2033
    [35]Drake G, Hawkins T, Brand A, Hall L, Mckay M, Vij A, Ismail I. Energetic, low-melting salts of simple heterocycles. Propellants Explos. Pyrotech.,2003,28:174-180
    [36]Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding:A subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc.,2003,125:5973-5987
    [37]Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chem. Acc.,1977,46:1-10
    [38]Willer R L. Synthesis of cis-and trans-1,3,5,7-tetranitro-1,3,5,7-tetraazadecalin. J. Org. Chem,1984,49:5150-5154
    [39]Willer R L. Synthesis and characterization of high energy compounds TNAD. Propellants, Explos., Pyrotech.,1983,8:65-69
    [40]Koppes W M, Chaykovsky M, Adolph H G, Gilardi R, George C. Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes. J. Org. Chem., 1987,52:1113-1119
    [41]魏蕾,张建国,李敬玉,张同来,杨利,周遵宁.5-硝氨基四唑高氮盐的合成及性能.火炸药学报,2011,34:6-11
    [42]李志敏,张建国,张同来,舒远杰.硝基四唑及其高氮化合物.化学进展,2010,22:639-647
    [43]鲁鸣久,刘鸿,丁黎.氮杂环胺类的硝化剂及硝化反应的研究.火炸药学报,1999,3:4-7
    [44]丁黎,李英勃.三硝基氮杂环丁烷的合成方法及性能研究.火炸药学报,2002,42-44
    [45]吕春绪.绿色硝化研究进展.火炸药学报,2011,34:1-8
    [46]方东,施群荣,巩凯,刘祖亮,吕春绪.芳香族化合物绿色硝化反应研究进展.含能材料,2008,16:103-112
    [47]蔡春,吕春绪.五氧化二氮对一元取代苯的硝化研究.火炸药学报,2000,52:25-27
    [48]蔡春,吕春绪.1,4,6,9-四硝基-1,4,6,9-四氮杂双环[4.4.0]癸烷的合成新方法.火炸药学报,1999,22:17-18
    [49]Huynh M H V, Hiskey M A, Archuleta J G, Roemer E L, Gilardi R.3,6-Di (azido)-1, 2,4,5-tetrazine:a precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides. Angew. Chem., Int. Ed.,2004,43:5658-5661
    [50]Huynh M H V, Hiskey M A, Pollard C J, Montoya D P, Hartline E L, Gilardi R.4, 4',6,6'-tetra-substituted hydrazo and azo-1,3,5-triazines. J. Energ. Mater,2004,22: 217-229
    [51]Hammerl A, Hiskey M A, Holl G, Klapoetke T M, Polborn K, Stierstorfer J, Weigand J J. Azidoformamidinium and guanidinium 5,5'-azotetrazolate salts. Chem. Mater.,2005, 17:3784-3793
    [52]Hiskey M A, Goldman N, Stine J R. High-nitrogen energetic materials derived from azotetrazolate. J. Energ. Mater.,1998,16:119-127
    [53]Huynh M H V, Hiskey M A, Archuleta J G, Roemer E L. Preparation of nitrogen-rich nanolayered, nanoclustered, and nanodendritic carbon nitrides. Angew. Chem.,2005,117: 747-749
    [54]Huynh M H V, Hiskey M A, Chavez D E, Naud D L, Gilardi R D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen compound. J. Am. Chem. Soc.,2005,127:12537-12543
    [55]Gao H, Wang R, Twamley B, Hiskey M A, Shreeve J M. 3-Amino-6-nitroamino-tetrazine (ANAT)-based energetic salts. Chem. Commun.,2006, 4007-4009
    [56]Guo Y, Gao H, Twamley B, Shreeve J M. Energetic nitrogen rich salts of N, N-bis [1 (2) H-Tetrazol-5-yl] amine. Adv. Mater.,2007,19:2884-2888
    [57]Joo Y H, Twamley B, Garg S, Shreeve J M. Energetic nitrogen-rich derivatives of 1, 5-diaminotetrazole. Angew. Chem., Int. Ed.,2008,47:6236-6239
    [58]Singh R, Gao H, Meshri D, Shreeve J. Nitrogen-rich heterocycles. Struct. Bond,2007, 125:35-83
    [59]Ye C, Gao H, Boatz J A, Drake G W, Twamley B, Shreeve J M. Polyazidopyrimidines: High-energy compounds and precursors to carbon nanotubes. Angew. Chem.,Int. Ed., 2006,45:7262-7265
    [60]Huang Y, Zhang Y, Shreeve J M. Nitrogen-rich salts based on energetic nitroaminodiazido [1,3,5] triazine and guanazine. Chem. Eur. J.,2011,17:1538-1546
    [61]Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants, Explos., Pyrotech.,1997,22:249-255
    [62]Zhang M X, Eaton P E, Gilardi R. Hepta-and Octanitrocubanes. Angew. Chem., Int. Ed.,2000,39:401-404
    [63]Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes:Advanced high-density, high-energy materials. Adv. Mater,2000,12:1143-1148
    [64]Eaton P E, Xiong Y, Gilardi R. Systematic substitution on the cubane nucleus. Synthesis and properties of 1,3,5-trinitrocubane and 1,3,5,7-tetranitrocubane. J. Am. Chem. Soc.,1993,115:10195-10202
    [65]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [66]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. J. Phys. Chem. A, 2006,110:5929-5933
    [67]Xu B, Li L, Sun L, Tian A. Theoretical study on the structures and properties of the isomers of Nn(CH)8-nH8 (n= 0-7). J. Mol. Struct. (Theochem.),2008,870:77-82
    [68]Jursic B. Structural, energetic, and vibrational features of azacubanes as energetic materials studied with density functional theory methods. J. Mol. Struct. (Theochem.), 2000,530:21-30
    [69]Gejji S P, Patil U N, Dhumal N R. Molecular electrostatic potentials and electron densities in nitrocubanes C8H8-α(NO2)α (α=1-8):ab initio and density functional study. J. Mol. Struct. (Theochem.),2004,681:117-127
    [70]Patil U N, Dhumal N R, Gejji S P. Theoretical studies on the molecular electron densities and electrostatic potentials in azacubanes. Theor. Chem. Acc.,2004,112:27-32
    [71]Vij A, Wilson W W, Vij V, Tham F S, Sheehy J A, Christe K O. Polynitrogen chemistry, synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc.,2001,123:6308-6313
    [72]Wilson W W, Christe K O, Vij A, Vij V, Tham F S. Synthesis and structural characterization of nitrogen containing high energy density materials. Storming Media. 2002.
    [73]stmark H, Wallin S, Brinck T, Carlqvist P, Claridge R, Hedlund E, Yudina L. Detection of pentazolate anion (cyclo-N5-) from laser ionization and decomposition of solid p-dimethylaminophenylpentazole. Chem. Phys. Lett.,2003,379:539-546
    [74]Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, Boehler R. Single-bonded cubic form of nitrogen. Nature materials,2004,3:558-563
    [75]Zhao J F, Li N, Li Q S. A kinetic stability study of MN5 (M= Li, Na, K, and Rb). Theor. Chem. Acc.,2003,110:10-18
    [76]Duan H, Li Q. A series of novel aromatic compounds with a planar N6 ring. Chem. Phys. Lett.,2006,432:331-335
    [77]唐敖庆.量子化学.科学出版社,北京,1982
    [78]徐光宪,黎乐民,王德民.量子化学-基本原理和从头算法.科学出版社,北京,1985
    [79]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys. Rev. A,1965,140:1133-1138
    [80]Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev.,1964,136:864-871
    [81]Perdew J P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B,1986,33:8822
    [82]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,1988,38:3098
    [83]Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785
    [84]Woon D E, Dunning T H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys.,1993,98: 1358-1371
    [85]Gill P M, Johnson B G, Pople J A, Frisch M J. The performance of the Becke-Lee-Yang-Parr (BLYP) density functional theory with various basis sets. Chem. Phys. Lett.,1992,197:499-505
    [86]Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev.,1988,88:899-926
    [87]Glendening E, Badenhoop J, Reed A, Carpenter J, Bohmann J, Morales C, Weinhold F. NBO, version 5.0, Theoretical Chemistry Institute, University of Wisconsin:Madison, WI, 2001
    [88]Chocholousova J, Spirko V, Hobza P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O-HO and improper blue-shifted C-HO hydrogen bonds. Phys. Chem. Chem. Phys.,2003,6:37-41
    [89]Hobza P, Havlas Z. Improper, blue-shifting hydrogen bond. Theor. Chem. Acc.,2002, 108:325-334
    [90]Hermansson K. Blue-shifting hydrogen bonds. J. Phys. Chem. A,2002,106: 4695-4702
    [91]Sosa G L, Peruchena N M, Contreras R H, Castro E A. Topological and NBO analysis of hydrogen bonding interactions involving C-H…O bonds. J. Mol. Struct. (Theochem.), 2002,577:219-228
    [92]Bader, R. F. W. Atoms in molecules:A quantum theory. Clarendon:Oxford, England, 1990
    [93]Bader R F W. A quantum theory of molecular structure and its applications. Chem. Rev.,1991,91:893-928
    [94]Materials Studio 4.4, Accelrys Inc., San Diego, CA,2008
    [95]Mayo S L, Olafson B D, Goddard W A. DREIDING:A generic force field for molecular simulations. Journal of Physical Chemistry,1990,94:8897-8909
    [96]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41:7892-7895
    [97]Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.,1992,64:1045-1097
    [98]Hill T. Introduction to statistical thermodynamic addison, Wesley, New York,1960,
    [99]McQuarrie D A, Statistical thermodynamics. Harper and Row, New York,1973. [100] Sears, F W, Salinger, G L. Thermodynamics, kinetic theory and statistical thermodynamics. Addison-Wesley Publishing Co.:Reading, MA,1976.
    [101]Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O Explosives. J. Chem. Phys,1968,48:23-35
    [102]孙业斌,惠君明,曹欣茂.军用混合炸药.兵器工业出版社,1995
    [1]Cobbledick R E, Small R W H. The crystal structure of the form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX). Acta. Crystallogr.,1974, B30: 1918-1922
    [2]Cohen N S, Strand L D. Nitramine propellants. U.S. Patent 4092188,1978
    [3]Gilardi R. In chemistry of energetic materials; Olah, G A. and Squire, D. R., Eds, Academic Press, Inc., San Diego, CA,1991
    [4]肖鹤鸣.硝基化合物的分子轨道理论.北京,国防工业出版社,1994
    [5]Zenin A J. HMX and RDX:Combustion mechanism and influence on modern double-base propellant combustion. J. Propul. Power.,1995,11,752-758
    [6]Manning T, Strauss B, Prezelski J P, Moy S. High energy TNAZ, nitrocellulose gun propellant. U.S. Patent 5798481,1998
    [7]Jalovy Z,Zeman S, Suceska M,Vavra P, Dudek K, Rajic M.1,3,3-trinitroazetidine (TNAZ). Part I. Syntheses and properties. J. Energ. Mater.,2001,19:219-239
    [8]Balakrishnan VK, Halasz A, Hawari J. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20:New insights into degradation pathways obtained by the observation of novel intermediates. Hawari. Environ. Sci. Technol.,2003,37: 1838-1843
    [9]Willer R. Synthesis of cis-and trans-1,3,5,7-tetranitro-1,3,5,7-tetraazadecalin. J. Org. Chem.,1984,49:5150-5154
    [10]Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants, Explos., Pyrotech.,1997,22:249-255
    [11]Qiu L, Xiao H M. Molecular dynamics study of binding energies, mechanical properties, and detonation performances of bicyclo-HMX-based PBXs. J. Hazard. Mater., 2009,164:329-336
    [12]Koppes W M, Chaykovsky M, Adolph H G, Gilardi R, George C. Synthesis and structure of some peri-substituted 2,4,6,8-tetraazabicyclo [3.3.0] octanes. J. Org. Chem., 1987,52:1113-1119
    [13]Jaidann M, Roy S, Abou-Rachid H, Lussier L S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J. Hazard. Mater.,2010, 176:165-173
    [14]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [15]Zhang J, Oxley J, Smith J, Bedford C, Chapman R. Mass spectral fragmentation pathways in cyclic difluoramino and nitro compounds. J. Mass Spectrom.,2000,35: 841-852
    [16]Wang G X, Shi C H, Gong X D, Xiao H M. Theoretical Investigation on structures, densities, detonation properties, and the pyrolysis mechanism of the derivatives of HNS. J. Phys. Chem. A,2009,113:1318-1326
    [17]Xu X J, Xiao H M, Ju X H, Gong X D, Zhu W H. Computational studies on polynitrohexaazaadmantanes as potential high energy density materials. J. Phys. Chem. A, 2006,110:5929-5933
    [18]Wang G X, Xiao H M, Xu X J, Ju X H. Detonation velocities and pressures, and their relationships with electric spark sensitivities for nitramines. Propellants, Explos., Pyrotech., 2006,31:102-109
    [19]Wang G, Xiao H, Ju X, Gong X. Calculation of detonation velocity, pressure, and electric sensitivity of nitro arenes based on quantum chemistry. Propellants, Explos., Pyrotech.,2006,31:361-368
    [20]Fan X W, Ju X H, Xiao H M, Qiu L. Theoretical studies on heats of formation, group interactions, and bond dissociation energies in neopentyl difluoroamino compounds. J. Mol. Struct. (Theochem.),2006,801:55-62
    [21]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [22]Qiu L, Xiao H M, Ju X H, Gong X D. Theoretical study of the structures and properties of cyclic nitramines:Tetranitrotetraazadecalin (TNAD) and its isomers. Int. J, Quantum Chem.,2005,105:48-56
    [23]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT,2004
    [24]Wei T, Zhu W H, Zhang J, Xiao H M. DFT study on energetic tetrazolo-[1, 5-b]-1,2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J. Hazard. Mater.,2010,179:581-590
    [25]Wei T, Zhu W H, Zhang X W, Li Y F, Xiao H M. Molecular design of 1,2,4, 5-tetrazine-based high-energy density materials. J. Phys. Chem. A,2009,113:9404-9412
    [26]Fan X W, Ju X H, Xiao H M. Density functional theory study of piperidine and diazocine compounds. J. Hazard. Mater.,2008,156:342-347
    [27]Scott A, Radom L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic configuration interaction, Density Functional Theory, and Semiempirical Scale factors. J. Phys. Chem,1996,100:16502-16513
    [28]Glendening, E. D, Badenhoop, J. K, Reed, A. E, Carpenter, J. E, Bohmann, J. A, Morales, C. M, Weinhold, F. NBO version 5.0, Theoretical Chemistry Institute; University of Wisconsin, Madison, WI,2001
    [29]Hehre W, Radom L, Schleyer P, Pople J. A. Ab Initio molecular orbital theory, Wiley, New York,1986.
    [30]Ju X H, Li Y M, Xiao H M. Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J. Phys. Chem. A,2005,109:934-938
    [31]Chen P C, Chieh Y C, Tzeng S C. Density functional calculations of the heats of formation for various aromatic nitro compounds. J. Mol. Struct. (Theochem.),2003,634: 215-224
    [32]Chen Z X, Xiao J M, Xiao H M, Chiu Y N. Studies on heats of formation for tetrazole derivatives with density functional theory B3LYP method. J. Phys. Chem. A,1999,103: 8062-8066
    [33]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods. J. Phys. Org. Chem.,2001,14:583-588
    [34]Lide D R. CRC Handbook of chemistry and physics. CRC Press LLC, Boca Raton, Florida,2002
    [35]Curtiss L A, Raghavachari K, Redfern P C, Pople J A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys., 1997,106:1063-1079
    [36]Ochterski J W, Petersson G A, Montgomery J A. A complete basis set model chemistry. V. Extensions to six or more heavy atoms. J. Chem. Phys.,1996,104: 2598-2619
    [37]Jursic B. Computing the heat of formation for cubane and tetrahedrane with density functional theory and complete basis set ab initio methods. J. Mol. Struct. (Theochem.), 2000,499:137-140
    [38]Kamlet M J, Jacobs S J. Chemistry of Detonations. I. A simple method for calculating detonation properties of C-H-N-O Explosives. J. Chem. Phys.,1968,48:23-35
    [39]Rice B M, Hare J J, Byrd E F C. Accurate predictions of crystal densities using quantum mechanical molecular volumes. J. Phys. Chem. A,2007,111:10874-10879
    [40]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater.,2007,141:280-288
    [41]Politzer P, Murray J S. Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds:Applications to impact sensitivities. Mole. Struct.,1996,376: 419-424
    [42]Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu Z. Quantities, units and symbols in physical chemistry. Blackwell Scientific Publications:Oxford,1988
    [43]Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Acc. Chem. Res.,2003,36:255-263
    [44]Patil U N, Dhumal N R, Gejji S P. Theoretical studies on the molecular electron densities and electrostatic potentials in azacubanes. Theor. Chem. Acc.,2004,112:27-32
    [45]Chavez D E, Hiskey M A, Gilardi R D. Novel high-nitrogen materials based on nitroguanyl-substituted tetrazines. Org. Lett.,2004,6:2889-2891
    [46]Chavez D E, Hiskey M A, Gilardi R D.3-3'-Azobis(6-amino-1,2,4,5-tetrazine) A novel high-nitrogen energetic material. Angew. Chem. Int. Ed.,2000,39:1791-1793
    [47]Zhou Y, Long X, Shu Y. Theoretical studies on the heats of formation, densities, and detonation properties of substituted s-tetrazine compounds. J. Mole. Model.,2010,16: 1021-1027
    [48]Pitzer K S. Energy levels and thermodynamic functions for molecules with internal rotation:II. Unsymmetrical tops attached to a rigid frame. J. Chem. Phys.,1946,14: 239-243
    [49]Slanina Z. Multimolecular clusters and their isomerism. Part 14. Breakdown of the conventional formula for the partition function of free internal rotation. J. Phys. Chem., 1982,86:4782-4786
    [50]Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater.,2009,161:589-607
    [51]Gilardi R, Flippen-Anderson J L, Evans R. Cis-2,4,6,8-tetranitro-1H,5H-2,4,6, 8-tetraazabicyclo[3.3.0]octane, the energetic compoundbicyclo-HMX'. Acta. Cryst.,2002, Sect. E:972-974
    [52]施明达.高能量密度材料的合成的研究进展.火炸药,1992,1:19-25
    [53]Willer R L. Synthesis and characterization of high energy compounds TNAD. Propellants, Explos., Pyrotech.,1983,8:65-69
    [54]Fried L E, Manaa M R, Pagoria P F, Simpson R L. Design and synthesis of ennergetic materials 1. Annu. Rev. Mater. Res.,2001,31:291-321
    [55]Kamlet M J, Adolph H G. The relationship of impact sensitivity with structure of organic high explosives. II. Polynitroaromatic explosives. Propellants, Explos., Pyrotech., 1979,4:30-34
    [56]Harris N J, Lammertsma K J. Ab Initio density functional computations of conformations and bond dissociation energies for hexahydro-1,3,5-trinitro-1,3,5-triazine. Am. Chem. Soc.,1997,119:6583-6589
    [57]Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. (Theochem.), 2002,583:69-72
    [58]Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. (Theochem.),1996,370:11-16
    [59]Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    [60]Duan H, Li Q. A series of novel aromatic compounds with a planar N6 ring. Chem. Phys. Lett.,2006,432:331-335
    [61]Chung G, Schmidt M W, Gordon M S. An Ab Initio study of potential energy surfaces for N8 Isomers. J. Phys. Chem. A,2000,104:5647-5650
    [1]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [2]Xu X J, Xiao H M, Gong X D, Ju X H, Chen Z X. Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanisms for polynitroadamantanes. J. Phys. Chem. A,2005,109:11268-11274
    [3]Veith M. Cage compounds with main-group metals. Chem. Rev.,1990,90:3-16
    [4]Sun C H, Zhao X Q, Li Y C, Pang S P. Synthesis of two new cage molecules containing trinitromethyl group. Chin Chem Lett,2010,21:572-575
    [5]Marchand A P, Huang C, Kaya R, Baker A D, Jemmis E D, Dixon D A. Photoelectron spectra and electronic structures of substituted pentacyclo [5.4.0.02,6.03,10.05,9] undecanes. J. Am. Chem. Soc.,1987,109:7095-7101
    [6]Eaton P E, Gilardi R L, Zhang M X. Polynitrocubanes:Advanced high-density, high-energy materials. Adv. Mater,2000,12:1143-1148
    [7]Zhang M X, Eaton P E, Gilardi R. Hepta-and octanitrocubanes. Angew. Chem. Int. Edit.,2000,39:401-404
    [8]Simpson R, Urtiew P, Ornellas D, Moody G, Scribner K, Hoffman D. CL-20 performance exceeds that of HMX and its sensitivity is moderate. Propellants, Explos., Pyrotech.,1997,22:249-255
    [9]Richard R, Ball D. Short communication:Density functional calculations on the thermodynamic properties of a series of nitrosocubanes having the formula C8H8-x (NO)x(x= 1-8). J. Hazard. Mater.,2009,164:1552-1555
    [10]Richard R, Ball D. B3LYP calculations on the thermodynamic properties of a series of nitroxycubanes having the formula C8H8-x(NO3)X (x= 1-8). J. Hazard. Mater.,2009,164: 1595-1600
    [11]Eaton P E. Cubanes:Starting materials for the chemistry of the 1990s and the new century. Angew. Chem. Int. Edit.1992,31:1421-1436
    [12]Kybett B D, Carroll S, Natalis P, Bonnell D, Margrave J, Franklin J L. Thermodynamic properties of cubane. J. Am. Chem. Soc.,1966,88:626-626
    [13]Patil U N, Dhumal N R, Gejji S P. Theoretical studies on the molecular electron densities and electrostatic potentials in azacubanes. Theor. Chem. Acc.,2004,112:27-32
    [14]Jursic B. Structural, energetic, and vibrational features of azacubanes as energetic materials studied with density functional theory methods. J. Mol. Struct. (Theochem.), 2000,530:21-30
    [15]Dhumal N R, Patil U N, Gejji S P. Molecular electrostatic potentials and electron densities in nitroazacubanes. J. Chem. Phys,2004,120:749-755
    [16]Murray J S, Seminario J M, Politzer P. Effects of the simultaneous presence of nitro and amine substituents in cubane and some azacubanes. Struc. Chem.,1991,2:153-166
    [17]Murray J S, Seminario J M, Lane P, Politzer P. Anomalous energy effects associated with the presence of aza nitrogens and nitro substituents in some strained systems. J. Mol. Struct. (Theochem.),1990,207:193-200
    [18]Fan X W, Qiu L, Ju X H. Cage strain in nitro-substituted 1,3,5,7-tetraazacubanes. Struc. Chem.,2009,20:1039-1042
    [19]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT,2004
    (20)Wei T, Zhu W H, Zhang J, Xiao H M. DFT study on energetic tetrazolo-[1,5-b]-1, 2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J. Hazard. mater., 2010,179:581-590
    (21)Fan X W, Ju X H, Xiao H M. Density functional theory study of piperidine and diazocine compounds. J. Hazard. Mater.,2008,156:342-347
    (22)Fan X W, Ju X H, Xiao H M, Qiu L. Theoretical studies on heats of formation, group interactions, and bond dissociation energies in neopentyl difluoroamino compounds. J. Mol. Struct. (Theochem.),2006,801:55-62
    (23)Wei T, Zhu W, Zhang X, Li Y F, Xiao H. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J. Phys. Chem. A,2009,113:9404-9412
    (24)Wang G X, Gong X D, Liu Y, Xiao H M. A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols. Int. J. Quant. Chem.,2010,110:1691-1701
    (25)Glendening, E, Badenhoop, J, Reed, A, Carpenter, J, Bohmann, J, Morales, C, Weinhold, F. NBO, version 5.0, Theoretical Chemistry Institute, University of Wisconsin: Madison, WI,2001
    (26)McLean A D, Chandler G S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11-18. J. Chem. Phys,1980,72:5639
    (27)Woon D E, Dunning T H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys,1993,98:1358-1371
    (28)Ju X H, Li Y M, Xiao H M. Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J. Phys. Chem. A,2005,109:934-938
    (29)Chen P C, Chieh Y C, Tzeng S C. Density functional calculations of the heats of formation for various aromatic nitro compounds. J. Mol. Struct. (Theochem.),2003,634: 215-224
    (30)Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2009,114:498-503
    (31)Lide, D. R. CRC Handbook of Chemistry and physics. CRC Press LLC:Boca Raton, Florida,2003-2004
    (32)Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    (33)Politzer P, Murray J S. Relationships between dissociation energies and electrostatic potentials of C-NO2 bonds:applications to impact sensitivities. Mole. Struct.,1996,376: 419-424
    (34)Mills, I, Cvitas, T, Homann, K, Kallay, N, Kuchitsu, Z. Quantities, units and symbols in physical chemistry. Blackwell Scientific Publications, Oxford.1988
    (35)Blanksby S J, Ellison G B. Bond dissociation energies of organic molecules. Acc. Chem. Res.,2003,36:255-263
    (36)Baur W H, Kassner D. The perils of Cc:Comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr., Sect. B:Struct. Sci., 1992,48:356-369
    (37)Wilson A J C. Space groups rare for organic structures. I. Triclinic, monoclinic and orthorhombic crystal classes. Acta Crystallogr., Sect. A:Found. Crystallogr.,1988,44: 715-724
    (38)Mighell A D, Himes V L, Rodgers J. Space-group frequencies for organic compounds. Acta Cryst. Sect. A:Found. Crystallogr.,1983,39:737-740
    (39)Materials Studio 4.4, Accelrys Inc., San Diego, CA,2008
    (40)Wang G X, Shi C H, Gong X D, Zhu W H, Xiao H M. Packing structures and periodic band calculations on DPO (2,5-dipicryl-1,3,4-oxadiazole). J. Hazard. Mater.,2009,169: 813-818
    (41)Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. First principles methods using CASTEP. Z. Kristallogr.,2005,220:567-570
    (42)Hamann D. Generalized norm-conserving pseudopotentials. Phys. Rev. B,1989,40: 2980-2987
    (43)Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.,1992,64:1045-1097
    (44)The Cambridge crystallographic data center, CCDC-127763
    (45)Fukui, K. Theory of orientation and stereoselection, reactivity and structure, concepts in organic chemistry, Springer, Berlin,1975
    (46)Zhou Z, Parr R G. Absolute hardness as a measure of aromaticity. Tetrahedron Lett, 1988,29:4843-4846
    (47)Ju X H, Wang Z Y, Yan X F, Xiao H M. Density functional theory studies on dioxygen difluoride and other fluorine/oxygen binary compounds:Availability and shortcoming. J. Mol. Struct. (Theochem.),2007,804:95-100
    (48). Hoffmanx R. Symmetry requirements for the stabilization of one class of diradicals. J. Chem. Soc. D,1969,240-241
    (49)R. Hoffmann, Solids and Surfaces:A chemist's view of bonding in the extended structures. VCH Publishers, New York,1988
    (50)Kortus J, Pederson M R, Richardson S L. Density functional-based prediction of the electronic, structural, and vibrational properties of the energetic molecule:octanitrocubane. Chem Phys. Lett.,2000,322:224-230
    (51)Ju X H, Xiao H M, Xia Q Y. A periodic DFT approach to octanitrocubane crystal. Chem. Phys. Lett.,2003,382:12-18
    (52)Scott A, Radom L. Harmonic Vibrational Frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem,1996,100:16502-16513
    (53)Zhang J, Xiao H M. Computational studies on the infrared vibrational spectra, thermodynamic properties, detonation properties, and pyrolysis mechanism of octanitrocubane. J. Chem. Phys.,2002,116:10674-10683
    (54)Qiu L M, Ye D Y, Wei W, Chen K H, Hou J X, Zheng J, Gong X D, Xiao H M. DFT studies toward the design and properties of high-energy density hydrocarbon fuel. J. Mol. Struct. (Theochem.),2008,866:63-74
    (55)Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. A,2006,110: 1005-1013
    (56)Politzer P, Murray J S, Grice M E, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Mol. Phys,1997,91:923-928
    (57)Keshavarz M H. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds. J. Hazard. Mater.,2006,136:145-150
    (58)Abou-Rachid H, Song Y, Hu A, Dudiy S, Zybin S V, Goddard W A. Predicting solid-state heats of formation of newly synthesized polynitrogen materials by using quantum mechanical calculations. J. Phys. Chem. A,2008,112:11914-11920
    (59)Xu X J, Zhu W H, Xiao H M. Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J. Mol. Struct. (Theochem.),2008,853:1-6
    (60)Mayo S L, Olafson B D, Goddard W A. Dreiding:A generic force field for molecular simulations. J. Phys. Chem.,1990,94:8897-8909
    (61)Xu X J, Zhu W H, Xiao H M. Molecular packing prediction and periodic calculations on three polynitroadamantanes as potential high energy density compounds. Chin. J. Chem.,2008,26:602-606
    (62)Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. (Theochem.), 2002,583:69-72
    (63)Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. (Theochem.),1996,370:11-16
    (64)Chung G, Schmidt M W, Gordon M S. An Ab Initio study of potential energy surfaces for N8 Isomers. J. Phys. Chem. A,2000,104:5647-5650
    (65)Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater.,2009,161:589-607
    [1]Joo Y H, Twamley B, Garg S, Shreeve J M. Energetic nitrogen-rich derivatives of 1,5-diaminotetrazole. Angew. Chem., Int. Ed.,2008,47:6236-6239
    [2]Singh R, Gao H, Meshri D, Shreeve J. Nitrogen-rich heterocycles. Struct. Bond,2007, 125:35-83
    [3]Fischer A, Antonietti M, Thomas A. Growth confined by the nitrogen source:Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv. Mater., 2007,19:264-267
    [4]Gao H, Wang R, Twamley B, Hiskey M A, Jean'ne M S. 3-Amino-6-nitroamino-tetrazine (ANAT)-based energetic salts. Chem. Commun.,2006, 4007-4009
    [5]Huynh M H V, Hiskey M A, Chavez D E, Naud D L, Gilardi R D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen CN compound. J. Am. Chem. Soc.,2005,127:12537-12543
    [6]Huynh M H V, Hiskey M A, Chavez D E, Gilardi R D. Preparation, characterization, and properties of 7-nitrotetrazolo [1,5-f] furazano [4,5-b] pyridine 1-oxide. J. Energ. Mater., 2005,23:99-106
    [7]Miller D R, Swenson D C, Gillan E G. Synthesis and structure of 2,5,8-triazido-s-heptazine:An energetic and luminescent precursor to nitrogen-rich carbon nitrides. J. Am. Chem. Soc.,2004,126:5372-5373
    [8]Hammerl A, Klapoltke T M, Nolth H, Warchhold M. [N2H5]+2 [N4C-N=N-CN4]2-:A new high-nitrogen high-energetic material. Inorg. Chem,2001,40:3570-3575
    [9]Bystrom K. The stabilization energy of 1,3,5-triazine derived from measurements of the enthalpies of combustion and sublimation. J. Chem. Thermodyn.,1982,14:865-870
    [10]Fischer P, Fettig A, Frey W U, Henkel S, Hoier H, Kramer H E A, Roessler M, Birbaum J L. A coupled dual hydrogen bridge system-solution dynamics and crystal structure of 2-dimethylamino-4,6-bis(2-hydroxyphenyl)-1,3,5-triazine. J. Chem. Soc., Perkin Trans.2,2000,90-96
    [11]Gillan E G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater.,2000,12:3906-3912
    [12]Hammerl A, Klapotke T M, Rocha R. Azide-tetrazole ring-chain isomerism in polyazido-1,3,5-triazines, triazido-s-heptazine, and diazidotetrazines. Eur. J. Inorg. Chem, 2006,2210-2228
    [13]Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater.,2009,161:589-607
    [14]Loew P, Weis C. Azo-1,3,5-triazines. J. Heterocycl. Chem.,1976,13:829-833
    [15]Huynh M H V, Hiskey M A, Pollard C J, Montoya D P, Hartline E L, Gilardi R. 4,4',6,6'-tetra-substituted hydrazo-and azo-1,3,5-triazines. J. Energ. Mater,2004,22: 217-229
    [16]Hiskey M A C, D. E.; Naud, D. L. Insensitive high-nitrogen compounds. NTIS No: DE-2001-776133,2001
    [17]Novikova T S, Mel'nikova T M, Kharitonova O V, Kulagina V O, Aleksandrova N S, Sheremetev A B, Pivina T S, Khmel'nitskii L I, Novikov S S. An effective method for the oxidation of aminofurazans to nitrofurazans. Mendeleev. Commun.,1994,4:138-140
    [18]Muthurajan H, Sivabalan R, Talawar M B, Anniyappan M, Venugopalan S. Prediction of heat of formation and related parameters of high energy materials. J. Hazard. Mater., 2006,133:30-45
    [19]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater.,2007,141:280-288
    [20]Keshavarz M H. Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds. J. Hazard. Mater.,2006,136:145-150
    [21]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT,2004
    [22]Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,1988,38:3098-3100
    [23]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37:785-789
    [24]Woon D E, Dunning T H. Gaussian basis sets for use in correlated molecular calculations. Ⅲ. The atoms aluminum through argon. J. Chem. Phys.,1993,98: 1358-1371
    [25]Zheng W, Wong N B, Liang X, Long X, Tian A. Theoretical prediction of properties of triazidotri-s-triazine and its azido-tetrazole isomerism. J. Phys. Chem. A,2004,108: 840-847
    [26]Wiberg K B. Basis set effects on calculated geometries:6-311++G**vs. aug-cc-pVDZ. J. Comput. Chem.,2004,25:1342-1346
    [27]Li J. An Ab Initio Theoretical study of 2,4,6-trinitro-1,3,5-triazine, 3,6-dinitro-1,2,4,5-tetrazine, and 2,5,8-trinitro-tr-s-triazine. Propellants. Explos. Pyrotech., 2008,33:443-447
    [28]Stephens P, Devlin F, Cheeseman J, Frisch M, Rosini C. Determination of absolute configuration using optical rotation calculated using density functional theory. Org. Lett., 2002,4:4595-4598
    [29]Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F. NBO, version 5.0, Theoretical Chemistry Institute, University of Wisconsin:Madison, WI,2001
    [30]Hehre W J, Radom L, Schleyer P V R, Pople J A. Ab Initio molecular orbital Theory, Wiley, New York.1986
    [31]Chen P C, Chieh Y C, Tzeng S C. Density functional calculations of the heats of formation for various aromatic nitro compounds. J. Mol. Struct. (Theochem),2003,634: 215-224
    [32]Zhang J, Xiao H M, Gong X D. Theoretical studies on heats of formation for polynitrocubanes using the density functional theory B3LYP method and semiempirical MO methods. J. Phys. Org. Chem.,2001,14:583-588
    [33]Ju X H, Li Y M, Xiao H M. Theoretical studies on the heats of formation and the interactions among the difluoroamino groups in polydifluoroaminocubanes. J. Phys. Chem. A,2005,109:934-938
    [34]Ghule V D, Jadhav P M, Patil R S, Radhakrishnan S, Soman T. Quantum-chemical studies on hexaazaisowurtzitanes. J. Phys. Chem. A,2009,114:498-503
    [35]Fan X W, Ju X H, Xiao H M. Density functional theory study of piperidine and diazocine compounds. J. Hazard. Mater.,2008,156:342-347
    [36]Wei T, Zhu W H, Zhang X W, Li Y F, Xiao H M. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J. Phys. Chem. A,2009,113: 9404-9412
    [37]Lide, D. R. CRC Handbook of chemistry and physics. CRC Press, Boca Raton, Florida,2003-2004
    [38]Curtiss L A, Raghavachari K, Redfern P C, Pople J A. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J. Chem. Phys., 1997,106:1063-1079
    (39)Atkins, P. W. Physical chemistry.2nd ed., Oxford University Press, Oxford,1982
    [40]Politzer P, Ma Y, Lane P, Concha M C. Computational prediction of standard gas, liquid, and solid-phase heats of formation and heats of vaporization and sublimation. Int. J. Quantum Chem,2005,105:341-347
    [41]Politzer P, Murray J S, Grice M E, Desalvo M, Miller E. Calculation of heats of sublimation and solid phase heats of formation. Mol. Phys,1997,91:923-928
    [42]Byrd E F C, Rice B M. Improved prediction of heats of formation of energetic materials using quantum mechanical calculations. J. Phys. Chem. A,2006,110:1005-1013
    [43]Jaidann M, Roy S, Abou-Rachid H, Lussier L S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J. Hazard. Mater.,2010, 176:165-173
    [44]Bader R F W, Carroll M T, Cheeseman J R, Chang C. Properties of atoms in molecules:Atomic volumes. J. Am. Chem. Soc.,1987,109:7968-7979
    [45]Materials Studio 4.4, Accelrys Inc., San Diego, CA,2008
    [46]Mayo S L, Olafson B D, Goddard W A. Drieding:A generic force field for molecular simulations. Journal of Physical Chemistry,1990,94:8897-8909
    [47]Wang G X, Shi C H, Gong X D, Zhu W H, Xiao H M. Packing structures and periodic band calculations on DPO (2,5-dipicryl-1,3,4-oxadiazole). J. Hazard. Mater.,2009,169: 813-818
    [48]Xu X J, Zhu W H, Xiao H M. Theoretical predictions on the structures and properties for polynitrohexaazaadamantanes (PNHAAs) as potential high energy density compounds (HEDCs). J. Mol. Struct. (Theochem),2008,853:1-6
    [49]Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    [50]Owens F J. Calculation of energy barriers for bond rupture in some energetic molecules. J. Mol. Struct. (Theochem),1996,370:11-16
    [51]Mills I, Cvitas T, Homann K, Kallay N, Kuchitsu Z. Quantities, units and symbols in physical chemistry. Blackwell Scientific Publications, Oxford,1988
    [52]Huynh M H V, Hiskey M A, Chavez D E, Naud D L, Gilardi R D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen CN compound. J. Am. Chem. Soc.,2005,127:12537-12543
    [53]Chavez D E, Hiskey M A, Gilardi R D.3-3'-Azobis(6-amino-1,2,4,5-tetrazine) A novel high-nitrogen energetic material. Angew. Chem. Int. Ed.,2000,39:1791-1793
    [54]http:/www. webbook.nist.gov/chemistry
    [55]Murray J S, Lane P, Politzer P. Effects of strongly electron-attracting components on molecular surface electrostatic potentials:Application to predicting impact sensitivities of energetic molecules. Mole. Phys.,1998,93:187-194
    [56]Murray J S, Concha M C, Politzer P. Links between surface electrostatic potentials of energetic molecules, impact sensitivities and C-(NO2)/N-(NO2) bond dissociation energies. Mole. Phys.,2009,107:89-97
    [57]Murray J S, Lane P, Politzer P. Relationships between impact sensitivities and molecular surface electrostatic potentials of nitroaromatic and nitroheterocyclic molecules. Mole. Phys.,1995,85:1-8
    [58]Rice B M, Hare J J. A quantum mechanical investigation of the relation between impact sensitivity and the charge distribution in energetic molecules. J. Phys. Chem. A, 2002,106:1770-1783
    [59]Rice B M, Sahu S, Owens F J. Density functional calculations of bond dissociation energies for NO2 scission in some nitroaromatic molecules. J. Mol. Struct. (Theochem), 2002,583:69-72
    [60]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Theoretical studies on the structures, thermodynamic properties, detonation properties, and pyrolysis mechanisms of spiro nitramines. J. Phys. Chem. A,2006,110:3797-3807
    [1]Hammerl A, Klapoltke T M, Nolth H, Warchhold M. Inorg. Chem,2001,40: 3570-3575
    [2]Miller D R, Swenson D C, Gillan E G. Synthesis and structure of 2,5,8-triazido-s-heptazine:An energetic and luminescent precursor to nitrogen-rich carbon nitrides. J. Am. Chem. Soc.,2004,126:5372-5373
    [3]Benard D J, Linnen C, Harker A, Michels H H, Addison J B, Ondercin R. Dissociation of cyanogen azide:an alternative route to synthesis of carbon nitride. J. Phys. Chem. B, 1998,102:6010-6019
    [4]Hammerl A, Hiskey M A, Holl G, Klapoetke T M, Polborn K, Stierstorfer J, Weigand J J. Azidoformamidinium and guanidinium 5,5'-azotetrazolate salts. Chem. Mater.,2005,17: 3784-3793
    [5]Hammerl A, Klapotke T M, Noth H, Warchhold M, Holl G Synthesis, structure, molecular orbital and valence bond calculations for tetrazole azide, CHN7. Propellants Explos. Pyrotech.,2003,28:165-173
    [6]Chavez D E, Hiskey M A, Gilardi R D.3-3'-Azobis(6-amino-1,2,4,5-tetrazine) A novel high-nitrogen energetic material. Angew. Chem. Int. Ed.,2000,39:1791-1793
    [7]Jaidann M, Roy S, Abou-Rachid H, Lussier L S. A DFT theoretical study of heats of formation and detonation properties of nitrogen-rich explosives. J. Hazard. Mater.,2010, 176:165-173
    [8]Ye C, Gao H, Boatz J A, Drake G W, Twamley B, Shreeve J M. Polyazidopyrimidines: high-energy compounds and precursors to carbon nanotubes. Angew. Chem., Int. Ed.,2006, 45:7262-7265
    [9]Wieland M, Su K J, Wagner G, Brinker U, Arion V.1,2,4,5-tetrakis (diazidomethyl) benzene. Acta Cryst. Sect. C:Cryst. Struct. Commun.,2009,65:o240-o242
    [10]Stierstorfer J, Klapotke T M, Hammerl A, Chapman R D.5-Azido-lH-tetrazole-Improved synthesis, crystal structure and sensitivity data. Z. Anorg. Allg. Chem.,2008, 634:1051-1057
    [11]Wei T, Zhu W H, Zhang J, Xiao H M. DFT study on energetic tetrazolo-[1,5-b]-1,2,4,5-tetrazine and 1,2,4-triazolo-[4,3-b]-1,2,4,5-tetrazine derivatives. J. Hazard. mater.,2010,179:581-590
    [12]Wei T, Zhu W H, Zhang X W, Li Y F, Xiao H M. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J. Phys. Chem. A,2009,113: 9404-9412
    [13]Gillan E G Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater.,2000,12:3906-3912
    [14]Huynh M H V, Hiskey M A, Archuleta J G, Roemer E L, Gilardi R.3,6-Di (azido)-1,2,4,5-tetrazine:A precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides. Angew. Chem., Int. Ed.,2004,43:5658-5661
    [15]Huynh M H V, Hiskey M A, Hartline E L, Montoya D P, Gilardi R. Polyazido high-nitrogen compounds:hydrazo-and azo-1,3,5-triazine. Angew. Chem., Int. Ed.,2004, 43:4924-4928
    [16]Hammerl A, Klapotke T M, Rocha R. Azide-tetrazole ring-chain isomerism in polyazido-1,3,5-triazines, triazido-s-heptazine, and diazidotetrazines. Eur. J. Inorg. Chem, 2006,2210-2228
    [17]Huynh M H V, Hiskey M A, Chavez D E, Naud D L, Gilardi R D. Synthesis, characterization, and energetic properties of diazido heteroaromatic high-nitrogen CN compound. J. Am. Chem. Soc.,2005,127:12537-12543
    [18]Wang F, Du. H. C, Zhang J Y, Gong X D. Comparative theoretical studies of energetic azo s-triazines. J. Phys. Chem. A,2011,115:11852-11860
    [19]Olinger B, Halleck P M, Cady H H. The isothermal linear and volume compression of pentaerythritol tetranitrate (PETN) to 10 GPa (100 kbar) and the calculated shock compression. J. Chem. Phys.,1975,62:4480-4483
    [20]Lipinska-Kalita K E, Pravica M G, Nicol M. Raman scattering studies of the high-pressure stability of pentaerythritol tetranitrate, C(CH2ONO2)4. J. Phys. Chem. B, 2005,109:19223-19227
    [21]Millar D, Marshall W, Oswald I, Pulham C. High-pressure structural studies of energetic materials. Crystallogr. Rev,2010,16:115-132
    [22]Hemley R J. Effects of high pressure on molecules. Annu. Rev. Phys. Chem,2000,51: 763-800
    [23]Davidson A J, Oswald I D H, Francis D J, Lennie A R, Marshall W G, Millar D I A, Pulham C R, Warren J E, Cumming A S. Explosives under pressure-the crystal structure of y-RDX as determined by high-pressure X-ray and neutron diffraction. Cryst. Eng. Comm, 2007,10:162-165
    [24]Dong Z, Beilby N G, Huang Y, Song Y. Conformational and phase transformations of chlorocyclohexane at high pressures by raman spectroscopy. J. Chem. Phys.,2008,128: 074501-074509
    [25]Liu H, Zhao J, Wei D, Gong Z. Structural and vibrational properties of solid nitromethane under high pressure by density functional theory. J. Chem. Phys.,2006,124: 124501-124510
    [26]Sorescu D C, Rice B M, Thompson D L. Theoretical studies of the hydrostatic compression of RDX, HMX, HNIW, and PETN crystals. J. Phys. Chem. B,1999,103: 6783-6790
    [27]Qiu L, Zhu W H, Xiao J J, Xiao H M. Theoretical studies of solid bicyclo-HMX: Effects of hydrostatic pressure and temperature. J. Phys. Chem. B,2008,112:3882-3893
    [28]Qiu L, Xiao H M, Zhu W H, Xiao J J, Zhu W. Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin). J. Phys. Chem. B,2006,110:10651-10661
    [29]Byrd E F C, Rice B M. Ab Initio study of compressed 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX), cyclotrimethylenetrinitramine (RDX),2,4,6,8,10,12-hexanitrohexaazaisowurzitane (CL-20),2,4,6-trinitro-1,3, 5-benzenetriamine (TATB), and pentaerythritol tetranitrate (PETN). J. Phys. Chem C,2007, 111:2787-2796
    [30]Rice B M, Sorescu D C. Assessing a generalized CHNO intermolecular potential through ab initio crystal structure prediction. J. Phys. Chem. B,2004,108:17730-17739
    [31]Miao M S, Van Doren V, Martins J L. Density-functional studies of high-pressure properties and molecular dissociations of halogen molecular crystals. Phys. Rev. B,2003, 68:094106-094114
    [32]Morrison C A, Hunter S, Davidson A J, Pulham C R, Richardson P, Farrow M J, Gould P J, Lennie A R, Marshall W. A combined experimental and computational hydrostatic compression study of crystalline ammonium perchlorate. J. Phys. Chem. C, 2011,115:18782-18788
    [33]Mujica A, Rubio A, Munoz A, Needs R J. High-pressure phases of group-IV, III-CV, and II-CVI compounds. Rev. Mod. Phys.,2003,75:863-912
    [34]Xu X J, Zhu W H, Xiao H M. DFT Studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on CL-20 Crystal. J. Phys. Chem. B, 2007,111:2090-2097
    [35]Liu Y, Gong X D, Wang L J, Wang G X. Effect of hydrostatic compression on structure and properties of 2-diazo-4,6-dinitrophenol crystal:density functional theory studies. J. Phys. Chem. C,2011,115:11738-11748
    [36]Zhu W, Shi C, Xiao H. Density functional theory study of high-pressure behavior of crystalline hexanitrostilbene. J. Mol. Struct. (Theochem),2009,910:148-153
    [37]Cui H L, Ji G F, Chen X R, Zhu W H, Zhao F, Wen Y, Wei D Q. First-principles study of high-pressure behavior of solid β-HMX. J. Phys. Chem. A,2009,114:1082-1092
    [38]Zhu W H, Xiao J J, Ji G F, Zhao F, Xiao H M. First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. J. Phys. Chem. B,2007,111:12715-12722
    [39]Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D. High-pressure behavior of TATB crystal by density functional theory. Phys. Lett. A,2007,367:383-388
    [40]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41:7892-7895
    [41]Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C. First principles methods using CASTER 2005,220:567-570
    [42]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B,1996,54:11169-11186
    [43]Fischer T H, Almlof J. General methods for geometry and wave function optimization. J. Phys. Chem.,1992,96:9768-9774
    [44]Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett.,1980,45:566-569
    [45]Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B,1981,23:5048-5079
    [46]Zoroddu A, Bernardini F, Ruggerone P, Fiorentini V. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN:Comparison of local and gradient-corrected density-functional theory. Phys. Rev. B,2001,64:045208-045213
    [47]Mehta S, Price G, Alfe D. Ab initio thermodynamics and phase diagram of solid magnesium:A comparison of the LDA and GGA. J. Chem. Phys,2006,125: 194507-194513
    [48]Zhu W H, Zhang X W, Wei T, Xiao H M. First-principles study of crystalline mono-amino-2,4,6-trinitrobenzene, 1,3-diamino-2,4,6-trinitrobenzene, and 1,3,5-triamino-2,4,6-trinitrobenzene. J. Mol. Struct. (Theochem),2009,900:84-89
    [49]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B,1992,45:13244-13249
    [50]Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O Explosives. J. Chem. Phys.,1968,48:23-35
    [51]Zheng W, Wong N B, Liang X, Long X, Tian A. Theoretical prediction of properties of triazidotri-s-triazine and its azido-tetrazole isomerism. J. Phys. Chem. A,2004,108: 840-847
    [1]Fau S, Bartlett R J. Possible products of the end-on addition of N3- to N5+ and their stability. J. Phys. Chem. A,2001,105:4096-4106
    [2]Vij A, Wilson W W, Vij V, Tham F S, Sheehy J A, Christe K O. Polynitrogen chemistry. Synthesis, characterization, and crystal structure of surprisingly stable fluoroantimonate salts of N5+. J. Am. Chem. Soc.,2001,123:6308-6313
    [3]Nguyen M, Ha T. Theoretical study of the pentanitrogen cation (N5+). Chem. Phys. Lett.,2000,317:135-141
    [4]Christe K. Recent advances in the chemistry of N5+, N5- and high-oxygen compounds. Propellants, Explos., Pyrotech.,2007,32:194-204
    [5]Huheey J E, Keiter E A, Keiter R L. Inorganic chemistry-principles of structure and reactivity. New York, USA,1993
    [6]Lessen D, Nizkorodov S, Knupfer P, Ruchti T, Bieske E J, Maier J P. Rotational distribution of N2+ fragments from 355 nm photolysis of N4+. Chem. Phys. Lett.,1994,226: 187-192
    [7]Pahnke R, Ashworth S, Brown J. Detection of the N3 free radical by laser magnetic resonance at 6.08μm. Chem. Phys. Lett.,1988,147:179-182
    [8]Cacace F. From N2 and O2 to N4 and O4:Pneumatic chemistry in the 21st Century. Chem. Eur. J,2002,8:3838-3848
    [9]Wang L, Warburton P, Mezey P G. Theoretical prediction on the synthesis Reaction Pathway of N6 (C2h). J. Phys. Chem. A,2002,106:2748-2752
    [10]Tobita M, Bartlett R J. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A,2001,105:4107-4113
    [11]Klapotke T. Ab initio calculations of the open-chain N6 diazide molecule. J. Mol. Struct. (Theochem),2000,499:99-104
    [12]Liu Y D, Yiu P G, Guan J, Li Q S. Structures and stability of N11+ and N11- clusters. J. Mol. Struct. (Theochem),2002,588:37-43
    [13]Li Q, Zhao J. A Theoretical study on decomposition pathways of N7+and N7" Clusters. J. Phys. Chem. A,2002,106:5928-5931
    [14]Liu Y D, Zhao J F, Li Q S. Structures and stability of N7+and N7" clusters. Theor. Chem. Acc.,2002,107:140-146
    [15]Wang L J, Xu W G, Li Q S. Structures and stability of N9, N9-and N9+ clusters. Theor. Chem. Acc.,2000,104:67-77
    [16]Nguyen M T, Ha T K. Azidopentazole is probably the lowest-energy N8 species-A theoretical study. Chem. Ber,1996,129:1157-1160
    [17]Gagliardi L, Evangelisti S, Widmark P, Roos B O. A theoretical study of the N8 cubane to N8 pentalene isomerization reaction. Theor. Chem. Acc.,1997,97:136-142
    [18]Dixon D, Feller D, Christe K, Wilson W, Vij A, Vij V, Jenkins H, Olson R, Gordon M. Enthalpies of formation of gas-phase N3, N3-, N5+, and N5- from Ab Initio molecular orbital theory, stability predictions for N5+ N3- and N5+N5-, and experimental evidence for the instability of N5+N3-. J. Am. Chem. Soc.,2004,126:834-843
    [19]Duan H, Li Q. A series of novel aromatic compounds with a planar N6 ring. Chem. Phys. Lett.,2006,432:331-335
    [20]Gagliardi L. Prediction of new inorganic molecules with quantum chemical methods. Theor. Chem. Acc.,2006,116:307-315
    [21]Zhao J F, Li N, Li Q S. A kinetic stability study of MN5 (M= Li, Na, K, and Rb). Theor. Chem. Acc.,2003,110:10-18
    [22]Bittererova M, Brinck T, Ostmark H. Theoretical study of the triplet N4 potential energy surface. J. Phys. Chem. A,2000,104:11999-12005
    [23]Haiges R, Schneider S, Schroer T, Christe K. High-energy-density materials: synthesis and characterization of N5[P(N3)6], N5[B(N3)4], N5[HF2]-nHF, N5[BF4], N5[PF6], and N5 [SO3F]. Angew. Chem. Int. Ed,2004,43:4919-4924
    [24]Wilson W W, Vij A, Vij V, Bernhardt E, Christe K O. Polynitrogen chemistry. Preparation and characterization of (N5)2SnF6, N5SnF5, and N5B(CF3)4. Chem. Eur. J.2003: 2840-2844
    [25]Parr R G, Yang W, Density functional theory of atoms and molecules. Oxford University Press, Oxford,1989
    [26]Becke A D. Density-functional thermochemistry. Ⅱ. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys.,1992,97:9173-9177
    [27]Seminario J M, Politzer P. Modern density functional theory:A tool for chemistry, Elsevier, Amsterdam,1995
    [28]Vayner E, Ball D. Ab initio and density functional optimized structures, proton affinities, and heats of formation for aziridine, azetidine, pyrrolidine, and piperidine. J. Mol. Struct. (Theochem),2000,496:175-183
    [29]Fast P, Truhlar D. MC-QCISD:Multi-coefficient correlation method based on quadratic configuration interaction with single and double excitations. J. Phys. Chem. A, 2000,104:6111-6116
    [30]Redfern P C, Zapol P, Curtiss L A, Raghavachari K. Assessment of Gaussian-3 and density functional theories for enthalpies of formation of C1-C16 alkanes. J. Phys. Chem. A,2000,104:5850-5854
    [31]Curtiss L A, Raghavachari K, Redfern P C, Baboul A G, Pople J A. Gaussian-3 theory using coupled cluster energies. Chem. Phys. Lett.,1999,314:101-107
    [32]Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys.,1985,82:270-283
    [33]Yang Y, Weaver M N, Kenneth MM Jr. Assessment of the 6-31+G**+LANL2DZ. Mixed basis set coupled with density functional theory methods and the effective core potential:Prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. J. Phys. Chem. A,2009,113:9843-9851
    [34]Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F. NBO, version 5.0, Theoretical Chemistry Institute, University of Wisconsin:Madison, WI,2001
    [35]Jenkins H, Roobottom H, Passmore J, Glasser L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem,1999, 38:3609-3620
    [36]Tudela D, Diaz M, Alvaro D A, Ignacio J, Seijo L, Belsky V K. Theoretical and experimental study of tri-and tetrahalodiorganostannate (IV) salts. Solvent dependence in the reaction of dimethyltin dibromide with tetraethylammonium bromide. Organometallics, 2001,20:654-662
    [37]Fortes A, Brodholt J, Wood I, Vocadlo L, Jenkins H. Ab Initio simulation of ammonia monohydrate (NH3-H2O) and ammonium hydroxide (NH4OH). J. Chem. Phys.,2001,115: 7006-7014
    [38]Scott A, Radom L. Harmonic Vibrational Frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem,1996,100:16502-16513
    [39]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater.,2007,141:280-288
    [40]Rice B M, Hare J J, Byrd E F C. Accurate predictions of crystal densities using quantum mechanical molecular volumes. J. Phys. Chem. A,2007,111:10874-10879
    [41] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT,2004
    [42]Christe K, Wilson W. Nitrogen pentafluoride:Covalent NF5 versus ionic NF4+F- and studies on the instability of the latter. J. Am. Chem. Soc.,1992,114:9934-9936
    [43]Bondi A. Van der Waals volumes and radii J. Phys. Chem.,1964,68:441-451
    [44]Lu T Multiwfn, version 1.4. http://multiwfn.codeplex.com/
    [45]Gora R W, Sokalski W A, Leszczynski J, Pett V B. The nature of interactions in the ionic crystal of 3-pentenenitrile,2-nitro-5-oxo, ion (-1), sodium. J. Phys. Chem. B,2005, 109:2027-2033
    [46]劳允亮.起爆药化学与工艺学.北京理工大学出版社,1997
    [1]Talawar M B, Sivabalan R, Asthana S N, Singh H. Novel ultrahigh-energy materials. Combust. Explo. Shock+,2005,4:264-277
    [2]Fau S, Wilson K J, Bartlett R J. On the stability of N5+N5-, J. Phys. Chem. A,2002:106: 4639-4644
    [3]Fau S, Bartlett R J. Possible products of the end-on addition of N3- to N5+and their Stability. J. Phys. Chem. A,2001,105:4096-4106
    [4]Wang L J, Xu W G, Li Q S. Stability of N8 isomers and isomerization reaction of N8 (C2v) to N8 (Cs). J. Mol. Struct.,2000,531:135-141
    [5]Nguyen M T, Ha T K. Azidopentazole is probably the lowest-energy N8 species-A theoretical study. Chem. Ber.,1996,129:1157-1160
    [6]Lessen D, Nizkorodov S, Knupfer P, Ruchti T, Bieske E J, Maier J P. Rotational distribution of N2+fragments from 355 nm photolysis of N4+. Chem. Phy. Lett.,1994,226: 187-192
    [7]Liu Y D, Zhao J F, Li Q S. Structures and stability of N7+ and N7- clusters. Theo. Chem. Acc.,2002,107:140-146
    [8]Tobita M, Bartlett R J. Structure and stability of N6 isomers and their spectroscopic characteristics. J. Phys. Chem. A,2001,105:4107-4113
    [9]Li Q S, Wang L J, Xu W G. Structures and stability of N9, N9- and N9+ clusters. Theo. Chem. Ace.2000,104:67-77
    [10]F. Cacace. From N2 and O2 to N4 and O4:Pneumatic chemistry in the 21st century. Chem. Eur. J.,2002,8:3838-3848
    [11]Nguyen M T. Polynitrogen compounds:Structure and stability of N4 and N5 systems. Coord. Chem. Rev.,2003,244:93-113
    [12]Bittererova M, Brinck T, Ostmark H. Theoretical study of the triplet N4 potential energy surface. J. Phys. Chem. A,2000,104:11999-12005
    [13]Lee A, Law C K, Makino A. Aerothermochemical studies of energetic liquid materials: 3. Approximate determination of some thermophysical and thermochemical properties of organic azides. Combust. Flame.,1989,78:263-274.
    [14]Haiges R, Boatz J A, Vij A, Vij V, Gerken M, Schneider S, Schroer T, Yousufuddin M, Christe K O. Polyazide chemistry:Preparation and characterization of As(N3), Sb(N3)5, and [P(C6H5)4][Sb(N3)6]. Angew. Chem.,2004,116:6844-6848
    [15]Haiges R, Boatz J A, Vij A, Gerken M, Schneider S, Schroer T, Christe K O. Polyazide chemistry:Preparation and characterization of Te (N3) 4 and [P(C6H5)4]2[Te(N3)6] and evidence for [N(CH3)4][Te(N3)5]. Angew. Chem. Int. Ed.,2003, 115:6027-6031
    [16]Karaghiosoff K, Klapotke T M, Krumm B, Noth H, Schutt T, Suter M. Experimental and theoretical characterization of cationic, neutral, and anionic binary arsenic and antimony azide species. Inorg. Chem.,2002,41:170-179
    [17]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head-Gordon M, Replogle E S, Pople JA. Gaussian 03, Revision C.02. Gaussian Inc, Wallingford CT,2004
    [18]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B,1988,37: 785-789
    [19]Wolinski K, Hilton J F, Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. J. Am. Chem. Soc.,1990,112: 8251-8260
    [20]Hill T L. Introduction to statistical thermodynamic addison. Wesley, New York,1960
    [21]Scott A P, Radom L. Harmonic vibrational frequencies:An evaluation of Hartree-Fock, Moller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem.,1996,100:16502-16513
    [22]Kamlet M J, Jacobs S J. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    [23]Li Y F, Fan XW, Wang Z Y, Ju X H. A density functional study of substituted pyrazole derivatives. J. Mol. Struct.,2009,896:96-102
    [24]Ju X H, Wang Z Y, Yan X F, Xiao H M. Density functional theory studies on dioxygen difluoride and other fluorine/oxygen binary compounds:Availability and shortcoming. J. Mol. Struct.,2007,804:95-100
    [25]Zeng Y, Sun Q, Meng L P, Zheng S J, Wang D X. Theoretical calculational studies on the mechanism of thermal dissociations for RN3 (R=CH3, CH3CH2, (CH3)3CH, (CH3)3C. Chem. Phys. Lett.,2004,390:362-369
    [26]Zeng Y, Meng L P, Zheng S J, Wang D X. B3LYP calculations of the potential energy surfaces of the thermal dissociations and the triplet ground state of pyrolysis products XN (x3∑-) for halogen azides XN3 (X:F, Cl, Br, I). Chem. Phys. Lett.,2003,378:128-134
    [27]Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater.,2009,161:589-607
    [1]Xue H, Arritt S W, Twamley B, Shreeve J M. Energetic salts from N-aminoazoles. Inorg. Chem.,2004,43:7972-7977
    [2]Zeman S. New aspects of initiation reactivities of energetic materials demonstrated on nitramines. J. Hazard. Mater.,2006,132:155-164
    [3]Wang R, Xu H, Guo Y, Sa R, Shreeve J M. Bis [3-(5-nitroimino-1,2, 4-triazolate)]-based energetic salts:Synthesis and promising properties of a new family of high-density insensitive materials. J. Am. Chem. Soc.,2010,132:11904-11905
    [4]Wang K, Parrish D A, Shreeve J M.3-Azido-N-nitro-lH-1,2,4-triazol-5-amine-based energetic salts. Chem. Eur. J.,2011,17:14485-14492
    [5]Singh R P, Verma R D, Meshri D T, Shreeve J M. Energetic nitrogen-rich salts and ionic liquids. Angew. Chem., Int. Ed.,2006,45:3584-3601
    [6]Klapotke T M, Stierstorfer J, Weber B. New energetic materials:Synthesis and characterization of copper 5-nitriminotetrazolates. Inorg. Chim. Acta.,2009,362: 2311-2320
    [7]Klapotke T M, Mayer P, Schulz A, Weigand J J.1,5-Diamino-4-methyltetrazolium dinitramide. J. Am. Chem. Soc.,2005,127:2032-2033
    [8]Huang Y, Zhang Y, Shreeve J M. Nitrogen-rich salts based on energetic nitroaminodiazido [1,3,5] triazine and guanazine. Chem. Eur. J.,2011,17:1538-1546
    [9]Huang Y, Gao H, Twamley B, Shreeve J M. Nitroamino triazoles:Nitrogen-rich precursors of stable energetic salts. Eur. J. Inorg. Chem.,2008,2560-2568
    [10]Guo Y, Gao H, Twamley B, Shreeve J M. Energetic nitrogen rich salts of N,N-bis [l(2)H-tetrazol-5-yl] amine. Adv. Mater.,2007,19:2884-2888
    [11]Gao H, Ye C, Gupta O D, Xiao J C, Hiskey M A, Twamley B, Shreeve J M.2,4, 5-trinitroimidazole-based energetic salts. Chem. Eur. J.,2007,13:3853-3860
    [12]Gao H, Wang R, Twamley B, Hiskey M A, Shreeve J M. 3-Amino-6-nitroamino-tetrazine (ANAT)-based energetic salts. Chem. Commun.,2006, 4007-4009
    [13]Gao H, Huang Y, Ye C, Twamley B, Shreeve J M. The synthesis of di (aminoguanidine) 5-nitroiminotetrazolate:Some diprotic or monoprotic acids as precursors of energetic salts. Chem. Eur. J.,2008,14:5596-5603
    [14]Darwich C, Klapo'tke T M, Sabate C M.1,2,4-Triazolium-cation-based energetic salts. Chem. Eur. J.,2008,14:5756-5771
    [15]Klapotke T M, Sabate C M, Stierstorfer J. Hydrogen-bonding stabilization in energetic perchlorate salts:5-Amino-lH-tetrazolium perchlorate and its adduct with 5-amino-lH-tetrazole. Z. Anorg. Allg. Chem.,2008,634:1867-1874
    [16]Klapdtke T M, Mayer P, Miro Sabate C, Welch J M, Wiegand N. Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole. Inorg. Chem.,2008,47:6014-6027
    [17]Osmont A, Catoire L, Gokalp I, Yang V. Ab initio quantum chemical predictions of enthalpies of formation, heat capacities, and entropies of gas-phase energetic compounds. Combust. Flame,2007,151:262-273
    [18]Simoes P, Pedroso L, Portugal A, Plaksin I, Campos J. New propellant component, Part II. Study of a PSAN/DNAM/HTPB based formulation. Propellants, Explos, Pyrotech., 2001,26:278-283
    [19]Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem.,2006,27:1787-1799
    [20]Antony J, Grimme S. Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys. Chem. Chem. Phys.,2006,8:5287-5293
    [21]Bader R F W. A quantum theory of molecular structure and its applications. Chem. Rev.,1991,91:893-928
    [22]Morokuma K. Molecular Orbital Studies of Hydrogen Bonds. III. C=O…H-O Hydrogen bond in H2CO-H2O and H2CO…2H2O. J. Chem. Phys.,1971,55:1236-1244
    [23]Ziegler T, Rauk A, Baerends E J. On the calculation of multiplet energies by the Hartree-Fock-Slater method. Theor. Chem. Acc.,1977,43:261-271
    [24]Ziegler T, Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chem. Acc.,1977,46:1-10
    [25]Jablonski M, Kaczmarek A, Sadlej A J. Estimates of the energy of intramolecular hydrogen bonds. J. Phys. Chem. A,2006,110:10890-10898
    [26]Grabowski S J, Ugalde J M. Bond paths show preferable interactions:Ab Initio and QTAIM studies on the X-H…π hydrogen bond. J. Phys. Chem. A,2010,114:7223-7229
    [27]Grabowski S J, Malecka M. Intramolecular H-bonds:DFT and QTAIM studies on 3-(aminomethylene) pyran-2,4-dione and its derivatives. J. Phys. Chem. A,2006,110: 11847-11854
    [28]Fuster F, Grabowski S J. Intramolecular hydrogen bonds. The QTAIM and ELF characteristics. J. Phys. Chem. A,2011,115:10078-10086
    [29]Cortes-Guzman F, Bader R F W. Complementarity of QTAIM and MO theory in the study of bonding in donor-acceptor complexes. Coord. Chem. Rev.,2005,249:633-662
    [30]Lipsitz R S, Sharma Y, Brooks B R, Tjandra N. Hydrogen bonding in high-resolution protein structures:A new method to assess NMR protein geometry. J. Am. Chem. Soc., 2002,124:10621-10626
    [31]Popelier P. On the full topology of the Laplacian of the electron density. Coord. Chem. Rev.,2000,197:169-189
    [32]Grabowski S J. High-level ab initio calculations of dihydrogen-bonded complexes. J. Phys. Chem. A,2000,104:5551-5557
    [33]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J. Gaussian, Inc., Wallingford CT, Gaussian 09, Revision A.2009
    [34]Woon D E, Dunning T H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys.,1993,98: 1358-1371
    [35]Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.,2010,132:154104-154119
    [36]Glendening E D, Badenhoop J K, Reed A E, Carpenter J E, Bohmann J A, Morales C M, Weinhold F. NBO, version 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI,2001
    [37]Improta R, Barone V. Absorption and fluorescence spectra of uracil in the gas phase and in aqueous solution:A TD-DFT quantum mechanical study. J. Am. Chem. Soc.,2004, 126:14320-14321
    [38]Keith T A. AIMAll. Version 10.06.21, www.aim.tkgristmill.com,2011
    [39]Koch U, Popelier P. Characterization of CHO hydrogen bonds on the basis of the charge density. J. Phys. Chem.,1995,99:9747-9754
    [40]Rozas I, Alkorta I, Elguero J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc.,2000,122:11154-11161
    [41]Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett.,1998,285: 170-173
    [42]ADF.2012.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    [43]Qiu L, Xiao H M, Gong X D, Ju X H, Zhu W H. Crystal density predictions for nitramines based on quantum chemistry. J. Hazard. Mater.,2007,141:280-288
    [44]Politzer P, Martinez J, Murray J S, Concha M C, Toro-Labbe A. An electrostatic interaction correction for improved crystal density prediction. Mol. Phys.,2009,107: 2095-2101
    [45]Bouhmaida N, Ghermani N E. Elusive contribution of the experimental surface molecular electrostatic potential and promolecule approximation in the empirical estimate of the crystal density. J. Chem. Phys.,2005,122:114101-9
    [46]Rice B M, Hare J J, Byrd E F C. Accurate predictions of crystal densities using quantum mechanical molecular volumes. J. Phys. Chem. A,2007,111:10874-10879
    [47]Zhang X W, Zhu W H, Wei T, Zhang C C, Xiao H M. Densities, heats of formation, energetic properties, and thermodynamics of formation of energetic nitrogen-rich salts containing substituted protonated and methylated tetrazole cations:A computational study. J. Phys. Chem. C,2010,114:13142-13152
    [48]Wang F, Du H C, Zhang J Y, Gong X D. DFT studies on the structures and stabilities of N5+-containing salts. Struct. Chem.,2011,22:1067-1073
    [49]Wei T, Zhu W H, Zhang X W, Li Y F, Xiao H M. Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J. Phys. Chem. A,2009,113: 9404-9412
    [50]Jenkins H D B, Tudela D, Glasser L. Lattice potential energy estimation for complex ionic salts from density measurements. Inorg. Chem,2002,41:2364-2367
    [51]Kamlet M J, Jacobs S J. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H-N-O explosives. J. Chem. Phys.,1968,48:23-35
    [52]Wendler K, Thar J, Zahn S, Kirchner B. Estimating the hydrogen bond energy. J. Phys. Chem. A,2010,114:9529-9536
    [53]Montejo M, Navarro A, Kearley G J, Vazquez J, Lopez-Gonzalez J J. Intermolecular charge transfer and hydrogen bonding in solid furan. J. Am. Chem. Soc.,2004,126: 15087-15095
    [54]Alabugin I V, Manoharan M, Peabody S, Weinhold F. Electronic basis of improper hydrogen bonding:A subtle balance of hyperconjugation and rehybridization. J. Am. Chem. Soc.,2003,125:5973-5987
    [55]Klapotke T M, Miro Sabate C. Low Energy monopropellants based on the guanylurea cation. Z. Anorg. Allg. Chem.,2010,636:163-175
    [56]Joo Y H, Twamley B, Garg S, Shreeve J M. Energetic nitrogen-rich derivatives of 1,5-diaminotetrazole. Angew. Chem., Int. Ed.,2008,47:6236-6239
    [57]Gora R W, Sokalski W A, Leszczynski J, Pett V B. The Nature of interactions in the ionic crystal of 3-pentenenitrile,2-nitro-5-oxo, ion (-1), sodium. J. Phys. Chem. B,2005, 109:2027-2033
    [58]Lu.T. Version 2.3, http://multiwfn.codeplex.com/
    [59]Badders N, Wei C, Aldeeb A, Rogers W, Mannan M. Predicting the impact sensitivities of polynitro compounds using quantum chemical descriptors. J. Energ. Mater., 2006,24:17-33
    [60]Zhou Z, Parr R G Absolute hardness as a measure of aromaticity. Tetrahedron Lett, 1988,29:4843-4846
    [61]Ju X H, Wang Z Y, Yan X F, Xiao H M. Density functional theory studies on dioxygen difluoride and other fluorine/oxygen binary compounds:Availability and shortcoming. J. Mol. Struct. (Theochem),2007,804:95-100
    [62]Pettit R, Sugahara H, Wristers J, Merk W. Extension of the Woodward-Hoffman rules to organometallic systems. Discuss. Faraday Soc.,1969,47:71-78
    [63]Hehre W J, Radom L, Schleyer P V R, Pople J A. Ab Initio molecular orbital theory. Wiley:New York,1986
    [64]Jacquemin D, Wathelet V, Perpete E A, Adamo C. Extensive TD-DFT benchmark: singlet-excited states of organic molecules. J. Chem. Theor. Comput,2009,5:2420-2435
    [65]Jacquemin D, Preat J, Perpete E A. A TD-DFT study of the absorption spectra of fast dye salts. Chem. Phys. Lett.,2005,410:254-259
    [66]Hibbs D E, Overgaard J, Piltz R O. X-N Charge density analysis of the hydrogen bonding motif in 1-(2-hydroxy-5-nitrophenyl) ethanone. Org. Biomol. Chem.,2003,1: 1191-1198
    [67]Stierstorfer J, Klapotke T M, Hammerl A, Chapman R D. 5-Azido-lH-tetrazole-Improved synthesis, crystal structure and sensitivity Data. Z. Anorg. Allg. Chem.,2008,634:1051-1057
    [68]Hammerl A, Klapotke T M, Noth H, Warchhold M, Holl G. Synthesis, structure, molecular orbital and valence bond calculations for tetrazole azide, CHN7. Propellants Explos. Pyrotech.,2003,28:165-173
    [69]Xue H, Gao H, Twamley B, Jean'ne M S. Energetic salts of 3-nitro-1,2,4-triazole-5-one,5-nitroaminotetrazole, and other nitro-substituted azoles. Chem. Mater.,2007,19:1731-1739
    [70]Brill T, Ramanathan H. Thermal decomposition of energetic materials 76:chemical pathways that control the burning rates of 5-aminotetrazole and its hydrohalide salts. Combus. Flame,2000,122:165-171
    [71]Klapotke T M, Sabate C M, Stierstorfer J. Neutral 5-nitrotetrazoles:Easy initiation with low pollution. New J. Chem.,2009,33:136-147
    [72]Lesnikovich A I, Ivashkevich O A, Levchik S V, Balabanovich A I, Gaponik P N, Kulak A A Thermal decomposition of aminotetrazoles. Thermochimica Acta,2002,388: 233-251
    [73]Kiselev V G, Gritsan N P. Theoretical study of the 5-aminotetrazole thermal decomposition. J. Phys. Chem. A,2009,113:3677-3684
    [74]Lein M, Frunzke J, Frenking G. Christian Klixbull Jorgensen and the nature of the chemical bond in HArF*. Struct. Bond.,2004,106:181-191
    [75]Li P, Shen Z, Wang W, Ma Z, Bi S, Sun H, Bu Y. The capture of H-and OH-radicals by vitamin C and implications for the new source for the formation of the anion free radical. Phys. Chem. Chem. Phys.,2010,12:5256-5267
    [76]Grimme S, Antony J, Schwabe T, Muck-Lichtenfeld C. Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules. Org. Biomol. Chem.,2007,5:741-758
    [77]Gillan E G. Synthesis of nitrogen-rich carbon nitride networks from an energetic molecular azide precursor. Chem. Mater.,2000,12:3906-3912
    [78]Huynh M H V, Hiskey M A, Hartline E L, Montoya D P, Gilardi R. Polyazido high-nitrogen compounds:Hydrazo-and azo-1,3,5-triazine. Angew. Chem., Int. Ed.,2004, 43:4924-4928
    [79]Talawar M B, Sivabalan R, Mukundan T, Muthurajan H, Sikder A K, Gandhe B R, Rao A S. Environmentally compatible next generation green energetic materials (GEMs). J. Hazard. Mater.,2009,161:589-607
    [80]Gilardi R D, Karle J. Chemistry of energetic materials, San Diego, Academic Press, 1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700