Fe_3O_4纳米颗粒及其靶向药物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性靶向药物能有效减小化疗药物的毒副作用,提高药效,减少用药量,在治疗恶性肿瘤方面表现出十分广阔的前景。目前作为药物载体的磁性纳米颗粒的制备工艺需要进一步简化,磁性靶向药物的载药量、靶向性能、药物控制释放等特性还需要深入研究。
     本文以铁盐、NaOH和聚乙二醇4000(PEG)为原料,采用共沉淀法和超临界流体干燥技术(SCFD)制备了磁性Fe_3O_4纳米颗粒(MNP),简化了制备方法和工艺,通过FTIR、XRD、SEM、BET和VSM等手段表征了Fe_3O_4纳米颗粒的组成、结构和特性。进行了一系列条件实验,研究了制备条件(物料加入顺序、铁盐浓度、Fe~(2+)/Fe~(3+)比例、NaOH过量比、PEG加入量和反应温度)对Fe_3O_4纳米颗粒的性能评价指标(比表面积、水悬液的悬浮稳定性和磁响应性)的作用方式和作用机理;进行了一组L~3(4)正交试验,对正交试验结果进行了灰色关联分析。结果表明,本文设计的制备方法和工艺可以得到性能良好的Fe_3O_4纳米颗粒,颗粒表面吸附了PEG高分子,有丰富的羟基,能作为药物载体;制备条件对Fe_3O_4纳米颗粒性能影响程度的大小排序为:NaOH过量比>PEG加入量>反应温度>Fe~(2+)/Fe~(3+)比例;控制制备条件:铁盐浓度0.036~0.072mol/L,NaOH过量比0~0.5,PEG加入量50~100mg/ml,反应温度50~70℃,Fe~(2+)/Fe~(3+)比例1~2,制备的Fe_3O_4纳米颗粒比表面积达到83.21m~2/g,5分钟内水悬液不沉降,磁响应性达到9s/0.22T·cm。
     本文以牛血清白蛋白(BSA)、MNP和氟尿嘧啶(5-Fu)为原料,采用乳化包覆法制备了磁性靶向药物,设计了药物含量和药物缓释性能的测试表征方法,通过FTIR、SEM、AAS、分光光度法等手段表征了磁性靶向药物的组成、结构、粒径、形貌、载药量和药物缓释性能;自制了体外靶向性能测试仪,并研究了磁性靶向药物的体外靶向性与MNP含量、流速和磁场强度的关系。结果表明,磁性靶向药物为核壳式结构,BSA对MNP的包覆完整,并且BSA与MNP形成了一定程度的化学结合;磁性靶向药物是球形颗粒,固化过程中形成二次颗粒是导致粒径分布变宽的重要原因;5-Fu加入量越大,磁性靶向药物的载药量越大,固化温度越高,BSA固化程度越大,药物缓释性能越好;磁性靶向药物的体外靶向性随MNP含量的增大而增强,随流速增大而减弱,随磁场强度增强而增强;控制制备条件:混悬液(5-Fu7~14%,Fe_3O_4磁性纳米颗粒18~30%,BSA56~75%)、乳液中水/油相比例1/30~3/30、固化温度90~130℃,得到的磁性靶向药物的粒径达到3.3μm,药物含量达到7.93%,药物释放50%的时间为79.3min,体外靶向性可达到100%。
Magnetic targeted drugs (MTD) could provide the opportunity to limit side effects created from nonspecific systemic exposure, by reducing the total amount of drug administered as well as limiting circulation of the drug throughout the body, while still achieving an efficacious concentration at the desired site in the body. Therefore, MTD have got great and wide attention in the field of cancer treatment. However, at present the process preparing magnetic nanosized particles (MNP) for antitumor drug carrier demands simplification, and drug content, drug control release and magnetic targeting activity to tumor of MTD demands thorough investigation and substantial promotion.
    In this thesis magnetic Fe3O4 nano-particles (MNP) were synthesized from molysite, sodium hydrate and polyethylene glycol (PEG), by the method of co-precipitation and supercritical fluid drying technique (SCFD). The preparing technique and processes were simplified. The composition, structure and properties of MNP were investigated by the methods of FTIR, XRD, SEM, BET and VSM. A series of conditional experiments and a group of L3(4) orthogonal experiments were carried out. The ways and mechanisms of preparing conditions (the sequences of introduction of materials, molysite concentrations, the ratio of Fe2+/Fe3+, the ratio of overdosage of sodium hydrate, the quantity of introduction of PEG and reaction temperature) affecting evaluation indicaters of properties (the specific surface area, the suspending stabilization and magnetic respondence of aqueous suspensions of MNP) were studied. The results of the orthogonal experiments were analyzed with the gray relationship systemic method. The main conclusions wer
    e as follows:
    (1) MNP could be prepared with the simplified technique and processes, absorbed a little of PEG with abundant hydroxyl groups in the surface of MNP particles, and could be used as drug carrier.
    (2) the order of the extent of the preparing conditions affecting properties of MNP was the ratio of overdosage of sodium hydrate > the quantity of introduction of PEG> reaction temperature> the ratio of ferrous salt to ferric salt.
    (3) the specific surface area of MNP could reach 83.21m2/g, and the aqueous suspensions of MNP could be stable against precipitation in 5 minutes, and magnetic respondence could reach 9s/0.22T-cm, with the molysite concentrations in the range of 0.036-0.072 mol/L, the ratio of overdosage of sodium hydrate in the range of 0.0-0.5, the quantity of introduction of PEG in the range of 50-100 mg/ml, reaction
    temperature in the range of 50-70 ℃.
    
    
    Magnetic targeted drugs (MTD) were synthesized from bovine serum albumin (BSA), MNP and fluorouracil (5-Fu), by the technique of emulsion-cladding. The methods of test and characterization of drug content and drug control release of MTD were designed. The composition, structure, diameters and morphology of MTD particles was investigated by the methods of FTIR, SEM and AAS. The relationships between targeting activity in vitro and MNP content, velocity of flow and magnetic field intensity were studied with the designed tester of targeting activity in vitro. The main findings were as follows:
    (1) the MTD particles were formed with a magnetic nucleus coated by a integrated BSA layer, so-called core/shell structure, and the coating was of integrity, a kind of chemical bonds were formed between the nucleus and the coatings.
    (2) The analysis of morphology showed that the MTD particles was spheric, the formation of so-called secondary particle in the course of BSA curing played an important roll of the broaden of the diameter distributions.
    (3) the drug content of MTD increased with the quantity of introduction of 5-Fu increasing, the extent of BSA curing and the effect of the drug control release was enhanced with the curing temperature elevated.
    (4) the targeting activity in vitro was enhanced with the MNP content of MTD increasing, played down with the velocity of flow getting bigger, and promoted with the magnetic field intensity i
引文
[1] 刘乐宇,朱平,郭静竹编.肿瘤学新概念与临床实践.北京:中国医药科技出版社,1994.172—196
    [2] 张志义,孙燕编.恶性肿瘤化学治疗学.上海:上海科学技术出版社,1981.116—127
    [3] 张志义,孙燕编.恶性肿瘤化学治疗学.上海:上海科学技术出版社,1981.48—51
    [4] Decita VT. Dose-response in alive and well. J Clin Oncol,1986; 4:1157-1159
    [5] Hyrniuk WM. The effect of close intensity in adjuvant chemotherapy. In Salman SE. Adjuvant therapy of Cancer V. Orlundo: Grune and statton; 1987:13-23
    [6] Slee PH, Th J, Debrujin EA, et al. Variations in exposure to mitomycin C in an in Vitro Colony-forming assay. Br J Cancer, 1987; 54:951
    [7] Kappen PJK , Schuite maker H , Van's veer LT , et al . Cis Diammine-dicholroplatinum(Ⅱ)-resistant Sublines derived from two human-Ovarian tumor cell lines. Cancer Res, 1988; 48:3355
    [8] 刘乐宇,朱平,郭静竹编.肿瘤学新概念与临床实践.北京:中国医药科技出版社,1994.274~309
    [9] Widder KJ, Senyei AE, Scarpelli DG, et al. Magnetic microspheres:A model system for site specific drug delivery in vivo. Proc Soc Exp Biol Med, 1978; 58: 141—145
    [10] Senyei AE, Widder KJ, Czerlinski G. Magnetic guidance of drug carrying microspheres. J Appl Physics, 1978; 49(12): 3578—3583
    [11] Widder KJ, Senyei AE, Ranney DF, et al. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres. Cancer Res, 1980; 40: 3512—3517
    [12] Morimoto Y, Sugibayashi K, Okumura M, et al. Biomedical applications of magnetic fluids. Ⅰ. Magnetic guidance of ferrocolloid entrapped albumin microsphere for site Specific drug delivery in vivo. J Pharm Dyn, 1980; 3 : 264—267
    [13] Driscoll CF, Morris RM, Senyei AE, et al. Magnetic targeting of microspheres in blood flow. Microvas Res, 1984; 27:353—369
    [14] Gupta PK , Hung CT ,Rao MS . Ultrastructural disposition of adriamycin-associated magnetic albumin microspheres in rats. J pharm Sci,
    
    1989: 78 (4): 290—294
    [15] Morimoto Y, Natsume H. Targeting of magnetically responsive drug carriers to cancer. Jpn J Clin Med, 1989; 47 (6): 224
    [16] 吴传斌,魏树礼.磁性药物微球研究进展.中国药学杂志,1993;28(6):330—334
    [17] 钟裕国,傅骍.主动靶向药物的研究进展.中国药房,1997;8(4):183—184
    [18] 张灵芝编.脂质体制备及其在生物医学中的应用.1998.81—86
    [19] Widder K, Flouret G, Senyei A. Magnetic microspheres: synthesis of a novel parenteral drug carrier. J Pharm Sci, 1979; 68:79
    [20] Shinkai M, Suzuki M, Iijima S, et al. Antibody-conjugated magnetoliposomes for targeting cancer cells and their application in hyperthermia. Biotechnol ApplBiochem, 1994: 21: 125—137
    [21] 张灵芝编.脂质体制备及其在生物医学中的应用.1998.77—78
    [22] 李民勤,徐慧显,左榘等.葡聚糖免疫磁性毫微粒的制备及作为复和靶向载体研究.中国科学(B辑),1996;26(3):193—198
    [23] 常津.具有复和靶向抗癌功能的纳米高分子材料——阿霉素免疫磁性毫微粒的制备及体外实验.中国生物医学工程学报,1996,15(2):97—101
    [24] 王平康,袁青禄,刘歧山等.磁性抗癌药物载体的研制.中国医院药学杂志,1990,10(1):2
    [25] Widder K J, Sennei A E, Sears B, et al. Experimented methods in cancer therapeutics. J Pharm Sci, 1982, 71:
    [26] 张阳德,彭健.载阿霉素磁性白蛋白纳米粒——一种高效靶向抗肿瘤系统.中国现代医学杂志,2001,11(3):39—42
    [27] 常津.具有复和靶向抗癌功能的纳米高分子材料——阿霉素免疫磁性毫微粒的体内磁靶向定位试验.中国生物医学工程学报,1996,15(4):354—358
    [28] 魏衍超,杨连生.磁性生物高分子微球的制备方法和研究进展.功能材料,2000,31(5):464—465
    [29] 石可瑜,李朝兴,何炳林.磁导向阿霉素—羟甲基葡聚糖磁性毫微粒的研究.生物医学工程学杂志,2000,17(1):21—24
    [30] 李风生等编.超细粉体技术.北京:国防工业出版社,2000.12—147
    [31] 陈俊明著.湿法制备铁氧体磁粉的新途径.北京:国防工业出版社,2001.14—16
    [32] 高道江,王建华.超微磁性Fe_3O_4粒子的制备.四川师范大学学报(自然科
    
    学版),1997,20(6):94—97
    [33]蒋秉植,杨健美.磁性流体的制备、应用及其稳定性解析.化学进展,1997,9(1):69—78
    [34]Molday R S, mackenzie D. Immuneospecific Ferromagnetic Iron-Dextran Reagents for The Labeling and Magnetic Separation of Cells. J Immuneol Methods, 1982, 52: 353—367
    [35]邱广明,孙宗华.水溶性磁流体的制备和性质.化学试剂,1993,15(4):234—237
    [36]吴传斌,高文伟,魏树礼.药用磁流体的研究和应用.军事医学科学院院刊,1994;18(1):36—40
    [37]席宗翰,王延平.动脉栓塞用磁性流体材料制备的研究.河南医学研究,1997:6(3):206—208
    [38]张津辉,蒋中华,王仁芝等.磁性微球的制备,理化性质及初步应用.化学通报,1997;9:55—57
    [39]罗河烈,文亦汀,孙克等.表面效应对γ-Fe_2O_3微粉饱和磁化强度的影响.物理学报,1983;32(6):812—818
    [40]陆怀先,都有为,王挺祥等.有机物包裹的Fe_3O_4颗粒表面自旋钉扎效应研究.物理学报,1985;34(1):121—125
    [41]邱广亮,栗淑媛,金志兰等.磁性琼脂糖复和微球的制备和性质.精细化工,1999:16(1):38—40
    [42]陈骐,孙淑英,顾学裘等.磁性微球载体——抗癌药复尿嘧啶新剂型.中国药理学报,1983;4(4):273
    [43]成党效,唐敏章.磁性微球——一种新的靶向给药系统.陕西医学杂志,1995:24(2):104—107
    [44]顾学裘.药物制剂新剂型选编.1984;167
    [45]Gomez-Lopera S A, Plaza R C, delgado A V. Synthesis and Characterization of Spherical Magnetite/Buidegradeble Polymer Composite Particles. J Colloid Interface Sci, 2001; 240:40—47
    [46]万惠文,张强,宋宏涛等.聚合物磁性粒子的制备.武汉工业大学学报,1999:21(1):22—24
    [47]高兰萍,邱广明.纳米级磁性复合微球的制备.内蒙古师大学报(自然科学版),1998;27(4):302—306
    [48]马建华,高小玲,陈道达.改良法制备磁性蛋白微球阿霉素.
    [49]吴传斌,河素梅,高文伟等.阿霉素磁性明胶微球的制备及特性研究.中国医药工业杂志,1994:25(2):63—65
    
    
    [50] 张玉,王凯平,陈东生等.复方阿霉素磁性白蛋白微球的制备及含量测定.中国医院药学杂志,2000;20(1):53—55
    [51] Ogawa Y, Yamamoto M, Okada H, et al. A new technique of efficiently entrapped leuprolide acetate into microcapsules of polylactic acid or copoly (lactic/glycolic) acid.. Chem Pharm Bull , 1988; 36: 1095~1103
    [52] Ibrahim A, Couvreur P, Roland M, et al. New magnetic drug carrier. J Pharm Pharmacol, 1983: 35:59—61
    [53] 陈道达,艾时斌,马建华等.磁液载附阿霉素靶向定位治疗消化系肿瘤.中华实验外科杂志,1996;13(1):1—2
    [54] Senyei A E, Reich S D, Goczy C, et al. In vivo kinetics of magnetically targeted low-dose doxoruicin. J Pharm Sci, 1981; 70 (4): 389—391
    [55] Morimoto Y, Okumura M, Sugibayashi K, et al. Biomedical applications of magnetic fluids. Ⅱ. Preparation and magnetic guidance of magnetic albumin microspheres for site specific drug delivery in vivo. J Pharm Dyn, 1981 ; 4:624 — 631
    [56] 蒋学祥,赵延东,吕永兴等.磁性微球血管栓塞的实验研究.中国医学影像技术,1995;11(3):184
    [57] 吴性江.药物微球的基本特性和靶向治疗大白鼠肝癌的实验研究.中华外科杂志,1990:(4):241
    [58] 何跃明,艾中立,周亚魁等.磁性化疗栓塞微球在大鼠肝癌中的导向治疗作用.癌症,1997;16(6):411—413
    [59] Widder K J, Marino P A, Morris R M, et al. Silective targeting of magnetic albumin microspheres to the Yoshida Sarcoma: Ultrastructural evaluation of microsphere disposition. Eur J Cancer Clin Oncol, 1983; 19 (1): 141—147
    [60] Widder K J, Morris R M, Poor G, et al. Tumor remission in Yoshida Sarcoma-bearing rats by selective targeting of magnetic albumin microspheres containing doxorubicin. Proc Natl Acad. USA, 1981; 78 (1): 579—581
    [61] 刘德贤,张冬梅,刘颖等.掺硅Fe3O4磁粉磁性能的研究.磁性材料与器件,29(1):25~27
    [62] 曹茂盛.超微颗粒制备科学与技术.哈尔滨:哈尔滨工业大学出版社,1998
    [63] 侯万国,孙德军,张春光.应用胶体化学.北京:科学出版社,1998
    [64] 林潮,孙传尧,徐建民.强磁性粒子间磁团聚力的研究.矿冶,2000;9(1):25~30
    [65] 邓聚龙.灰色系统基本方法.武汉:华中理工大学出版社,1987
    [66] 王学萌,张继忠,王荣.灰色系统分析及实用计算程序.武汉:华中科技
    
    大学出版社,2001
    [67]成岗,张梅玲,郑晓梅.白蛋白微球制备方法的现状.上海医院药学,1998;9(2):28~30
    [68]Long W E, Twata H, Lindheimer T A, et al. Preparation of hydrophilic albumin microspheres using polymeric dispersing agents. J Pharm Sci, 1982; 71: 1323
    [69]刘磊,王跃社,周芳德.液滴尺寸及其分布对乳化液极大堆砌分数的影响.西安交通大学学报,2001;35(3):251~254
    [70]干育红,张宁杲,叶胜龙等.MMC白蛋白磁性微球的磁响应性能研究.中国肿瘤临床,2000;27(1):
    [71]沈钟,王果庭.胶体与表面化学(第二版).1997
    [72]曹维良,张敬畅,石锦化等.超微粒子氧化铁的制备研究.应用科学学报,2000:18(2):171~174
    [73]Gesser H D, Goswmi P G. Aerogels and related porous materials. Chem Rev, 1989;89:765~788
    [74]朱自强.超临界流体技术——原理和应用.2000
    [75]王宗明,何欣翔,孙殿卿.实用红外光谱学(第二版).1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700