铜铈锆氧化物纳米颗粒的SAS制备及其中空结构的可控合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铈锆氧化物固溶体因具有储放氧性能常被用作催化剂或者催化剂载体。但其催化活性温度比较高,储氧量(Oxygen Storage Capacity, OSC)也有待于进一步改善。基于改进上述缺点,众多学者对掺杂第三组分改性的铈锆氧化物固溶体做了研究,发现不同的制备方法对复合氧化物的结构及物化性能有很大影响。超临界抗溶剂法(Supercritical Anti-Solvent, SAS)是一种新兴的微粒制备技术,在聚合物、制药、催化剂等领域有很好的应用前景。
     本课题组采用超临界抗溶剂法成功制备出铈锆氧化物纳米颗粒,与传统方法相比,具有粒径小且分布均匀、形状规则、热稳定性好、比表面积大等优点。在前期研究基础上,本文采用SAS法制备在铈锆氧化物固溶体中添加第三组分铜的复合氧化物纳米颗粒,并对其晶体结构、氧化还原性能、储氧量性能等进行了表征,同时对铜铈锆复合氧化物中空结构颗粒的形成条件做了进一步讨论。
     本文通过SAS法成功制备出铜铈锆复合氧化物纳米颗粒的前驱体,经焙烧后得到粒径为30~50nm的铜铈锆复合氧化物纳米颗粒。表征结果发现,Cu~(2+)离子已进入到CeO_2晶格中形成了CuO-CeO_2固溶体,其储氧量由506μmol·g~(-1)增加到636.9μmol·g~(-1),同时三元复合氧化物的还原峰温度由600℃左右降低到120~240℃。采用SAS法制备铜铈锆复合氧化物时,随着溶液浓度增加,复合氧化物颗粒由中空纳米球变为实心纳米球。相平衡研究发现,溶质和温度对混合物临界(Mixture Critical Point,MCP)线的影响比较显著,乙酰丙酮铈、乙酰丙酮锆及乙酸铜的添加均能使CO_2-甲醇体系的MCP线向高压发生偏移,且乙酸铜的添加对CO_2-甲醇体系的MCP线影响程度最大;CO_2-甲醇体系的MCP线随制备温度的降低而向低压方向偏移。最后,对铜铈锆复合氧化物中空纳米球的适宜条件可控合成进行了探索研究。
Ceria-zirconia solid solution is of excellent oxygen storage and release properties, thus it is often apllied as catalysts and carriers. However, the activated temperature of Ceria-zirconia is rather high, and the OSC (Oxygen Storage Capacity) should be also improved. Therefore, a lot of researchers have studied the ceria-zirconia solid solution doped with the third component, and found the preparation process has a considerable effect on the structure and physico-chemical properties of the composite oxide catalyst. Supercritical Anti-Solvent (SAS) process is a novel technique for particulates formation, which has promicing application potential in the fields of polymer, pharmacy, catalyst and more.
     In the previous works, the hollow nano-particulates of ceria-zirconia solid solution oxide were prepared by the SAS process successfully. Compared with the conventional methods, the composite oxides nano-particulates produced had the advantages of uniform particle size, regular shape, good thermal stability and large specific surface area. In this work, the copper component is addeded into the ceria-zirconia solid solution by the SAS process, and the crystal structure, redox property and oxygen storage capacity were characterized. Meanwhile, the proper conditions in favor of formation of particulates with hollow structure were discussed.
     The amorphous precursor of CuO-CeO_2-ZrO_2 nano-particulates was prepared by the SAS process successfully, and after calcinations, the nano-particulates with the average particle diameter of about 30~50 nm were obtained. It was found by the characterizations, the Cu~(2+)cations were penetrated into the lattice of CeO_2 to form solid solution, the reduction temperature was decreased from 600℃to 120~240℃and the OSC value was improved from 506.0μmol·g~(-1) to 636.9μmol·g~(-1). The hollow structure was disappeared as with the increase of solution concentration, and the nano-particulates with solid structure were formed again. The phase equilibrium study revealed that solute and temperature were two more apparent influencing factors on the MCP (Mixture Critical Point) lines. It was demonstrated that the presence of solutes such as Ce(acac)3, Zr(acac)4 and Cu(CH3COO)2 could move the MCP line for the ternary system towards higher pressure, compared with those of the corresponding methanol-carbon dioxide binary system. The adding of cupric acetate showed the most obvious effect on the MCP line for the system. Moreover, as with the preparation temperature decreased, the MCP line for the ternary system would move towards lower pressure. Finally, the optimal conditions for synthesis of nano-particulates copper-ceria-zirconia ternary composite oxide with controllable hollow structure were investigated.
引文
[1]彭英利,马承愚,超临界流体技术应用手册,北京:化学工业出版社,2005:12~14
    [2]韩布兴,超临界流体科学与技术,北京:中国石化出版社,2005:1~2
    [3]朱自强,超临界流体技术原理和应用,北京:化学工业出版社,2000:11~17
    [4] Kukonis J, Supercritical fluid nucleation of difficult-to-comminute solids, San Francisco: American Institute of Chemical Engineers Annual Meeting, 1984: 140
    [5] Smith R D, Supercritical fluid molecular spray film deposition and powder formation, USAUSpat 4582731, 1986204215
    [6] Martin A, Cocero J, Micronization processes with supercritical fluids: Fundamentals and mechanisms, Advanced Drug Delivery Reviews, 2008, 60(3): 339~350
    [7]赵淑芳,刘宗章,张敏华,超临界微粒化技术及其催化剂制备方面的应用,化学工业与工程,2007,24(1):69~73
    [8] Jennifer J, Michel P, Particle design using supercritical fluids: Literature and patent survey, Journal of Supercritical Fluids, 2001, 20: 179~219
    [9]廖霞,曾继军,何嘉松,SCF技术制备超细粒子,化学通报,2002,27(1):13~18
    [10] Meziani M J, Rollins H W, Allard L F, et a1, Protein-protected nanoparticles from rapid expansion of supercritical solution into aqueous solution, The Journal of Physical and Chemstry B, 2002, 106(43): 11178~11182
    [11] Anarita C, Duarte M D, Gordillo M, et al, Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation, International Journal of Pharmaceutics, 2006, 31(1): 50~54
    [12]赵敏,唐星,RESS技术在药物超细微粒制备中的应,中国新药杂志,2005,15:505~509
    [13] Reverchon E, Spada A, Crystalline microparticles of controlled size produced by supercritical-assisted atomization, Industrial and Engineering Chemistry Research, 2004, 43: 1460~1465
    [14] Gao Y, Mulenda T K, Shi Y F et a1, Fine particles preparation of redlake pigment by supercritical fluid, Journal of Supercritical Fluids, 1998, 13(31): 369
    [15] Gallagher P M, Coffey M P, Krukonis V J, Gas anti-solvent recrystallization ofRDX: Formation of ultrafine particles of a difficult-to-comminute explosive, Journal of Supercritical Fluids, 1992, 5: 130~142
    [16]李志义,刘学武,张晓东等,超临界流体过程与药物超细化,中国新药杂,2004,13(3):238~242
    [17]李风生,超细粉体技术,北京:国防工业出版社,2000,1~20
    [18] Thies A, Jochen C, et a1, Size controlled production of biodegradable micro-particles with supercritical gases, European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45(1): 67~74
    [19] Subramaniam B, Saim S, Rajewski R A, et al, Method for particle precipitation and coating using near-critical and supercritical anti-solvents, US Patent 5, 1997, 833~891
    [20]赵亚冬,CO2或N2辅助微粒形成技术研究[博士学位论文]:厦门;厦门大学,2005
    [21] Shariati A, Peters C J, Recent developments in particle design using supercritical fluids, Current Opinion in Solid State and Materials Science, 2003, 7: 371~383
    [22] Rodrigues L J, Matos M A, VLE of carbon dioxide/ethanol/water: application for evaluation the system volume expansion and water removal efficiency, Industrial and Engineering Chemistry Research, 2005, 44(17): 6751~6759
    [23]成晓玲,陈小兵,超临界流体技术制备超微粉体的研究进展,精细石油化工进展,2003,4(12):37~42
    [24]贺文智,超临界流体技术在制备药物输送系统中的应用,化学通报,2003,66(1):27~32
    [25]高典楠,刘娜,杜霞如等,不同制备方法对铈锆复合氧化物结构及性能的影响,中国稀土学报,2006,24(Spec. Issue):6
    [26] Ikryannikova L N, The redox treatments influence on the structure and properties of M2O3-CeO2-ZrO2(M=Y, La) solid solutions, Applied Catalysis A: General, 2001, 210: 225~235
    [27] Matina T, Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation, Catalysis Today, 2001, 68: 53~61
    [28] Alexander I K, Heui K D, Yezerets A, et al, Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide, Journal of Catalysis, 2002, 209: 417~426
    [29]张磊,刘源,白雪,大比表面积铈锆氧化物固溶体的制备,中国稀土学报,2002,20:99~103.
    [30]张顺海,蒋平平,氧化共沉淀法制备纳米级铈锆固溶体,中国稀土学报,2003,21:64~66
    [31]奥博特·M,伯彻姆·T,布兰查德·G等,基于氧化锆和氧化铈的组合物、其制备方法和用途:中国,1193948A,1998-09-23
    [32]郑育英,黄慧民,邓淑华等,水热法制备高纯超细CeO2-ZrO2复合氧化物,无机化学学报,2005,21(8):1227~1231
    [33] Toshiyuki D, Tetsuya O, Kenichi M, et al, Preparation of ceria-zirconia sub-catalysts for automotive exhaust cleaning, Journal of Alloys and Compounds, 2000, 303~304: 49~55
    [34] Trovarelli A, Zamar F, Liorca J, et al, Nanophage fluorite-structured CeO2-ZrO2 catalysts prepared by high-energy mechanical milling, Journal of Catalysis, 1997, 169(2): 490~502
    [35]许大鹏,王权泳,张弓木等,Ce0.5Zr0.5O2立方相固溶体的高压高温合成,高等学校化学学报,2001,22(4):524~530
    [36] Masui T, Ozaki T, Machida K, et al, Effects of surface modification by chemical filing on the redox behavior of a ceria-zirconia mixed oxide, Journal of Alloys and Compounds, 1999, 292: 8~12
    [37] Aruna S T, PatilL K C, Combustion synthesis and properties of nanostructured ceria-zirconia solid solutions, Nanostuctured Materials, 1998, 10: 955~964
    [38] Arias M, Fernandez G M, et al, Characterization of high surface area Zr-Ce: mixed oxide prepared by a micro-emulsion method, Langmuir, 1999, 15: 4796
    [39] Afanasiev P, Ce-Zr mixed oxides prepared in molten nitrates, Journal of Alloys and Compounds, 2002, 340: 74
    [40] Morikawa A, Tadashi S, Takaaki K, et al, A new concept in high performance ceria-zirconia oxygen storage capacity material with Al2O3 as a diffusion barrier, Applied Catalysis B: Environmental, 2008, 78: 210~221
    [41] Wang J, Jing W, Shen M Q, Effect of interaction between Ce0.7Zr0.3O2 and Al2O3 on structural characteristics, thermal stability, and oxygen storage capacity, The Journal of Physical and Chemstry C, 2008, 112(13): 5113~5122
    [42]赵明,龚茂初,蔡黎,新型稀土储氧材料的性能及在三效催化剂中的应用,贵金属,2006,27(2):18~21
    [43]詹瑛瑛,蔡国辉,肖益鸿等,CexZr1-xO2固溶体储氧性能与结构的关系,光谱学与光谱分析,2007,27(11):2266~2269
    [44] Cho B K, Chemical modification of catalyst support for enhancement of transient catalytic activity: nitric oxide reduction by carbon monoxide over rhodium, Journal of Catalysis, 1991, 131(1): 74~87
    [45] Matsumoto S, Recent advances in automobile exhaust catalysts, Catalysis Today, 2004, 90: 183~190
    [46] Vidmar P, Fornasiero P, Kaspar J, et al, Effects of trivalent dopants on the redox properties of Ce0.6Zr0.4O2 mixed oxide, Journal of Catalysis, 2001, 220: 69~77
    [47] Zhang Y, Claude D, et al, Oxgen storage capacity measurernents of three-way catalysts under transient conditions, Aplied Catalysis A: General, 2002, 223: 287~299
    [48]汪文栋,胡天斗等,用Pr修饰的(Ce-Zr)O2固溶体在三效催化剂中的作用,中国稀土学报,2002,20(3):265~269
    [49]樊国栋,冯长根,张昭等,铽掺杂铈锆固溶体的合成及结构表征,功能材料,2007,5(38):767~770
    [50]杨志柏,林培淡,肖莉等,以Nd改性CeO2-ZrO2固溶体助剂的研究,催化学报,2001,22(4):365~369
    [51]王恩过,陈诵英,CuO-ZrO2-CeO2复合氧化物催化性能的研究,中国稀土学报,2001,19(1):17~20
    [52] Qi G, Yang R T, A superior catalyst for low-temperature NO reduction with NH3, Chemical Communication, 2003, 7: 848~850
    [53]徐金光,田志坚,王军威等,CeO2/BaMnAlO2催化剂的制备及其甲烷催化燃烧性能研究,第十届全国稀土催化学术会议,2003:183~187
    [54]张梅,魏志峰,CeO2包覆对TiO2传感器材料的氧敏性能的影响,稀有金属,2001,25(1):71~74
    [55] Luo M F , Ma J M, Lu J Q, et al, High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation, Journal of Catalysis, 2007, 246: 52~59
    [56] Nguyen L T, Potvin C, et al, Catalytic reduction of nitrogen monoxide by propene in the presence of excess oxygen over gold based ceria catalyst, Topics in Catalysis, 2007, 42~43
    [57] Thomas C, Gorce O, On the promotional effect of Pd on the propene-assisted decomposition of NO on chlorinated Ce0.68Zr0.32O2, Applied Catalysis B: Environmental, 2006, 63: 201~214
    [58]张金彦,纳米晶铈锆复合氧化物催化剂的SAS法制备与表征:[硕士学位论文],天津;天津大学,2008
    [59]刘霖,纳米晶铈锆复合氧化物固溶体的SAS合成及机理研究:[硕士学位论文],天津;天津大学,2009
    [60] Hu C Q, Jiang Z, et al, Nanosized CuO-ZrxCe1-xOy aerogel catalysts prepared by ethanol supercritical drying for catalytic deep oxidation of benzene, Powder Technology, 2009, 194: 109~114
    [61] Marquez Y, Antonio G C, et al, Selective CO oxidation in excess of H2 over high surface area CuO/CeO2 catalysts, Catalysis Today, 2008, 133-135: 743~749
    [62] Polster C S, Nair H, Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst, Journal of Catalysis, 2009, 266: 308~319
    [63] Qi G, Ralph T, Yang A, et al, MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, Applied Catalysis B, 2004, 51: 93~106
    [64] Reverchon E, Iolanda D M, Enza T M, et al, Nanoparticles production by supercritical antisolvent precipitation: A general interpretation, Journal of Supercritical Fluids, 2007, 43: 126~138
    [65]古学谦,超临界抗溶剂技术制备醋酸锰超细粒子:[硕士学位论文],天津;天津大学,2007
    [66] Dukhin S S, Shen Y, Dave R, et al, Droplet mass transfer, intradroplet nucleation and submicron particle production in two-phase flow of solvent-supercritical antisolvent emulsion, Colloids and Surfaces A: Physicochem. Eng. Aspects, 2005, 261: 163~176
    [67] Li D, Liu Z M, Yang G, et al, Phase equilibria of CO2-PET-phenol system and generation of PET powders by supercritical CO2 anti-solvent, Polymer, 2000, 41: 5707~5712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700