多级结构单晶TiO_2的制备、修饰与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶Ti02材料在光催化领域得到了广泛的应用,目前研究较多的单晶Ti02材料主要为锐钛矿型且形貌为八面体或十面体结构,研究的晶面主要为(101)面、(001)面和(010)面;同时该类单晶TiO2材料均为紫外光催化剂,不具备可见光光催化活性。针对目前单晶TiO2材料存在的不足,我们以(001)面暴露的单晶TiO2为出发点,从制备方法入手,通过优化制备方法和条件,控制催化剂的结构和形貌,制备新型单晶TiO2光催化材料。研究催化剂的形貌、晶面和孔结构对光催化性能的本质影响;对单晶TiO2光催化材料进行修饰实现可见光化,研究催化剂组分和修饰方法对光催化性能的本质影响;制备高效实用的Ti02光催化材料,解决实际应用中的一些相关问题。
     本论文的具体内容和主要创新点分为以下四个方面:
     (001)晶面暴露的有序介孔单晶TiO2
     采用叔丁醇醇解溶剂热法以TiOSO4为钛源,在模板剂SBA-15或KIT-6的辅助下制备了(001)面暴露的二维或三维有序介孔单晶Ti02材料。以液相醇光催化选择性氧化为探针反应研究了其光催化活性。研究结果表明单晶TiO2材料比多晶TiO2材料显示了更高的光催化活性,这主要归结于单晶TiO2材料具有较高的结晶度有利于光生电子的传递,降低其与空穴的复合;(001)面有利于活化反应物分子促进光催化氧化,同时(001)面的暴露使单晶TiO2材料表面具有较多的氧空位有利于捕获光生电子抑制其与空穴的复合。同时具有有序介孔结构的TiO2材料其活性高于无序介孔结构的材料尤其是三维有序结构TiO2材料,这主要是由于有序孔结构可以对光实现多次反射提高光的利用率,同时有序孔结构利于反应物分子的吸附与扩散。
     二、(001)晶面暴露的层状单晶TiO2
     通过苯甲醇醇解溶剂热法以TiF4为钛源,首次制备了(001)面暴露的层状结构单晶TiO2,其(001)面暴露率高达90%。通过优化合成条件揭示了层状结构的形成机理,其形成过程由苯甲醇分子键合在(001)面暴露的TiO2纳米片上,苯甲醇分子之间的π-π键驱使Ti02纳米片进行自组装而形成层状结构,F离子作为晶面稳定剂吸附在Ti02纳米片使其暴露(001)面。同时该体系还可以制备由Ti02纳米晶定向生长形成的光子晶体薄膜,该薄膜有明显的色彩和表面等离子体共振吸收边。该层状结构单晶Ti02在醇光催化选择性氧化中体现了较好的催化性能,这主要归根于较大的比表面积、较高的(001)面暴露率和独特的层状结构。
     三、CdS量子点修饰(001)晶面暴露的介孔单晶Ti02
     通过离子交换法制备了CdS量子点修饰的(001)面暴露的介孔单晶Ti02可见光催化剂,并以苯甲醇可见光光催化选择性氧化为探针反应详细研究了CdS的修饰量与修饰方法对光催化活性的影响。研究表明CdS高度分散且富集于Ti02表面,其修饰有利于可见光吸收:其活性高于未修饰的Ti02,这主要归结于CdS修饰增强了敏化提高了光的吸收能力。同时离子交换法制备催化剂的活性高于直接沉淀法或物理混合法制备的催化剂,这主要归结于该催化剂表面的CdS粒子尺寸更小更分散,与催化剂的结合力更强,形成更多异质结有利于光生电子的传递,降低其与空穴的复合。同时通过添加不同的捕获剂,详细研究了苯甲醇光催化选择性氧化的主要活性物种并提出了相应的机理。
     四、Ti3+修饰(001)晶面暴露的片状单晶Ti02
     采用超临界醇解溶剂热法以TiF4和钛酸四正丁酯为钛源,制备了Ti3+原位掺杂的(001)面暴露的单晶TiO2纳米片可见光催化剂,该催化剂在污染物降解同步光解水产氢过程中显示了较高的催化活性。这主要归结于Ti3+原位掺杂使其形成中间能级,降低了催化剂的能带提高了光吸收能力;(001)面暴露增加了催化剂表面的氧空位,有利于捕获光生电子抑制其与空穴的复合;催化剂具有较高的结晶度有利于传递光生电子;催化剂的高比表面积提高了反应物分子的吸附与扩散。同时研究表明染料降解可促进光解水产氢,这是因为光催化降解染料消耗光生空穴抑制了其与电子的复合。
Single crystal TiO2materials have been widely studied and applied in the field of photocatalysis. To date, most studies are focused on the anatase TiO2single crystals in octahedron and decanedron with dominant (001),(101), or (010) facets. Nearly all these TiO2single crystals are used as photocatalysts under UV light irradiation rather than the visible light irradiation due to the large band gap of anatase (3.2eV). To overcome the disadvantages of the single crystal TiO2photocatalysts, this work focuses on the preparation of new single crystal TiO2materials with controllable morphology and pore structure by optimizing the preparation methods and conditions, which are used in photocatalytic reactions concerning dyes degradation, H2production by splitting water, and selective oxidation of alcohols to the corresponding aldehydes. Our research mainly concentrates on the effects of the crystal plane, pore structure, and morphology on the photocatalytic activity. Meanwhile, modification of the single crystal TiO2with CdS quantum dots and Ti3+has also been carried out to achieve highly active visible photocatalysts.
     The detailed work and the main innovation are divided into the four parts addressed as follows.
     1. Ordered mesoporous TiO2single crystal with exposed (001) facets as a UV photocatalyst
     Single-crystal TiO2with2D or3D ordered mesoporous structures and exposed (001) facets were synthesized by SBA-15or KIT-6templated alcoholysis of TiOSO4in the solvent of tert-butyl alcohol under solvothermal conditions. During liquid phase photocatalytic selective oxidation of alcohol to aldehyde under UV-light irradiation, the single-crystal TiO2exhibited much higher activity than the poly-crystal TiO2, since the high crystallization degree favored the transfer of photoelectrons, which might reduce their recombination rate with holes. Besides, the exposed(001) facets facets favored the photocatalytic oxidation owing to the high surface energy and the increased oxygen vacancies which reduced the photocharges recombination rate by capturing photoelectrons. Meanwhile, the TiO2with ordered mesoporous structures showed higher activity than that with disordered mesopores, and the3D ordered mesoporous channels were more favalable for photocatalytic oxidation than the2D ordered mesoporous channels, which could be attributed to both the enhanced light harvesting owing to the multiple light reflections in pore channels, and the facilitated diffusion and adsorption of reactant molecules.
     2. Single crystal TiO2with layered structure and exposed (001) facets
     Single crystal TiO2with layered structure and exposed (001) facets was firstly synthesized by alcoholysis of TiF4in the solvent of benzyl alcohol under solvothermal conditions. The percentage of the (001) facets of the layered single crystal TiO2was about90%. The formation mechanism of the layered single crystal TiO2materials was detailed studied by optimizing the solvothermal conditions. The layered structure was constructed by the self-assembly of the π-π bonding among the benzene rings, and the fluorinion as the stabilizing agent of crystal plane could decrease the surface energy of the (001) high energy facets and stabilize the (001) facets in order to make the layered TiO2with exposed (001) facets. Meanwhile, this synthetic system can be used to prepare the TiO2photonic film, which is assembled by the oriented growth of TiO2nanocrystals. The photonic film with strong plasmonic bands is colored to the naked eye. The layered TiO2photocatalyst displays high photocatalytic activity during the photocatalytic selective oxidation of alcohols to the corresponding aldehydes, due to the high surface area, the high percentage of the (001) facets, and the layered structure enhanced the light harvesting owing to the multiple light reflections between the two adjacent nanosheets.
     3. TiO2mesocrystal with exposed (001) facets and doped with CdS quantum dots as a visible photocatalyst
     CdS quantum dots decorated TiO2mesocrystals visible photocatalyst with exposed{001} facets have been firstly prepared by a simple ion-exchange treatment. The Ti O2mesocrystals homogeneously decorated with surface enrichment of CdS quantum dots exhibited significant improvement in photocatalytic selective oxidation of benzyl alcohol and its derivatives under visible light irradiation than pure T1O2mesocages, ascribing to the enhanced light-harvesting capability, the enhanced photosensitizing effect of surface enriched CdS quantum dots and the formation heterojunctions between CdS and TiO2. Meanwhile, the sample prepared by ion-exchange displayed higher photocatalytic activity than those samples prepared by direct-deposited or physically mixed methods, due to the uniform dispersion of CdS quantum dots, the increasing number of heterojunctions, the lower recombination rate of photocharges, and the strong interaction between CdS and TiO2. The mechanism of photocatalytic selective oxidation of alcohols was also investigated by the addition of different scavengers.
     4. In situ Ti3+-doped TiO2visible photocatalyst in nanosheets with dominant (001) facets
     In situ Ti3+-doped TiO2crystal in mesoporous nanosheets with dominant (001) facets was prepared by supercritical treatment of the precursor obtained from sol-gel hydrolysis of mixed Ti(n-OC4HcH9)4and TiF4. This photocatalyst exhibited high activity in synchronical pollutant degradation and produce H2by water splitting under visible light irradiation owing to synergistic promoting effects. On one hand, the narrowed energy band gap resulted from Ti3+-doping and the high surface area enhanced light harvest and reactant adsorption. On the other hand, the high crystallization degree accelerated electron transfer and thus, inhibited photoelectron-hole recombination. Furthermore, the exposed (001) facets with high surface energy favored the activation of reactant molecules. The photocatalytic degradation of organic pollutants promoted the H2production by consuming photogenerated holes, which inhibited their recombination with photoelectrons used for reducing H+during water splitting.
引文
1.温福宇,杨金辉,宗旭,马艺,徐倩,马保军,李灿,太阳能光催化制氢研究进展.化学进展2009,21,2285-2302.
    2.许宜铭,环境污染物的光催化降解:活性物种与反应机理.化学进展2009,21,524-533.
    3. H.D. Burrows, M. Canle, J.A. Santaballa, S. Steenken, Reaction Pathways and Mechanisms of Photodegradation of Pesticides. J. Photochem. Photobiol., B 2002, 67,71-108.
    4. M. Anpo, M. Che, Applications of Photoluminescence Techniques to the Characterization of Solid Surfaces in Relation to Adsorption, Catalysis, and Photocatalysis. Adv. Catal.1999,44,119-257.
    5. A. Hiskia, A. Mylonas, E. Papaconstantinou, Comparison of the Photoredox Properties of Polyoxometallates and Semiconducting Particles. Chem. Soc. Rev. 2001,30,62-69.
    6. O.M. Alfano, D. Bahnemann, A.E. Cassano, R. Dillert, R. Goslich, Photocatalysis in Water Environments Using Artificial and Solar Light. Catal. Today 2000,58,199-230.
    7.张宝芹,李景怡,林业生物质能源-缓解能源危机和环境污染的有效选择.中国林业2008,17,36-37.
    8. A. Maldotti, A. Molinari, R. Amadelli, Photocatalysis with Organized Systems for the Oxofunctionalization of Hydrocarbons by O2. Chem. Rev.2002,102, 3811-3836.
    9. S. Malato, J. Blanco, A. Vidal, C. Richter, Photocatalysis with Solar Energy at A Pilot-Plant Scale:An Overview. Appl. Catal., B 2002,37,1-15.
    10. K. Pirkanniemi, M. Sillanpaa, Heterogeneous Water Phase Catalysis as An Environmental Application:A Review. Chemosphere 2002,48,1047-1060.
    11. K. Rajeshwar, N.R. Tacconi, C.R. Chenthamarakshan, Semiconductor-Based Composite Materials:Preparation, Properties, and Performance. Chem. Mater. 2001,13,2765-2782.
    12. A.K. Suresh, M.M. Sharma, T. Sridhar, Engineering Aspects of Industrial Liquid-Phase Air Oxidation of Hydrocarbons. Ind. Eng. Chem. Res.2000,39, 3958-3997.
    13. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, Crystallographically Oriented Mesoporous WO3 Films:Synthesis, Characterization, and Applications. J. Am. Chem. Soc.2001,123,10639-10649.
    14. M. Ashokkumar, An Overview on Semiconductor Particulate Systems for Photoproduction of Hydrogen. Int. J. Hydrogen Energy 1998,23,427-438.
    15. D.A. Tryk, A. Fujishima, K. Honda, Recent Topics in Photoelectrochemistry: Achievements and Future Prospects. Electrochim. Acta 2000,45,2363-2376.
    16. J.Z. Zhang, Interfacial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles. J. Phys. Chem. B 2000,104,7239-7253.
    17. M. Pera-Titus, V. Garcia-Molina, M.A. Banos, J. Gimenez, S. Esplugas, Degradation of Chlorophenols by Means of Advanced Oxidation Processes:A General Review. Appl. Catal, B 2004,47,219-256.
    18. B. Kasprzyk-Hordern, M. Ziolek, J. Nawrocki, Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment. Appl. Catal, B 2003,46,639-669.
    19. O. Carp, C.L. Huisman, A. Reller, Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem.2004,32,33-177.
    20. M. Anpo, M. Takeuchi, The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation. J. Catal. 2003,216,505-516.
    21. P.R. Gogate, A.B. Pandit, A Review of Imperative Technologies for Wastewater Treatment Ⅰ:Oxidation Technologies at Ambient Conditions. Adv. Environ. Res. 2004,8,501-551.
    22. N. Khan, Z. Saleem, A. Wahid, Review of Natural Energy Sources and Global Power Needs. Renew. Sust. Energ. Rev.2008,12,1959-1973.
    23.张光寅,能源危机与对策.科学中国人 2003,08,24-25.
    24. J. Garrues-Irurzun, Market Power versus Regulatory Power in the Spanish Electricity System,1973-1996. Renew. Sust. Energ. Rev.2010,14,655-666.
    25. P.L. Dhepe, A. Fukuoka, Cellulose Conversion under Heterogeneous Catalysis. Chemsuschem 2008,1,969-975.
    26. D.V. Bavykin, J.M. Friedrich, F.C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications. Adv. Mater. 2006,18,2807-2824.
    27. P.V. Kamat, Meeting the Clean Energy Demand:Nanostructure Architectures for Solar Energy Conversion. J. Phys. Chem. C 2007,111,2834-2860.
    28. K. Hashimoto, H. Irie, A. Fujishima, TiO2 Photocatalysis:A Historical Overview and Future Prospects. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2005,44,8269-8285.
    29. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays:Fabrication, Material Properties, and Solar Energy Applications. Sol. Energy Mater. Sol. Cells 2006,90, 2011-2075.
    30. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renew. Sust. Energ. Rev.2007,11,401-425.
    31. S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4,1259-1278.
    32.张力,孙岳明,染料敏化太阳能电池的研究进展.化工时刊2008,10,59-63.
    33. D. Kost, I. Kalikhman, Hypercoordinate Silicon Complexes Based on Hydrazide Ligands:A Remarkably Flexible Molecular System. Acc. Chem. Res.2009,42, 303-314.
    34. Y.B. Xu, Indentation-Induced Plasticity, Damage and Fracture in Si and GaAs Single Crystals. J. Inorg. Mater.2009,24,1081-1089.
    35. N.A. Sobolev, Defect Engineering in Implantation Technology of Silicon Light-Emitting Structures with Dislocation-Related Luminescence. Semicond. 2010,44,1-23.
    36. M. Gratzel, Mesoscopic Solar Cells for Electricity and Hydrogen Production from Sunlight. Chem. Lett.2005,34,8-13.
    37. A. Hagfeldt, M. Gratzel, Molecular Photovoltaics. Acc. Chem. Res.2000,33, 269-277.
    38. K. Kalyanasundaram, M. Gratzel, Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices. Coord Chem. Rev. 1998,177,347-414.
    39. M. Gratzel, Recent Advances in Sensitized Mesoscopic Solar Cells. Acc. Chem. Res.2009,42,1788-1798.
    40. A. Fujishima, X.T. Zhang, Solid-State Dye-Sensitized Solar Cells. Proceedings of the Japan Academy Series B-Physical and Biological Sciences 2005,81,33-42.
    41. K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst Releasing Hydrogen from Water. Nature 2006,440,295-295.
    42. Q. Liu, Y. Zhou, Z.P. Tian, X.Y. Chen, J. Gao, Z.G. Zou, Zn2Ge04 Crystal Splitting toward Sheaf-Like, Hyperbranched Nanostructures and Photocatalytic Reduction of CO2 into CH4 under Visible Light after Nitridation. J. Mater. Chem. 2012,22,2033-2038.
    43. S.C. Yan, H. Yu, N.Y. Wang, Z.S. Li, Z.G. Zou, Efficient Conversion of CO2 and H2O into Hydrocarbon Fuel over ZnAl2O4-Modified Mesoporous ZnGaNO under Visible Light Irradiation. Chem. Commun.2012,48,1048-1050.
    44. H.A. Park, J.H. Choi, K.M. Choi, D.K. Lee, J.K. Kang, Highly Porous Gallium Oxide with A High CO2 Affinity for the Photocatalytic Conversion of Carbon Dioxide into Methane. J. Chem. Mater.2012,22,5304-5307.
    45. M. Halmann, Photoelectrochemical Reduction of Aqueous Carbon-Dioxide on p-Type Gallium-Phosphide in Liquid Junction Solar-Cells. Nature 1978,275, 115-116.
    46. D. Canfield, K.W. Frese, Reduction of Carbon-Dioxide to Methanol on n-GaAs and p-GaAs and p-InP:Effect of Crystal-Face, Electrolyte and Current-Density. J. Electrochem. Soc.1983,130,1772-1773.
    47. B.A. Blajeni, M. Halmann, J. Manassen, Electrochemical Measurements on the Photo-Electrochemical Reduction of Aqueous Carbon-Dioxide on p-Gallium Phosphide and p-Gallium Arsenide Semiconductor Electrodes. Sol. Energy Mater. 1983,8,425-440.
    48. B.R. Eggins, J.T.R. Irvine, E.P. Murphy, J. Grimshaw, Formation of Two-Carbon Acids from Carbon-Dioxide by Photoreduction on Cadmium-Sulfide. J. Chem.Soc., Chem. Commun.1988,0,1123-1124.
    49. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction. Langmuir 1998,14,5154-5159.
    50. S. Kuwabata, K. Nishida, R. Tsuda, H. Inoue, H. Yoneyama, Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as A Photocatalyst in the Presence of Methanol Dehydrogenase. J. Electrochem. Soc. 1994,141,1498-1503.
    51. E.E. Barton, D.M. Rampulla, A.B. Bocarsly, Selective Solar-Driven Reduction of CO2 to Methanol Using A Catalyzed p-GaP Based Photoelectrochemical Cell. J. Am. Chem. Soc.2008,130,6342-6344.
    52. T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic Reduction of Carbon-Dioxide in Aqueous Suspensions of Semiconductor Powders. Nature 1979,277,637-638.
    53. M. Halmann, M. Ulman, B.A. Blajeni, Photochemical Solar Collector for the Photoassisted Reduction of Aqueous Carbon-Dioxide. Sol. Energy 1983,31, 429-431.
    54. R.L. Cook, R.C. Macduff, A.F. Sammells, Photoelectrochemical Carbon-Dioxide Reduction to Hydrocarbons at Ambient-Temperature and Pressure. J. Electrochem. Soc.1988,135,3069-3070.
    55. K. Adachi, K. Ohta, T. Mijuma, Photocatalytic Reduction of Carbon-Dioxide to Hydrocarbon Using Copper-Loaded Titanium-Dioxide. Sol. Energy 1994,53, 187-190.
    56. M. Anpo, K. Chiba, Photocatalytic Reduction of CO2 on Anchored Titanium-Oxide Catalysts. J. Mol. Catal.1992,74,207-212.
    57. M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites:Effects of the Structure of the Active Sites and the Addition of Pt. J. Phys. Chem. B 1997,101,2632-2636.
    58. K. Sayama, H. Arakawa, Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon-Dioxide over ZrO2 Catalyst. J. Phys. Chem. 1993,97,531-533.
    59. K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Photocatalytic Reduction of CO2 with H2O on Ti Containing Porous Silica Thin Film Photocatalyst. Catal. Lett.2002, 80,111-114.
    60. Y. Matsumoto, M. Obata, J. Hombo, Photocatalytic Reduction of Carbon-Dioxide on p-Type CaFe2O4 Powder. J. Phys. Chem.1994,98,2950-2951.
    61. A.L. Heathwaite, Multiple Stressors on Water Availability at Global to Catchment Scales:Understanding Human Impact on Nutrient Cycles to Protect Water Quality and Water Availability in the Long Term. Freshwater Biology 2010,55,241-257.
    62. V. Rubio, M. Valverde, E. Rojas, Effects of Atmospheric Pollutants on the Survival Pathway. Environ. Sci. Pollut. Res.2010,17,369-382.
    63. J.H. Cary, J. Lawrence, H.M. Tosine, Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol.1976,16,697-701.
    64. N.J. Peill, M.R. Hoffmann, Chemical and Physical Characterization of A Ti02-Coated Fiber Optic Cable Reactor. Environ. Sci. Technol.1996,30 2806-2812.
    65. D.F. Ollis, E. Pelizzetti, N. Serpone, Photocatalyzed Destruction of Water Contaminants. Environ. Sci. Technol.1991,25,1522-1529.
    66. S.F. Chen, M.Y. Zhao, Y.W. Tao, Photocatalytic Degradation of Organophosphoros Pesticides Using TiO2 Supported on Fiberglass. Microchem. J. 1996,54,54-58.
    67. J.M. Herrmanm, C. Guillard, P. Pichat, Heterogeneous Photocatalysis An Emerging Technology for Water Treatment. Catal. Today 1993,17(1-2),7-20.
    68. T.N. Obee, Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using A Glass-Plate Reactor. Environ. Sci. Technol.1996,30, 3578-3584.
    69.潘洁,山区农业面源污染对人体健康的影响.环境科学动态2003,2,26-27.
    70.于建国,我国汞污染防治现状和发展趋势.化学工业2010,28,40-42.
    71.杨若明,环境中有毒有害化学物质的污染与监测.北京:中央民族大学出版社,2001,99-142.
    72. K. Tennakone, K.G.U. Wijayantha, Heavy-Metal Extraction from Aqueous Medium with An Immobilized TiO2 Ohotocatalyst and A Solid Sacrificial Agent. J.Photochem. Photobiol, A 1998,113,89-92.
    73. P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E. Wolfrum, W.A. Jacoby, Bactericidal Activity of Photocatalytic TiO2 Reaction:Toward An Understanding of Its Killing Mechanism. Appl. Environ. Microbiol.1999,65,4094-4098.
    74. K. Watanabe, T. Taniguchi, H. Kanda, Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004,3,404-409.
    75. K. Sunada, T. Watanabe, K. Hashimoto, Studies on Photokilling of Bacteria on TiO2 Thin Film. J. Photochem. Photobiol, A 2003,156,227-233.
    76. P.C. Maness, S. Smolinski, D.M. Blake, Z. Huang, E.J. Wolfrum, W.A. Jacoby, Bactericidal Activity of Photocatalytic TiO2 Reaction:Toward An Understanding of Its Killing Mechanism. Appl. Environ. Microbiol.1999,65,4094-4098.
    77. T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, Photoelectrochemical Sterilization of Microbial Cells by Semiconductor Powders. FEMS Microbiol. Lett.1985,29,211-214.
    78. C. Wei, W. Y. Lin, Z. Zainal, N. E. Williams, K. Zhu, A. P. Kruzic, R. L. Smith and K. Rajeshwar, Bactericidal Activity of TiO2 Photocatalysts in Aqueous Media: Toward A Solar-Assisted Water Disinfection System. Environ. Sci. Technol.1994, 28,934-938.
    79. D.Q. Zhang, G.S. Li, J.C. Yu, Inorganic Materials for Photocatalytic Water Disinfection. J. Mater. Chem.2010,20,4529-4536.
    80. C.M. Cullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, The Application of TiO2 Photocatalysis for Disinfection of Water Contaminated with Pathogenic Micro-Organisms:A Review. Res. Chem. Intermed.2007,33, 359-375.
    81. J.A. Ibnez, M.I. Litter, R.A. Pizarro, Photocatalytic Bactericidal Effect of TiO2 on Enterobacter Cloacae:Comparative study and Other Gram Bacteria. J. Photochem. Photobiol., A 2003,157,81-85.
    82. P. Amezaga-Madrid, G.V. Nevarez-Moorill, E. Orrantia-Borunda, M. Miki-Yoshida, Photoinduced Bactericidal Activity against Pseudomonas Aeruginosa by TiO2 Based Thin Films. FEMS Microbiol. Lett.2002,211, 183-188.
    83. J.A.H. Melian, J.M.D. Rodriguez, A.V. Suarez, E.T. Rendon, C.V. Campo, J. Arana, J.P. Pena, The Photocatalytic Disinfection of Urban Waste Waters. Chemosphere,2000,41,323-327.
    84. T. Saito, T. Iwase, J. Horie, T. Morioka, Mode of Photocatalytic Bactericidal Action of Powdered Semiconductor TiO2 on Mutans Streptococci. J. Photochem. Photobiol., B 1992,14,369-379.
    85. B. Kim, D. Kim, D. Cho, S. Cho, Bactericidal Effect of TiO2 Photocatalyst on Selected Food-Borne Pathogenic Bacteria. Chemosphere 2003,52,277-281.
    86. R.J. Watts, S.H. Kong, M.P. Orr, G.C. Miller, B.E. Henry, Photocatalytic inactivation of Coliform Bacteria and Viruses in Secondary Wastewater Effluent. Water Res.1995,29,95-100.
    87. A.D. Yoffe, Semiconductor Quantum Dots and Related Systems:Electronic, Optical, Luminescence and Related Properties of Low Dimensional Systems. Adv. Phys.2001,50,1-208.
    88. A.L. Efros, M. Rosen, The Electronic Structure of Semiconductor Nanocrystals. Annu. Rev. Mater. Sci.2000,30,475-521.
    89. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    90. A.L. Linsebigler, G. Lu, T.Y. John, Photocatalysis on TiO2 Surfaces:Principles, Mechanism, and Selected Results. Chem. Rev.1995,95,735-758.
    91.张文彬,谢利群,白元峰,纳米Ti02光催化机理及改性研究进展.化工科技 2005,6,52-57.
    92. K. Ishibashi, Y. Nosaka, K. Hashimoto, A. Fujishima, Time-Dependent Behavior of Active Oxygen Species Formed on Photoirradiated TiO2 Films in Air. J. Phys. Chem. B 1998,102,2117-2120.
    93. A. Yamakata, T. Ishibashi, H. Onishi, Water and Oxygen-Induced Decay Kinetics of Photogenerated Electrons in TiO2 and Pt/TiO2:A Time-Resolved Infrared Absorption Study. J. Phys. Chem. B 2001,105,7258-7262.
    94. K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum Yields of Active Oxidative Species Formed on TiO2 Photocatalyst. J. Photochem. Photobiol, A 2000,134,139-142.
    95. W.J. Li, D.Z. Li, Y.G. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. Phys. Chem. C2012,116,3552-3560.
    96. H. Yuzawa, T. Mori, H. Itoh, H. Yoshida, Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst. J. Phys. Chem. C 2012,116,4126-4136.
    97. N. Zhang, S.Q. Liu, X.Z. Fu, Y.J. Xu, A Simple Strategy for Fabrication of "Plum-Pudding" Type Pd@CeO2 Semiconductor Nanocomposite as A Visible-Light-Driven Photocatalyst for Selective Oxidation. J. Phys. Chem. C 2011,115,22901-22909.
    98. X. Zhao, T.G. Xu, W.Q. Yao, Photodegradation of Dye Pollutants Catalyzed by γ-Bi2MoO6 Nanoplate under Visible Light Irradiation. Appl. Sur. Sci.2009,255, 8036-8040.
    99. S.B. Zhu, T.G. Xu, H.B. Fu, J.C. Zhao, Y.F. Zhu, Synergetic Effect of Bi2WO6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation. Environ. Sci. Technol.2007,41,6234-6239.
    100.G.L. Huang, S.C. Zhang, T.G. Xu, Y.F. Zhu, Fluorination of ZnW04 Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environ. Sci. Technol. 2008,42,8516-8521.
    101.J.H. Kou, Z.S. Li, Y.P. Yuan, H.T. Zhang, Y. Wang, Z.G. Zou, Visible-Light-Induced Photocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons over Tantalum Oxynitride Photocatalysts. Environ. Sci. Technol. 2009,43,2919-2924.
    102.W.J. Li, D.Z. Li, J.J. Xian, W. Chen, Y. Hu, Y. Shao, X.Z. Fu, Specific Analyses of the Active Species on Zno.28Cd0.72S and TiO2 Photocatalysts in the Degradation of Methyl Orange. J. Phys. Chem. C 2010,114,21482-21492.
    103.X. Li, J. Zhu, H.X. Li, Comparative Study on the Mechanism in Photocatalytic Degradation of Different-Type Organic Dyes on SnS2 and CdS. Appl. Catal., B 2012,123-124,174-181.
    104.李志军,王红英,纳米二氧化钛的性质及应用进展.广州化工2006,1,23-25.
    105.X.B. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107,2891-2959.
    106.A. Navrotsky, O. Trofymluk, A. A. Levchenko, Thermochemistry of Microporous and Mesoporous Materials. Chem. Rev.2009,109,3885-3902.
    107.H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single Crystals with A Large Percentage of Reactive Facets. Nature 2008,453,638-642.
    108.H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets. J. Am. Chem. Soc.2009,131, 4078-4083.
    109.Y.Q. Dai, C.M. Cobley, J. Zeng, Y.M. Sun, Y.N. Xia, Synthesis of Anatase TiO2 Nanocrystals with Exposed{001} Facets. Nano lett.2009,9,2455-2459.
    110.B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Non-Aqueous Production of Nanostructured Anatase with High-Energy Facets. J. Am. Chem. Soc.2008,130,17563-17567.
    111.X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of Titania Nanosheets with A High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    112.D.Q. Zhang, G.S. Li, X.F. Yang, J.C. Yu, A Micrometer-Size TiO2 Single-Crystal Photocatalyst with Remarkable 80% Level of Reactive Facets. Chem. Commun. 2009,45,4381-4383.
    113.J.S. Chen, Y.L. Tan, C.M. Li, Y.L. Cheah, D.Y. Luan, S. Madhavi, F.C. Boey, L.A. Archer, X.W. Lou, Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. J. Am. Chem. Soc.2010,132,6124-6130.
    114.J. Zhu, S.H. Wang, Z.F. Bian, S.H. Xie, C.L. Cai, J.G. Wang, H.G. Yang, H.X. Li, Solvothermally Controllable Synthesis of Anatase TiO2 Nanocrystals with Dominant{001} Facets and Enhanced Photocatalytic Activity. CrystEngComm 2010,12,2219-2224.
    115.W.G. Yang, J.M. Li, Y.L. Wang, F. Zhu, W.M. Shi, F.R. Wan, D.S. Xu, A Facile Synthesis of Anatase TiO2 Nanosheets-Based Hierarchical Spheres with Over 90%{001} Facets for Dye-Sensitized Solar Cells. Chem. Commun.2011,47, 1809-1811.
    116.E. Hosono, S. Fujihara, H. Imai, I. Honma, I. Masaki, H.S. Zhou, One-Step Synthesis of Nano-Micro Chestnut TiO2 with Rutile Nanopins on the Microanatase Octahedron. ACS Nano 2007,1,273-278.
    117.X.F. Yang, C.J. Jin, C.L. Liang, D.H. Chen, M.M. Wu, J.C. Yu, Nanoflower Arrays of Rutile TiO2. Chem. Commun.2011,47,1184-1186.
    118.L. Sun, Y. Qin, Q.Q. Cao, B.Q. Hu, Z.W. Huang, L. Ye, X.F. Tang, Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive{111} Facets. Chem. Commun.2011,47,12628-12630.
    119.E. Bae, N. Murakami, T. Ohno, Exposed Crystal Surface-Controlled TiO2 Nanorods Having Rutile Phase from TiCl3 under Hydrothermal Conditions. J. Mol. Catal., A 2009,300,72-79.
    120.H.Q. Wang, M. Miyauchi, Y. Ishikawa, A. Pyatenko, N. Koshizaki, Y. Li, L. Li, X.Y. Li, Y. Bando, D. Golberg, Single-Crystalline Rutile TiO2 Hollow Spheres: Room-Temperature Synthesis, Tailored Visible-Light-Extinction, and Effective Scattering Layer for Quantum Dot-Sensitized Solar Cells. J. Am. Chem. Soc. 2011,133,19102-19109.
    121.H.F. Lin, L.P. Li, M.L. Zhao, X.S. Huang, X.M. Chen, G.S. Li, R.C. Yu, Synthesis of High-Quality Brookite TiO2 Single-Crystalline Nanosheets with Specific Facets Exposed:Tuning Catalysts from Inert to Highly Reactive. J. Am. Chem. Soc.2012,134,8328-8331.
    122.G.L. Xiang, T.Y. Li, J. Zhuang, X. Wang, Large-Scale Synthesis of Metastable TiO2(B) Nanosheets with Atomic Thickness and Their Photocatalytic Properties. Chem. Commun.2010,46,6801-6803.
    123.Y. Ohno, K. Tomita, Y. Komatsubara, T. Taniguchi, K. Katsumata, N. Matsushita, T. Kogure, K. Okada, Pseudo-Cube Shaped Brookite (TiO2) Nanocrystals Synthesized by An Oleate-Modified Hydrothermal Growth Method. Cryst. Growth Des.2011,11,4831-4836.
    124.T. Ohno, K. Sarukawa, M. Matsumura, Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions. New J. Chem.2002,26, 1167-1170.
    125.H.B. Jiang, C.Z. Wen, J. Xing, D. Wu, X.G. Gong, C.Z. Li, H.G. Yang, Anatase TiO2 Crystals with Exposed High-Index Facets. Angew. Chem. Int. Ed.2011,50, 3764-3768.
    126.Y.B. Zhao, W.H. Ma, Y. Li, H.W. Ji, C.C. Chen, H.Y. Zhu, J.C. Zhao, The Surface-Structure Sensitivity of Dioxygen Activation in the Anatase Photocatalyzed Oxidation Reaction. Angew. Chem. Int. Ed.2012,51,3188-3192.
    127.C.W. Peng, T.Y. Ke, L. Brohan, M. Richard-Plouet, J.C. Huang, E. Puzenat, H.T. Chiu, C.Y. Lee, (101)-Exposed Anatase TiO2 Nanosheets. Chem. Mater.2008,20, 2426-2428.
    128.F. Amano, T. Yasumoto, O. Prieto-Mahaney, S. Uchida, T. Shibayamad, B. Ohtaniab, Photocatalytic Activity of Octahedral Single-Crystalline Mesoparticles of Anatase Titanium(IV) Oxide. Chem. Commun.2009,45,2311-2313.
    129.N.Q. Wu, J. Wang, D.N. Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X.G. Liu, S.S. Leonard, A. Manivannan, Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. J. Am. Chem. Soc.2010,132, 6679-6685.
    130.W. Jiao, L. Wang, G. Liu, G.Q. Lu, H.M. Cheng, Hollow Anatase TiO2 Single Crystals and Mesocrystals with Dominant{101} Facets for Improved Photocatalysis Activity and Tuned Reaction Preference. ACS Catal.2012,2, 1854-1859.
    131.M. Liu, L.Y. Piao, W.M. Lu, S.T. Ju, L. Zhao, C.L. Zhou, H.L. Li, W.J. Wang, Flower-like TiO2 Nanostructures with Exposed{001} Facets:Facile Synthesis and Enhanced Photocatalysis. Nanoscale,2010,2,1115-1117.
    132.C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of Micro-Sized Titanium Dioxide Nanosheets Wholly Exposed with High-Energy {001} and{100} Facets. Chem. Commun.2011,47,4400-4402.
    133.X.W. Zhao, W.Z. Jin, J.G. Cai, J.F. Ye, Z.H. Li, Y.R. Ma, J.L. Xie, L.M. Qi, Shape-and Size-Controlled Synthesis of Uniform Anatase TiO2 Nanocuboids Enclosed by Active{100} and{001} Facets. Adv. Fund Mater.2011,21, 3554-3563.
    134.M. Liu, L.Y. Piao, L. Zhao, S.T. Ju, Z.J. Yan, T. He, C.L. Zhou, W.J. Wang, Anatase TiO2 Single Crystals with Exposed{001} and{110} Facets:Facile Synthesis and Enhanced Photocatalysis. Chem. Commun.2010,46,1664-1666.
    135.J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the True Photoreactivity Order of{001}, {010}, and{101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed.2011, 50,2133-2137.
    136.J.S. Chen, C.P. Chen, J. Liu, R. Xu, S.Z. Qiao, X.W. Lou, Ellipsoidal Hollow Nanostructures Assembled from Anatase TiO2 Nanosheets as A Magnetically Separable Photocatalyst. Chem. Commun.2011,47,2631-2633.
    137.T.C. Zhang, X.Y. Hu, M. Fang, L.D. Zhang, Z.M. Wang, Synthesis of Hierarchical TiO2 Nanotube Arrays Assembled by Anatase Single Crystal Nanoparticles. CrystEngComm 2012,14,7656-7661.
    138.A.S. Ichimura, B.M. Mack, S.M. Usmani, D.G. Mars, Direct Synthesis of Anatase Films with 100%(001) Facets and [001] Preferred Orientation. Chem. Mater.2012,24,2324-2329.
    139.H. Yu, B.Z. Tian, J.L. Zhang, Layered TiO2 Composed of Anatase Nanosheets with Exposed{001} Facets:Facile Synthesis and Enhanced Photocatalytic Activity. Chem. Eur. J.2011,17,5499-5502.
    140.Z.K. Zheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whango, Facile in situ Synthesis of Visible-Light Plasmonic Photocatalysts M@TiO2 (M= Au, Pt, Ag) and Evaluation of Their Photocatalytic Oxidation of Benzene to Phenol. J. Mater. Chem.2011,21,9079-9087.
    141.J.G. Yu, L.F. Qi, M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. J. Phys. Chem. C 2010,114,13118-13125.
    142.X.G. Liu, D.Y. Geng, X.L. Wang, S. Ma, H. Wang, D. Li, B.Q. Li, W. Liu, Z.D. Zhang, Enhanced Photocatalytic Activity of Mo-{001} TiO2 Core-Shell Nanoparticles under Visible Light. Chem. Commun.2010,46,6956-6958.
    143.M.Y. Xing, D.Y. Qi, J.L. Zhang, F. Chen, One-Step Hydrothermal Method to Prepare Carbon and Lanthanum Co-Doped TiO2 Nanocrystals with Exposed{001} Facets and Their High UV and Visible-Light Photocatalytic Activity. Chem. Eur. J.2011,17,11432-11436.
    144.G. Liu, H.G. Yang, X.W. Wang, L.N. Cheng, J. Pan, G.Q. Lu, H.M. Cheng, Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN. J. Am. Chem. Soc.2009,131,12868-12869.
    145.J.G. Yu, G.P. Dai, Q.J. Xiang, M. Jaroniec, Fabrication and Enhanced Visible-Light Photocatalytic Activity of Carbon Self-Doped TiO2 Sheets with Exposed{001} Facets. J. Mater. Chem.2011,21,1049-1057.
    146.G. Liu, C.H. Sun, S.C. Smith, L.Z. Wang, G.Q. Lu, H.M. Cheng, Sulfur Doped Anatase TiO2 Single Crystals with A High Percentage of{001} Facets. J. Colloid Interface Sci.2010,349,477-483.
    147.W. Wang, C.H. Lu, Y.R. Ni, M.X. Su, Z.Z. Xu, A New Sight on Hydrogenation of F and N-F Doped{001} Facets Dominated Anatase TiO2 for Efficient Visible Light Photocatalyst. Appl. Catal, B 2012,127,28-35.
    148.J.S. Chen, D.Y. Luan, C.M. Li, F.Y. Boey, S.Z. Qiao, X.W. Lou, TiO2 and SnO2@TiO2 Hollow Spheres Assembled from Anatase TiO2 Nanosheets with Enhanced Lithium Storage Properties. Chem. Commun.2010,46,8252-8254.
    149.L.F. Qi, J.G. Yu, M. Jaroniec, Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of CdS-Sensitized Pt/TiO2 Nanosheets with Exposed (001) Facets. Phys. Chem. Chem. Phys.2011,13,4853-4861.
    150.S.J. Ding, J.S. Chen, D.Y. Luan, F.Y. Boey, S. Madhavi, X.W. Lou, Graphene-Supported Anatase TiO2 Nanosheets for Fast Lithium Storage. Chem. Commun.2011,47,5780-5782.
    151.Z.Y. Wang, B.B. Huang, Y. Dai, Y.Y. Liu, X.Y. Zhang, X.Y. Qin, J.P. Wang, Z.K. Zheng, H.F. Cheng, Crystal Facets Controlled Synthesis of Graphene@TiO2 Nanocomposites by A One-Pot Hydrothermal Process. CrystEngComm 2012,14, 1687-1692.
    152.W.S. Wang, D.H. Wang, W.G. Qu, L.Q. Lu, A.W. Xu, Large Ultrathin Anatase TiO2 Nanosheets with Exposed{001} Facets on Graphene for Enhanced Visible Light Photocatalytic Activity.J. Phys. Chem. C 2012,116,19893-19901.
    153.W.X. Guo, F. Zhang, C.J. Lin, Z.L. Wang, Direct Growth of TiO2 Nanosheet Arrays on Carbon Fibers for Highly Efficient Photocatalytic Degradation of Methyl Orange. Adv. Mater.2012,24,4761-4764.
    154.Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.,2010, 49,1-5.
    155.Q.J. Xiang, J.G. Yu, Photocatalytic Activity of Hierarchical Flower-Like TiO2 Superstructures with Dominant{001} Facets. Chin. J. Catal.2011,32,525-531.
    156.Y. Zheng, K.L. Lv, Z.Y. Wang, K.J. Deng, M. Li, Microwave-Assisted Rapid Synthesis of Anatase TiO2 Nanocrystals with Exposed{001} Facets. J. Mol. Catal, A 2012,356,137-143.
    157.F. Amano, O.O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Decahedral Single-Crystalline Particles of Anatase Titanium(IV) Oxide with High Photocatalytic Activity. Chem. Mater.2009,21,2601-2603.
    158.S. Wohlrab, N. Pinna, M. Antonietti and H. Colfen, Polymer-Induced Alignment of DL-Alanine Nanocrystals to Crystalline Mesostructures. Chem. Eur. J.2005,11, 2903-2913.
    159.M. Niederberger, H. Colfen, Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly. Phys. Chem. Chem. Phys.2006,8,3271-3287.
    160.H. Colfen, M. Antonietti, Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 2005,44,5576-5591.
    161.Y. Oaki, H. Imai, Nanoengineering in Echinoderms:The Emergence of Morphology from Nanobircks. Small 2006,2,66-70.
    162.M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain, X. Bourrat, Multiscale Structure of Sheet Nacre. Biomaterials 2005,26, 6254-6262.
    163.Y. Oaki, H. Imai, The Hierarchical Architecture of Nacre and Its Mimetic Materials. Angew. Chem. Int. Ed.2005,44,6571-6575.
    164.A. Sugawara, T. Nishimura, Y. Yamamoto, H. Inoue, H. Nagasawa, T. Kato, Self-Organization of Oriented Calcium Carbonate/Polymer Composites:Effects of A Matrix Peptide Isolated from the Exoskeleton of A Crayfish. Angew. Chem. Int. Ed.2006,45,2876-2879.
    165.K.M. Ryan, A. Mastroianni, K.A. Stancil, H.T. Liu, A.P. Alivisatos, Electric-Field-Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices. Nano Lett.2006,6,1479-1482.
    166.S. Gupta, Q.L. Zhang, T. Emrick, T.P. Russell, "Self-Corralling" Nanorods under An Applied Electric Field. Nano Lett.2006,6,2066-2069.
    167.Q. Gong, X.F. Qian, X.D. Ma, Z.K. Zhu, Large-Scale Fabrication of Novel Hierarchical 3D CaMoO4 and SrMoO4 Mesocrystals via A Microemulsion-Mediated Route. Cryst. Growth Des.2006,6,1821-1825.
    168.L. Zhou, D.S. Boyle, P.O. Brien, Uniform NH4TiOF3 Mesocrystals Prepared by An Ambient Temperature Self-Assembly Process and Their Topotaxial Conversion to Anatase. Chem. Commun.2007,43,144-146.
    169.L. Zhou, D.S. Boyle, P.O. Brien, A Facile Synthesis of Uniform NH4Ti0F3 Mesocrystals and Their Conversion to TiO2 Mesocrystals. J. Am. Chem. Soc. 2008,130,1309-1320.
    170.K.X. Yao, H.C. Zeng, ZnO/PVP Nanocomposite Spheres with Two Hemispheres. J. Phys. Chem. C 2007,111,13301-13308.
    171.Y. Peng, A.W. Xu, B. Deng, M. Antonietti, H. Colfen, Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks. J. Phys. Chem. B 2006,110,2988-2993.
    172.J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation. J. Am. Chem. Soc.2005,127,15595-15601.
    173.Y. Oaki, H. Imai, Biomimetic Morphological Design for Manganese Oxide and Cobalt Hydroxide Nanoflakes with A Mosaic Interior. J. Mater. Chem.2007,17, 316-321.
    174.S.W. Yang, L. Gao, Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. J. Am. Chem. Soc.2006,128,9330-9331.
    175.J.P. Ge, Y.X. Hu, M. Biasini, W.P. Beyermann, Y.D. Yin, Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chem. Int. Ed.2007,46, 4342-4345.
    176.L. Zhou, W.Z. Wang, H.L. Xu, Controllable Synthesis of Three-Dimensional Well-Defined BiVO4 Mesocrystals via A Facile Additive-Free Aqueous Strategy. Cryst. Growth Des.2008,8,728-733.
    177.S.W. Liu, J.G. Yu, Cooperative Self-Construction and Enhanced Optical Absorption of Nanoplates-Assembly Hierarchical Bi2WO6 Flowers. J. Solid State Chem.2008,181,1048-1055.
    178.V.R. Calderone, A. Testino, M.T. Buscaglia, M. Bassoli, C. Bottino, M. Viviani, V. Buscaglia, P. Nanni, Size and Shape Control of SrTiO3 Particles Growth by Epitaxial Self-Assembly. Chem. Mater.2006,18,1627-1633.
    179.S.J. Liu, J.Y. Gong, B. Hu, S.H. Yu, Mesocrystals of Rutile TiO2:Mesoscale Transformation, Crystallization, and Growth by A Biologic Molecules-Assisted Hydrothermal Process. Cryst. Growth Des.2009,9,203-209.
    180.L. Li, C.Y. Liu, Organic Small Molecule-Assisted Synthesis of High Active TiO2 Rod-Like Mesocrystals. CrystEngComm 2010,12,2073-2078.
    181.P. Tartaj, J.M. Amarilla, Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystal-Like Porous Assemblies. Adv. Mater.2011,23, 4904-4907.
    182.J.F. Ye, W. Liu, J.G. Cai, S. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, Nanoporous Anatase TiO2 Mesocrystals:Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. J. Am. Chem. Soc.2011,133,933-940.
    1. D.H. Chen, L. Cao, F.Z. Huang, P. Imperia, Y.B. Cheng, R.A. Caruso, Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm). J.Am. Chem. Soc.2010, 132,4438-4444.
    2. H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007, 129,4538-4539.
    3. J.C. Yu, G.S. Li, X.C. Wang, X.L.. Hu, C.W. Leung, Z.D. Zhang, An Ordered Cubic Im3m Mesoporous Cr-TiO2 Visible Light Photocatalyst. Chem. Commun. 2006,42,2717-2719.
    4. Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.2010, 49,1-5.
    5. D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock Copolymer Synthesis of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998,279,548-552.
    6. F. Kleitz, S.H. Choi, R. Ryoo, Cubic Ia3d Large Mesoporous Silica:Synthesis and Replication to Platinum Nanowires, Carbon Nanorods and Carbon Nanotubes. Chem. Commun.2003,39,2136-2137.
    7. K.Y. Jung, S.B. Park, Enhanced Photoactivity of Silica-Embedded Titania Particles Prepared by Sol-Gel Process for the Decomposition of Trichloroethylene. Appl. Catal., B 2000,25,249-256.
    8. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of Titania Nanosheets with A High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    1. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    2. B. Ohtani, Y. Ogawa, S.S. Nishimoto, Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101,3746-3752.
    3. X.B. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107,2891-2959.
    4. A.L. Linsebigler, GQ. Lu, J. Yates, Photocatalysis on TiO2 Surfaces:Principles, Mechanism, and Selected Results. Chem. Rev.1995,95,735-758.
    5. J.C. Yu, J.G. Yu, W.K. Ho, Z. Jiang, L.Z. Zhang, Effect of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders. Chem. Mater.2002,14,3808-3816.
    6. H.X. Li, Z.F. Bian, J.Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Titania Spheres with Tunable Chamber Structure and Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129,8406-8407.
    7. J. Zhu, J. Ren, Y.N. Huo, H.X. Li, Nanocrystalline Fe/TiO2 Visible Photocatalyst with A Mesoporous Structure Prepared by A Nonhydrolytic Sol-Gel Route. J. Phys. Chem. C 2007,111,18965-18969.
    8. K. Zimny, T. Roques-Carmes, C. Carteret, M.J. Stebe, J.L. Blin, Synthesis and Photoactivity of Ordered Mesoporous Titania with A Semicrystalline Framework. J. Phys. Chem. C 2012,116,6585-6594.
    9. W. Zhou, F.F. Sun, K. Pan, G.H. Tian, B.J. Jiang, Z. Ren, C.G. Tian, H.G Fu, Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity:Preparation, Characterization, and Photocatalytic Performance. Adv. Funct. Mater.2011,21,1922-1930.
    10. W.B. Yue, X.X. Xu, T.S. Irvine, P.S. Attidekou, C. Liu, H.Y. He, D.Y. Zhao, W.Z. Zhou, Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. Chem. Mater.2009,21,2540-2546.
    11. W.B. Yue, C.N. Random, P.S. Attidekou, Z.X. Su, T.S. Irvine, W.Z. Zhou, Synthesis, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Adv. Funct. Mater.2009,19,2926-2833.
    12. A. Ismail, D. Bahnemann, Mesoporous Titania Photocatalysts:Preparation, Characterization and Reaction Mechanisms. J. Mater. Chem.2011,21, 11686-11707.
    13. H.X. Li, Z.F. Bian, J. Zhu, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007, 129,4538-4539.
    14. J.C. Yu, G.S. Li, X.C. Wang, X.L. Hu, C.W. Leung, Z.D. Zhang, An Ordered Cubic Im3m Mesoporous Cr-TiO2 Visible Light Photocatalyst. Chem. Commun. 2006,42,2717-2719.
    15. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase. J. Phys. Chem. C 2008,112,6258-6262.
    16. J.A. Wang, R. Limas-Ballesteros, T. Lopez, A. Moreno, R. Gomez, O. Novaro, X. Bokhimi, Quantitative Determination of Titanium Lattice Defects and Solid-State Reaction Mechanism in Iron-Doped TiO2 Photocatalysts. J. Phys. Chem. B 2001, 105,9692-9698.
    17. H.X. Li, X.Y. Zhang, Y.N. Huo, J. Zhu, Supercritical Preparation of A Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization. Environ. Sci. Technol.2007,41,4410-4414.
    18. L. Kavan, M. Gratzel, S.E. Gilbert, C. Klemenz, H.J. Scheel, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. J. Am. Chem. Soc. 1996,118,6716-6723.
    19. Y.W. Jun, M.F. Casula, JH. Sim, S.Y. Kim, J. Cheon, A.P. Alivisatos, Surfactant-Assisted Elimination of A High Energy Facet as A Means of Controlling the Shapes of TiO2 Nanocrystals. J. Am. Chem. Soc.2003,125, 15981-15985.
    20. J. Zhu, S.H. Wang, Z.F. Bian, S.H. Xie, C.L. Cai, J.G. Wang, H.G. Yang, H.X. Li, Solvothermally Controllable Synthesis of Anatase TiO2 Nanocrystals with Dominant{001} Facets and Enhanced Photocatalytic Activity. CrystEngComm 2010,12,2219-2224.
    21. H.G Yang, C.H. Sun, S.Z. Qiao, J.Zou, G Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single Crystals with A Large Percentage of Reactive Facets. Nature 2008,453,638-641.
    22. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets. J. Am. Chem. Soc.2009,131, 4078-4083.
    23. Y.Q. Dai, C.M. Cobley, J. Zeng, Y.M. Sun, Y.N. Xia, Synthesis of Anatase TiO2 Nanocrystals with Exposed{001} Facets. Neno lett.2009,9,2455-2459.
    24. B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Non-Aqueous Production of Nanostructured Anatase with High-Energy Facets. J. Am. Chem. Soc.2008,130,17563-17567.
    25. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of Titania Nanosheets with A High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    26. D.Q. Zhang, G.S. Li, X.F. Yang, J.C. Yu, A Micrometer-Size TiO2 Single-Crystal Photocatalyst with Remarkable 80% Level of Reactive Facets. Chem. Commun. 2009,45,4381-4383.
    27. L. Sun, Y. Qin, Q.Q. Cao, B.Q. Hu, Z.W. Huang, L. Ye, X.F. Tang, Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive{111} Facets. Chem. Commun.2011,47,12628-12630.
    28. C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of Micro-Sized Titanium Dioxide Nanosheets Wholly Exposed with High-Energy {001} and{100} Facets. Chem. Commun.2011,47,4400-4402.
    29. Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.2010, 49,1-5.
    30. D.H. Chen, L. Cao, F.Z. Huang, P. Imperia, Y.B. Cheng, R.A. Caruso, Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm). J. Am. Chem. Soc.2010, 132,4438-4444.
    31. J.C. Parker, R.W. Siegei, Calibration of the Raman Spectrum to the Oxygen Stoichiometry of Nanophase TiO2. Appl. Phys. Lett.1990,57,943-945.
    32. X.Q. Gong, A. Selloni, Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface. J. Phys. Chem. B 2005,109,19560-19562.
    33. Y.B. Zhao, W.H. Ma, Y. Li, H.W. Ji, C.C. Chen, H.Y. Zhu, J.C. Zhao, The Surface-Structure Sensitivity of Dioxygen Activation in the Anatase Photocatalyzed Oxidation Reaction. Angew. Chem. Int. Ed.2012,51,3188-3192.
    34. J. Pan, G Liu, G.Q. Lu, H.M. Cheng, On the True Photoreactivity of{001}, {010}, and{101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed.2011, 50,2133-2137.
    35. G.S. Li, D.Q. Zhang, J.C. Yu, Ordered Mesoporous BiVO4 through Nanocasting: A Superior Visible Light-Driven Photocatalyst. Chem. Mater.2008,20, 3983-3992.
    36. J.C. Yu, X.C. Wang, X.Z. Fu, Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films. Chem. Mater.2004,16,1523-1530.
    37. N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, Shape-Controlled Anatase Titanium Oxide Particles Prepared by Hydrothermal Treatment of Peroxo Titanic Acid in the Presence of Polyvinyl Alcohol. J. Phys. Chem. C 2009,113, 3062-3069.
    38. S.K. Choi, S. Kim, S.K. Lim, H. Park, Photocatalytic Comparison of TiO2 Nanoparticles and Electrospun TiO2 Nanofibers:Effects of Mesoporosity and Interparticle Charge Transfer. J. Phys. Chem. C 2010,114,16475-16480.
    39. D.V. Bavykin, S.N. Gordeev, A.V. Moskalenko, A.A. Lapkin, F.C. Walsh, Apparent Two-Dimensional Behavior of TiO2 Nanotubes Revealed by Light Absorption and Luminescence. J. Phys. Chem. B 2005,109,8565-8569.
    40. C. Aellig, C. Girard, I. Hermans, Aerobic Alcohol Oxidations Mediated by Nitric Acid. Angew. Chem. Int. Ed.2011,50,12355-12360.
    41. Q. Wang, M. Zhang, C.C. Chen, W.H. Ma, J.C. Zhao, Photocatalytic Aerobic Oxidation of Alcohols on TiO2:The Acceleration Effect of A Bronsted Acid. Angew. Chem. Int. Ed.2010,49,1916-1919.
    42. A. Tanaka, H. Kominami, Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in An Aqueous Suspension of Gold Nanoparticles Supported on Cerium Oxide under Irradiation of Green Light. Chem. Commun. 2011,47,10446-10448.
    43. D. Tsukamoto, M. Ikeda, Y. Shiraishi, T. Hara, N. Ichikuni, S. Tanaka, T. Hirai, Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO2 Partially Coated with WO3. Chem. Eur. J.2011,17,9816-9824.
    44. G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Oxide. Adv. Synth. Catal.2007,349, 964-970.
    45. Y. Uozumi, R. Nakao, Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen by Use of An Amphiphilic Resin-Dispersion of A Nanopalladium. Angew. Chem. Int. Ed.2003,42,194-197.
    46. N. Zhang, Y. H. Zhang, X. Y. Pan, X. Z. Fu, S. Q. Liu, Y. J. Xu, Assembly of CdS Nanoparticles on the Two-Dimensional Graphene Scaffold as Visible-Light-Driven Photocatalyst for Selective Organic Transformation under Ambient Conditions. J. Phys. Chem. C 2011,115,23501-23511.
    47. T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa,K. Kaneda, Design of A Silver-Cerium Dioxide Core-Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions. Angew. Chem. Int. Ed.2012,51,136-139.
    48. S.B. Zhu, T.G. Xu, H.B. Fu, J.C. Zhao, Y.F. Zhu, Synergetic Effect of Bi2WO6 Photocatalyst with C6o and Enhanced Photoactivity under Visible Irradiation. Environ. Sci. Technol.2007,41,6234-6239.
    49. G.L. Huang, S.C. Zhang, T.G. Xu, Y.F. Zhu, Fluorination of ZnW04 Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environ. Sci. Technol.2008,42,8516-8521.
    50. J.H. Kou, Z.S. Li, YP. Yuan, H.T. Zhang, Y. Wang, Z.G. Zou, Visible-Light-Induced Photocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons over Tantalum Oxynitride Photocatalysts. Environ. Sci. Technol. 2009,43,2919-2924.
    51. W.J. Li, D.Z. Li, Y.G Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. J. Phys. Chem. C 2012,116,3552-3560.
    52. H. Yuzawa, T. Mori, H. Itoh, H. Yoshida, Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst. J. Phys. Chem. C 2012,116,4126-4136.
    1. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    2. X.B. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107,2891-2959.
    3. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev.2010,110,6503-6570.
    4. B. Ohtani, Y. Ogawa, S.S. Nishimoto, Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101,3746-3752.
    5. H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Titania Spheres with Tunable Chamber Structure and Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129,8406-8407.
    6. T. Ohno, K. Sarukawa, M. Matsumura, Crystal Faces of Rutile and Anatase TiO2 Particles and Their Roles in Photocatalytic Reactions. New J. Chem.2002,26, 1167-1170.
    7. T. Taguchi, Y. Saito, K. Sarukawa, T. Ohno, M. Matsumura, Formation of New Crystal Faces on TiO2 Particles by Treatment with Aqueous HF Solution or Hot Sulfuric Acid. New J. Chem.2003,27,1304-1306.
    8. T. Tachikawa, N. Wang, S. Yamashita, S.C. Cui, T. Majima, Design of A Highly Sensitive Fluorescent Probe for Interfacial Electron Transfer on A TiO2 Surface. Angew. Chem. Int. Ed.2010,49,8593-8597.
    9. T. Tachikawa, S. Yamashita, T. Majima, Evidence for Crystal-Face-Dependent TiO2 Photocatalysis from Single-Molecule Imaging and Kinetic Analysis. J. Am. Chem. Soc.2011,133,7197-7204.
    10. H. Kamisaka, K. Yamashita, The Surface Stress of the (110) and (100) Surfaces of Rutile and the Effect of Water Adsorbents. Surf. Sci. 2007,601,4824-4836.
    11. D.E. Wang, H.F. Jiang, X. Zong, Q. Xu, Y. Ma, GL. Li, C. Li, Crystal Facet Dependence of Water Oxidation on BiVO4 Sheets under Visible Light Irradiation. Chem. Eur. J.2011,17,1275-1282.
    12. Y.P. Bi, S.X. Ouyang, N. Umezawa, J.Y. Cao, J.H. Ye, Facet Effect of Single-Crystalline Ag3PO4 Sub-Microcrystals on Photocatalytic Properties. J. Am. Chem. Soc.2011,133,6490-6492.
    13. K. Zimny, T. Roques-Carmes, C. Carteret, M.J. Stebe, J.L. Blin, Synthesis and Photoactivity of Ordered Mesoporous Titania with A Semicrystalline Framework. J. Phys. Chem. C 2012,116,6585-6594.
    14. W. Zhou, F.F. Sun, K. Pan, G.H. Tian, B.J. Jiang, Z. Ren, C.G. Tian, H.G Fu, Weil-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity:Preparation, Characterization, and Photocatalytic Performance. Adv. Funct. Mater.2011,21,1922-1930.
    15. W.B. Yue, X.X. Xu, T.S. Irvine, P.S. Attidekou, C. Liu, H.Y. He, D.Y. Zhao, W.Z. Zhou, Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties. Chem. Mater.2009,21,2540-2546.
    16. W.B. Yue, C.N. Random, P.S. Attidekou, Z.X. Su, T.S. Irvine, W.Z. Zhou, Synthesis, Li Insertion, and Photoactivity of Mesoporous Crystalline TiO2. Adv. Funct. Mater.2009,19,2926-2833.
    17. J. Zhu, S.H. Wang, Z.F. Bian, S.H. Xie, C.L. Cai, J.G Wang, H.G. Yang, H.X. Li, Solvothermally Controllable Synthesis of Anatase TiO2 Nanocrystals with Dominant{001} Facets and Enhanced Photocatalytic Activity. CrystEngComm 2010,12,2219-2224.
    18. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single Crystals with A Large Percentage of Reactive Facets. Nature 2008,453,638-641.
    19. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets. J. Am. Chem. Soc.2009,131, 4078-4083.
    20. Y.Q. Dai, C.M. Cobley, J. Zeng, Y.M. Sun, Y.N. Xia, Synthesis of Anatase TiO2 Nanocrystals with Exposed{001} Facets. Nano left.2009,9,2455-2459.
    21. B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Non-Aqueous Production of Nanostructured Anatase with High-Energy Facets. J. Am. Chem. Soc.2008,130,17563-17567.
    22. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of Titania Nanosheets with A High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    23. D.Q. Zhang, G.S. Li, X.F. Yang, J.C. Yu, A Micrometer-Size TiO2 Single-Crystal Photocatalyst with Remarkable 80% Level of Reactive Facets. Chem. Commun. 2009,45,4381-4383.
    24. L. Sun, Y. Qin, Q.Q. Cao, B.Q. Hu, Z.W. Huang, L. Ye, X.F. Tang, Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive{111} Facets. Chem. Commun.2011,47,12628-12630.
    25. C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of Micro-Sized Titanium Dioxide Nanosheets Wholly Exposed with High-Energy {001} and{100} Facets. Chem. Commun.2011,47,4400-4402.
    26. Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.2010, 49,1-5.
    27. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Oredered Mesoporous Structure and Highly Crystallized Anatase. J. Phys. Chem. C 2008,112,6258-6262.
    28. J. Zhu, J. Yang, Z.F. Bian, J. Ren, Y.M. Liu, Y. Cao, H.X. Li, H.Y. He, K.N. Fan, Nanocrystalline Anatase TiO2 Photocatalysts Prepared via A Facile Lwo Temperature Nonhydrolytic Sol-Gel Reaction of TiCl4 and Benzyl Alcohol. Appl. Catal.,B 2007,76,82-91.
    29. J.G. Wang, Z.F. Bian, J. Zhu, H.X. Li. Ordered Mesoporous TiO2 with Exposed (001) Facets and Enhanced Activity in Photocatalytic Selective Oxidation of Alcohols. J. Mater. Chem. A 2013,1,1296-1302.
    30. J.G. Wang, P. Zhang, X. Li, J. Zhu, H.X. Li. Synchronical Pollutant Degradation and H2 Production on A Ti3+ -Doped TiO2 Visible Photocatalyst with Dominant (001) Facets. Appl. Catal, B 2013,134-135,198-204.
    31. Z.F. Bian, J. Zhu, J.G. Wang, S.X. Xiao, C. Nuckolls, H.X. Li, Multitemplates for the Hierarchical Synthesis of Diverse Inorganic Materials. J. Am. Chem. Soc. 2012,134,2325-2331.
    32. X.Q. Gong, A. Selloni, Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface. J. Phys. Chem. B 2005,109,19560-19562.
    33. Y.B. Zhao, W.H. Ma, Y. Li, H.W. Ji, C.C. Chen, H.Y. Zhu, J.C. Zhao, The Surface-Structure Sensitivity of Dioxygen Activation in the Anatase Photocatalyzed Oxidation Reaction. Angew. Chem. Int. Ed. 2012,51,3188-3192.
    34. J. Pan, G. Liu, G.Q. Lu, H.M. Cheng, On the True Photoreactivity of{001}, {010}, and{101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed.2011, 50,2133-2137.
    35. Y. Zhou, M. Antonletti, Synthesis of Very Small TiO2 Nanocrystals in A Room-Temperature Ionic Liquid and Their Self-Assembly toward Mesoporous Spherical Aggregates. J. Am. Chem. Soc.2003,125,14960-14961.
    36. T. Nakashima, N. Kimizuka, Interficial Synthesis of Hollow TiO2 Microspheres in Ionic Liquid. J. Am. Chem. Soc.2003,125,6386-6387.
    37. U. Diebold, The Surface Science of Titanium Dioxide. Surf. Sci. Rep.2003,48, 53-229.
    38. Yaghi, G.M. Li, H.L. Li, Selective Binding and Removal of Guests in A Microporous Metal-Organic Framework. Nature 1995,378,703-706.
    39. J. Jin, T. Iyoda, C. Cao, Y. Song, L. Jiang, T. Li, D. Zhu, Self-Assembly of Uniform Spherical Aggregates of Magnetic Nanoparticles through π-π Interactions. Angew. Chem. Int. Ed.2001,40,2135-2138.
    40. C.J. Bowlas, D.W. Bruce, K.R. Seddon, Liquid-Crystalline Ionic Liquids. Chem. Commun.1996,32,1625-1626.
    41. W.J. Zheng, X.D. Liu, Z.Y. Yan, L.J. Zhu, Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS Nano 2009,3,115-122.
    42. Y.Q. Zheng, E.W. Shi, Z.Z. Chen, W.J. Li, X.F. Hu, Influence of Solution Concentration on the Hydrothermal Preparation of Titania Cryatallites.J. Mater. Chem.2001,11,1547-1551.
    43. H.X. Li, X.Y. Zhang, Y.N. Huo, J. Zhu, Supercritical Preparation of A Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization. Environ. Sci. Technol.2007,41,4410-4414.
    44. W. Zhang, D. Zhang, T.X. Fan, J.J. Gu, J. Ding, H. Wang, Q.X. Guo, H. Ogawa, Novel Photoanode Structure Templated from Butterfly Wing Scales. Chem. Mater. 2008,21,33-40.
    45. J.Y. Huang, X.D. Wang, Z.L. Wang, Controlling Replication of Butterfly Wings for Achieving Tunable Photonic Properties. Nano Lett.2006,6,2325-2331.
    46. P. Vukusic, J.R. Sambles, C.R. Lawrence, Structure Colour:Colour Mixing in Wing Scales of A Butterfly. Nature 2000,404,457-457.
    47. B.D. Heilman, I.N. Miaoulis, Insect Thin Film as Solar Collectors. Appl. Opt. 1994,33,6642-6647.
    48. D.W. Koon, A.B. Crawford, Insect Thin Film as Sun Blocks, Not Solar Collectors. Appl Opt.2000,39,2496-2498.
    49. Y.N. Huo, Y. Zhang, J. Zhu, H.X. Li, Aerosol-Spraying Preparation of A Mesoporous Hollow Sphercial BiFeO3 Visible Photocatalyst with Enhanced Activity and Durability. Chem. Commun.2011,47,2089-2091.
    50. C. Aellig, C. Girard, I. Hermans, Aerobic Alcohol Oxidations Mediated by Nitric Acid. Angew. Chem. Int. Ed.2011,50,12355-12360.
    51. Q. Wang, M. Zhang, C.C. Chen, W.H. Ma, J.C. Zhao, Photocatalytic Aerobic Oxidation of Alcohols on TiO2:The Acceleration Effect of A Bronsted Acid. Angew. Chem. Int. Ed.2010,49,7976-7979.
    52. Tanaka, H. Kominami, Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in An Aqueous Suspension of Gold Nanoparticles Supported on Cerium Oxide under Irradiation of Green Light. Chem. Commun.2011,47, 10446-10448.
    53. D. Tsukamoto, M. Ikeda, Y. Shiraishi, T. Hara, N. Ichikuni, S. Tanaka, T. Hirai, Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO2 Partially Coated with WO3. Chem. Eur. J.2011,17,9816-9824.
    54. G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Oxide. Adv. Synth. Catal.2007,349, 964-970.
    55. Y. Uozumi, R. Nakao, Catalytic Oxidation of Alcohols in Water under Atmospheric Oxygen by Use of An Amphiphilic Resin-Dispersion of A Nanopalladium. Angew. Chem. Int. Ed.2003,42,194-197.
    56. N. Zhang, Y.H. Zhang, X.Y. Pan, X.Z. Fu, S.Q. Liu, Y.J. Xu, Assembly of CdS Nanoparticles on the Two-Dimensional Graphene Scaffold as Visible-Light-Driven Photocatalyst for Selective Organic Transformation under Ambient Conditions. J. Phys. Chem. C 2011,115,23501-23511.
    57. T. Mitsudome, Y. Mikami, M. Matoba, T. Mizugaki, K. Jitsukawa,K. Kaneda, Design of A Silver-Cerium Dioxide Core-Shell Nanocomposite Catalyst for Chemoselective Reduction Reactions. Angew. Chem. Int. Ed.2012,51,136-139.
    1. M. Niederberger, H. Colfen, Oriented Attachment and Mesocrystals: Non-Classical Crystallization Mechanisms Based on Nanoparticle Assembly. Phys. Chem. Chem. Phys.2006,8,3271-3287.
    2. R.Q. Song, H. Colfen, Mesocrystals-Ordered Nanoparticles Superstructures. Adv. Mater.2010,22,1301-1330.
    3. L. Liu, X.D. Wen, X.L. Wu, YJ. Gao, H.T. Chen, J. Zhu, P.K. Chu, Intrinsic Dipole-Field-Driven Mesoscale Crystallization of Core-Shell ZnO Mesocrystal Microspheres. J. Am. Chem. Soc.2009,131,9405-9412.
    4. H. Colfen, M. Antonietti, Mesocrystals:Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angew. Chem. Int. Ed. 2005,44,5576-5591.
    5. R.Q. Song, A.W. Xu, M. Antonietti, H. Colfen, Calcite Crystals with Platonic Shapes and Minimal Surface. Angew. Chem. Int. Ed.2009,48,395-399.
    6. Y. Oaki, H. Imai, Nanoengineering in Echinoderms:The Emergence of Morphology from Nanobricks. Small 2006,2,66-70.
    7. Y. Oaki, H. Imai, The Hierarchical Architecture of Nacre and Its Mimetic Material. Angew. Chem. Int. Ed.2005,44,6571-6575.
    8. Q. Gong, X.F. Qian, X.D. Ma, Z.K. Zhu, Large-Scale Fabrication of Novel Hierarchical 3D CaMoO4 and SrMoO4 Mesocrystals via A Microemulsion-Mediated Route. Cryst. Growth Des.2006,6,1821-1825.
    9. L. Zhou, D.S. Boyle, P.O. Brien, Uniform NH4TiOF3 Mesocrystals Prepared by An Ambient Temperature Self-Assembly Process and Their Topotaxial Conversion to Anatase. Chem. Commun.2007,43,144-146.
    10. L. Zhou, D.S. Boyle, P.O. Brien, A Facile Synthesis of Uniform NH4TiOF3 Mesocrystals and Their Conversion to TiO2 Mesocrystals. J. Am. Chem. Soc. 2008,130,1309-1320.
    11. K.X. Yao, H.C. Zeng, ZnO/PVP Nanocomposite Spheres with Two Hemispheres. J. Phys. Chem. C 2007,111,13301-13308.
    12. Y. Peng, A.W. Xu, B. Deng, M. Antonietti, H. Colfen, Polymer-Controlled Crystallization of Zinc Oxide Hexagonal Nanorings and Disks. J. Phys. Chem. B 2006,110,2988-2993.
    13. J. Polleux, N. Pinna, M. Antonietti, M. Niederberger, Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation. J. Am. Chem. Soc.2005, 127,15595-15601.
    14. Y. Oaki, H. Imai, Biomimetic Morphological Design for Manganese Oxide and Cobalt Hydroxide Nanoflakes with A Mosaic Interior.J. Mater. Chem.2007,17, 316-321.
    15. S.W. Yang, L. Gao, Controlled Synthesis and Self-Assembly of CeO2 Nanocubes. J. Am. Chem. Soc.2006,128,9330-9331.
    16. J.P. Ge, Y.X. Hu, M. Biasini, W.P. Beyermann, Y.D. Yin, Superparamagnetic Magnetite Colloidal Nanocrystal Clusters. Angew. Chem. Int. Ed.2007,46, 4342-4345.
    17. L. Zhou, W.Z. Wang, H.L. Xu, Controllable Synthesis of Three-Dimensional Well-Defined BiVO4 Mesocrystals via A Facile Additive-Free Aqueous Strategy. Cryst. Growth Des.2008,8,728-733.
    18. S.W. Liu, J.G. Yu, Cooperative Self-Construction and Enhanced Optical Absorption of Nanoplates-Assembly Hierarchical Bi2WO6 Flowers. J. Solid State Chem.2008,181,1048-1055.
    19. J.F. Ye, W. Liu, J.G. Cai, S. Chen, X.W. Zhao, H.H. Zhou, L.M. Qi, Nanoporous Anatase TiO2 Mesocrystals:Additive-Free Synthesis, Remarkable Crystalline-Phase Stability, and Improved Lithium Insertion Behavior. J. Am. Chem. Soc.2011,133,933-940.
    20. L. Li, C.Y. Liu, Organic Small Molecule-Assisted Synthesis of High Active TiO2 Rod-Like Mesocrystals. CrystEngComm 2010,12,2073-2078.
    21. P. Tartaj, J.M. Amarilla, Multifunctional Response of Anatase Nanostructures Based on 25 nm Mesocrystal-Like Porous Assemblies. Adv. Mater.2011,23, 4904-4907.
    22. D.Q. Zhang, M.C. Wen, P. Zhang, J. Zhu, G.S. Li, H.X. Li, Microwave-Induced Synthesis of Porous Single-Crystal-Like TiO2 with Excellent Lithium Storage Properties. Langmuir 2012,28,4543-4547.
    23. Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.,2010, 49,1-5.
    24. F.D. Angelis, S. Fantacci, A. Selloni, M.K. Nazeeruddin, M. Gratzel, Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO2 Nanoparticles:The Role of Sensitizer Protonation. J.Am. Chem. Soc.2007,129,14156-14157.
    25. J.N. Clifford, E. Palomares, M.K. Nazeeruddin, M. Gratzel, J.R. Durrant, Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the Formation of A Ruthenium Bipyridyl Cation/Iodide Intermediate. J. Phys. Chem. C 2007,111,6561-6567.
    26. H.J. Snaith, M. Gratzel, The Role of A "Schottky Barrier" at An Electron-Collection Electrode in Solid-State Dye-Sensitized Solar Cells. Adv. Mater.2006,18,1910-1914.
    27. A. Kay, I. Cesar, M. Gratzel, New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. J. Am. Chem. Soc.2006,128,15714-15721.
    28. Y. Bessekhouad, D. Robert, J.V. Weber, Photocatalytic Activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 Heterojunctions. Catal. Today 2005, 101,315-321.
    29. M. Kang, Y.R. Ko, M. Jeon, S. Lee, S. Choung, J. Park, S. Kim, S. Choi, Characterization of Bi/TiO2 Nanometer Sized Particle Synthesized by Solvothermal Method and CH3CHO Decomposition in A Plasma-Photocatalytic System. J. Photochem. Photobiol, A 2005,173,128-136.
    30. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Ordered Mesoporous Structure and Highly Crystallized Anatase. J. Phys. Chem. C 2008,112,6258-6262.
    31. W.T. Sun, Y. Yu, H.Y. Pan, X.F. Cao, Q. Chen, L.M. Peng, CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes. J. Am. Chem. Soc.2008,130, 1124-1125.
    32. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Mistra, Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS. Chem. Mater.2008,20, 6784-6791.
    33. J.C. Yu, L. Wu, J. Lin, P.S. Li, Q. Li, Nanosized CdS-Sensitized TiO2 Crystalline Photocatalyst Prepared by Microemulsion. Chem. Commun.2003,39,1552-1553.
    34. M.G. Kang, H.E. Han, K.J. Kim, Enhanced Photodecomposition of 4-Chlorophenol in Aqueous Solution by Deposition of CdS on TiO2. J. Photochem. Photobiol, A 1999,125,119-125.
    35. Y.N. Huo, X.L, Yang, J. Zhu, H.X. Li, Highly Active and Stable CdS-TiO2 Visible Photocatalyst Prepared by in situ Sulfurization under Supercritical Conditions. Appl. Catal, B 2011,106,69-75.
    36. G.S. Li, D.Q. Zhang, J.C. Yu, A New Visible-Light Photocatalyst:CdS Quantum Dots Embedded Mesoporous TiO2. Environ. Sci. Technol.2009,43,7079-7085.
    37. H.J. Huang, D.Z. Li, Q. Lin, W.J. Zhang, Y. Shao, Y.B. Chen, M. Sun, X.Z. Fu, Efficient Degradation of Benzene over LaVO4/TiO2 Nanocrystalline Heterojunction Photocatalyst under Visible Light Irradiation. Environ. Sci. Technol.2009,43,4164-4168. 38. J. Jiang, X. Zhang, P.B. Sun, L.Z. Zhang, ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2011,115,20555-20564.
    39. H.G Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single Crystals with A Large Percentage of Reactive Facets. Nature 2008,453,638-641.
    40. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets. J. Am. Chem. Soc.2009,131, 4078-4083.
    41. J. Zhu, S.H. Wang, J.G. Wang, D.Q. Zhang, H.X. Li, Highly active and durable Bi2O3/TiO2 visible photocatalyst in flower-like spheres with surface-enriched Bi2O3 quantum dots. Appl. Catal., B 2011,102,120-125.
    42. H.X. Li, X. Zhang, Y.N. Huo, J. Zhu, Supercritical Preparation of A Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization. Environ. Sci. Technol.2007,41,4410-4414.
    43. C. Aellig, C. Girard, I. Hermans, Aerobic Alcohol Oxidations Mediated by Nitric Acid. Angew. Chem. Int. Ed.2011,50,12355-12360.
    44. Q. Wang, M. Zhang, C.C. Chen, W.H. Ma, J.C. Zhao, Photocatalytic Aerobic Oxidation of Alcohols on TiO2:The Acceleration Effect of A Bronsted Acid. Angew. Chem. Int. Ed.2010,49,7976-7979.
    45. A. Tanaka, H. Kominami, Selective Photocatalytic Oxidation of Aromatic Alcohols to Aldehydes in An Aqueous Suspension of Gold Nanoparticles Supported on Cerium Oxide under Irradiation of Green Light. Chem. Commun. 2011,47,10446-10448.
    46. D. Tsukamoto, M. Ikeda, Y. Shiraishi, T. Hara, N. Ichikuni, S. Tanaka, T. Hirai, Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by Partially Coated with WO3. Chem. Eur. J.2011,17,9816-9824.
    47. G. Palmisano, S. Yurdakal, V. Augugliaro, V. Loddo, L. Palmisano, Photocatalytic Selective Oxidation of 4-Methoxybenzyl Alcohol to Aldehyde in Aqueous Suspension of Home-Prepared Titanium Oxide. Adv. Synth. Catal.2007,349, 964-970.
    48. S.B. Zhu, T.G. Xu, H.B. Fu, J.C. Zhao, Y.F. Zhu, Synergetic Effect of Bi2WO6 Photocatalyst with C60 and Enhanced Photoactivity under Visible Irradiation. Environ. Sci. Technol.2007,41,6234-6239.
    49. G.L. Huang, S.C. Zhang, T.G. Xu, Y.F. Zhu, Fluorination of ZnWO4 Photocatalyst and Influence on the Degradation Mechanism for 4-Chlorophenol. Environ. Sci. Technol.2008,42,8516-8521.
    50. J.H. Kou, Z.S. Li, Y.P. Yuan, H.T. Zhang, Y. Wang, Z.G. Zou, Visible-Light-Induced Photocatalytic Oxidation of Polycyclic Aromatic Hydrocarbons over Tantalum Oxynitride Photocatalysts. Environ. Sci. Technol. 2009,43,2919-2924.
    51. H. Yuzawa, T. Mori, H. Itoh, H. Yoshida, Reaction Mechanism of Ammonia Decomposition to Nitrogen and Hydrogen over Metal Loaded Titanium Oxide Photocatalyst. J. Phys. Chem. C2012,116,4126-4136.
    52. W.J. Li, D.Z. Li, Y.G. Lin, P.X. Wang, W. Chen, X.Z. Fu, Y. Shao, Evidence for the Active Species Involved in the Photodegradation Process of Methyl Orange on TiO2. J. Phys. Chem. C2012,116,3552-3560.
    53. M. Zhang, C.C. Chen, W.H. Ma, J.C. Zhao, Visible-Light-Induced Aerobic Oxidation of Alcohols in A Coulped Photocatalytic System of Dye-Sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed.2008,47,9730-9733.
    54. Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Transforming CdS into An Efficient Visible Light Photocatalyst for Selective Oxidation of Saturated Primary C-H Bonds under Ambient Conditions. Chem. Sci.2012,3,2812-2822.
    1. M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental Applications of Semiconductor Photocatalysis. Chem. Rev.1995,95,69-96.
    2. B. Ohtani, Y. Ogawa, S.S. Nishimoto, Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium Oxide Particles Suspended in Aqueous Solutions. J. Phys. Chem. B 1997,101,3746-3752.
    3. X.B. Chen, S.S. Mao, Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.2007,107,2891-2959.
    4. A. Fujishima, K. Honda, Electrochemical Photocatalysis of Water at A Semicondutor Electrode. Nature 1972,238,37-38.
    5. X.B. Chen, S.H. Shen, L.J. Guo, S.S. Mao, Semiconductor-Based Photocatalytic Hydrogen Generation. Chem. Rev.2010,110,6503-6570.
    6. A. Fihri, V. Artero, M. Razavet, C. Baffert, W. Leibl, M. Fontecave, Cobaloxime-Based Photocatalytic Devices for Hydrogen Production. Angew. Chem. Int. Ed.2008,47,564-567.
    7. X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. J. Am. Chem. Soc.2008,130,7176-7177.
    8. E. Bae, W. Choi, Effect of the Anchoring Group (Carboxylate vs Phosphonate) in Ru-Complex-Sesitized TiO2 on Hydrogen Production under Visible Light. J. Phys. Chem.B 2006,110,14792-14799.
    9. J. Kim, W.Y. Choi, Hydrogen Producing Water Treatment through Solar Photocatalysis. Energy Environ. Sci. 2010,3,1042-1045.
    10. V. Daskalaki, G.D. Kondarides, Solar Light-Responsive Pt/CdS/TiO2 Photocatalysts for Hydrogen Production and Simulaneous Degradation of Inorganic of Organic Sacrificial Agents in Wastewater. Environ. Sci. Technol. 2010,44,7200-7205.
    11. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium Dioxide Photocatalysis. J. Photochem. Photobiol, C 2000,1,1-21.
    12. J.C. Yu, J. Yu, W.K. Ho, L.Z. Zhang, Effect of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 powders. Chem, Mater. 2002,74,3808-3816.
    13. A.S. Qaradawi, S.R. Salman, Photocatalytic Degradation of Methyl Organge as A Model Compound. J. Photochem. Photobiol, A 2002,148,161-168.
    14. J.G. Yu, Y.R. Su, B. Cheng, Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania. Adv. Funct. Mater.2007,17,1984-1990.
    15. J.G. Yu, L.J. Zhang, B. Cheng, Y.R. Su, Hydrothermal Preparation and Photocatalytic Activity of Hierarchically Sponge-Like Macro/Mesoporous Titania. J. Phys. Chem. C 2007,111,10582-10589.
    16. J.G. Yu, W.G. Wang, B. Cheng, B.L. Su, Enhancement of Photocatalytic Activity of Mesoporous TiO2 Powders by Hydrothermal Surface Fluorination Treatment. J. Phys. Chem. C 2009,113,6743-6750.
    17. J. Zhu, S.H. Wang, Z.F. Bian, S.H. Xie, C.L. Cai, J.G. Wang, H.G. Yang, H.X. Li, Solvothermally Controllable Synthesis of Anatase T1O2 Nanocrystals with Dominant{001} Facets and Enhanced Photocatalytic Activity. CrystEngComm 2010,12,2219-2224.
    18. H.G. Yang, C.H. Sun, S.Z. Qiao, J.Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 Single Crystals with A Large Percentage of Reactive Facets. Nature 2008,453,638-641.
    19. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant{001} Facets. J. Am. Chem. Soc.2009,131, 4078-4083.
    20. Y.Q. Dai, C.M. Cobley, J. Zeng, Y.M. Sun, Y.N. Xia, Synthesis of Anatase TiO2 Nanocrystals with Exposed{001} Facets. Nano lett.2009,9,2455-2459.
    21. B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Non-Aqueous Production of Nanostructured Anatase with High-Energy Facets. J. Am. Chem. Soc.2008,130,17563-17567.
    22. X.G. Han, Q. Kuang, M.S. Jin, Z.X. Xie, L.S. Zheng, Synthesis of Titania Nanosheets with A High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.2009,131,3152-3153.
    23. D.Q. Zhang, G.S. Li, X.F. Yang, J.C. Yu, A Micrometer-Size TiO2 Single-Crystal Photocatalyst with Remarkable 80% Level of Reactive Facets. Chem. Commun. 2009,45,4381-4383.
    24. L. Sun, Y. Qin, Q.Q. Cao, B.Q. Hu, Z.W. Huang, L. Ye, X.F. Tang, Novel Photocatalytic Antibacterial Activity of TiO2 Microspheres Exposing 100% Reactive{111} Facets. Chem. Commun.2011,47,12628-12630.
    25. C.Z. Wen, J.Z. Zhou, H.B. Jiang, Q.H. Hu, S.Z. Qiao, H.G. Yang, Synthesis of Micro-Sized Titanium Dioxide Nanosheets Wholly Exposed with High-Energy {001} and{100} Facets. Chem. Commun.2011,47,4400-4402.
    26. Z.F. Bian, J. Zhu, J. Wen, F.L. Cao, Y.N. Huo, X.F. Qian, Y. Cao, M.Q. Shen, H.X. Li, Y.F. Lu, Single-Crystal-like Titania Mesocages. Angew. Chem. Int. Ed.2010, 49,1-5.
    27. Z.K. Zheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Wang, Facile in situ Synthesis of Visible-Light Plasmonic Photocatalysts M@TiO2 (M= Au, Pt, Ag) and Evaluation of Their Photocatalytic Oxidation of Benzene to Phenol. J. Mater. Chem.2011,21,9079-9087.
    28. J.G. Yu, L.F. Qi, M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. J. Phys. Chem. C 2010,114,13118-13125.
    29. X.G. Liu, D.Y. Geng, X.L. Wang, S. Ma, H. Wang, D. Li, B.Q. Li, W. Liu, Z.D. Zhang, Enhanced Photocatalytic Activity of Mo-{001} TiO2 Core-Shell Nanoparticles under Visible Light. Chem. Commun.2010,46,6956-6958.
    30. M.Y. Xing, D.Y. Qi, J.L. Zhang, F. Chen, One-Step Hydrothermal Method to Prepare Carbon and Lanthanum Co-Doped TiO2 Nanocrystals with Exposed{001} Facets and Their High UV and Visible-Light Photocatalytic Activity. Chem. Eur. J.2011,17,11432-11436.
    31. G. Liu, H.G. Yang, X.W. Wang, L.N. Cheng, J. Pan, G.Q. Lu, H.M. Cheng, Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN. J. Am. Chem. Soc.2009,131,12868-12869.
    32. J.G. Yu, G.P. Dai, Q.J. Xiang, M. Jaroniec, Fabrication and Enhanced Visible-Light Photocatalytic Activity of Carbon Self-Doped TiO2 Sheets with Exposed{001} Facets. J. Mater. Chem.2011,21,1049-1057.
    33. G. Liu, C.H. Sun, S.C. Smith, L.Z. Wang, G.Q. Lu, H.M. Cheng, Sulfur Doped Anatase TiO2 Single Crystals with A High Percentage of{001} Facets. J. Colloid Interface Sci.2010,349,477-483.
    34. W. Wang, C.H. Lu, Y.R. Ni, M.X. Su, Z.Z. Xu, A New Sight on Hydrogenation of F and N-F Doped{001} Facets Dominated Anatase TiO2 for Efficient Visible Light Photocatalyst. Appl. Catal, B 2012,127,28-35.
    35. S. Sato, Photocatalytic Activity of NOx-Doped TiO2 in the Visible Light region. Chem. Phys. Lett.1986,123,126-128.
    36. H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 2003,107, 5483-5486.
    37. C. Burda, Y. Lou, X. Chen, C.S. Samia, J. Stout, J.L. Gole, Photoluminescence and Electronic Interaction of Anthracene Derivatives Absorbed on Sidewalls of Single-Walled Carbon Nanotubes. Nano Lett.2003,42,403-407.
    38. Z.F. Bian, J. Zhu, S.H. Wang, Y. Cao, X.F. Qian, H.X. Li, Self-Assembly of Active Bi2O3/TiO2 Visible Photocatalyst with Oredered Mesoporous Structure and Highly Crystallized Anatase. J. Phys. Chem. C 2008,112,6258-6262.
    39. H.X. Li, Z.F. Bian, J. Zhu, D.Q. Zhang, G.S. Li, Y.N. Huo, H. Li, Y.F. Lu, Mesoporous Titania Spheres with Tunable Chamber Structure and Enhanced Photocatalytic Activity. J. Am. Chem. Soc.2007,129,8406-8407.
    40. J. Zhu, J. Yang, Z.F. Bian, J. Ren, Y.M. Liu, Y. Cao, H.X. Li, H.Y. He, K.N. Fan, Nanocrystalline Anatase TiO2 Photocatalysts Prepared via A Facile Lwo Temperature Nonhydrolytic Sol-Gel Reaction of TiCl4 and Benzyl Alcohol. Appl. Catal.,B 2007,76,82-91.
    41. Y.N. Huo, Y. Zhang, J. Zhu, H.X. Li, Aerosol-Spraying Preparation of A Mesoporous Hollow Sphercial BiFeO3 Visible Photocatalyst with Enhanced Activity and Durability. Chem. Commun.2011,47,2089-2091.
    42. H.X. Li, J.X. Li, Y.N. Huo, Highly Active TiO2N Photocatalysts Prepared by Treating TiO2 Precursors in NH3/Ethanol Fluid under Supercritical Conditions. J. Phys. Chem. B 2006,110,1559-1565.
    43. Y.N. Huo, X.Y. Zhang, Y. Jin, J. Zhu, H.X. Li, Highly Active La2O3/Ti1-xBxO2 Visible Light Photocatalysts Prepared under Supercritical Conditions. Appl. Catal., B 2008,83,78-84.
    44. H.X. Li, X. Zhang, Y.N. Huo, J. Zhu, Supercritical Preparation of A Highly Active S-Doped TiO2 Photocatalyst for Methylene Blue Mineralization. Environ. Sci. Technol,2007,41,4410-4414.
    45. H.G. Yang, H.C. Zeng, Preparation of Hollow Anatase TiO2 Nanospheres via Ostwald Ripening. J. Phys. Chem. B 2004,108,3492-3495.
    46. J.G. Yu, L.F. Qi, M. Jaroniec, Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. J. Phys. Chem. C 2010,114,13118-13125.
    47. X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011,331,746-750.
    48. R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik, S.R. Bharadwaj, Highly Dispersed Phase of SnO2 on TiO2 Nanoparticles Synthesized by Polyol-Mediated Route:Photocatalytic Activity of Hydrogen Generation. Int. J. Hydrogen Energy 2009,34,3621-3630.
    49. G. Liu, H. G. Yang, X.W. Wang, L.N. Cheng, H.F. Lu, L.Z. Wang, G.Q. Lu, H.M. Cheng, Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant (001) Facets. J. Phys. Chem. C 2009,113,21784-21788.
    50. S. Hoang, S.P. Berglund, N.T. Hahn, A.J. Bard, C.B. Mullins. Enhancing Visible Light Photo-Oxidation of Water with TiO2 Nanowire Arrays via Cotreatment with H2 and NH3:Synergistic Effects between Ti3+ and N. J. Am. Chem. Soc. 2012,134,3659-3662.
    51. X.Q. Gong, A. Selloni, Reactivity of Anatase TiO2 Nanoparticles:The Role of the Minority (001) Surface.J. Phys. Chem. B 2005,109,19560-19562.
    52. Y.B. Zhao, W.H. Ma, Y. Li, H.W. Ji, C.C. Chen, H.Y. Zhu, J.C. Zhao, The Surface-Structure Sensitivity of Dioxygen Activation in the Anatase Photocatalyzed Oxidation Reaction. Angew. Chem. Int. Ed.2012,57,3188-3192.
    53. J. Pan, G Liu, G.Q. Lu, H.M. Cheng, On the True Photoreactivity of{001}, {010}, and{101} Facets of Anatase TiO2 Crystals. Angew. Chem. Int. Ed.2011, 50,2133-2137.
    54. F. Zuo, L. Wang, T. Wu, Z.Y. Zhang, D. Borchardt, P.Y. Feng, Self-Doped Ti3+ Enhanced Photocatalyst for Hydrogen Production under Visible Light. J. Am. Chem. Soc.2010,132,11856-11857.
    55. F. Zuo, K. Bozhilov, R.J. Dillon, L. Wang, P. Smith, X. Zhao, C. Bardeen, P.Y Feng, Active Facets on Titanium (III)-Doped TiO2:An Effective Strategy to Inmprove the Visible-Light Photocatalytic Activity. Angew, Chem. Int. Ed.2012, 51,6223-6226.
    56. C.P. Kumar, N.O. Gopal, T.C. Wang, M.S. Wong, S.C. Ke, EPR Investigation of TiO2 Nanoparticles with Temperature-Dependent Properties. J. Phys. Chem. B 2006,110,5223-5229.
    57. I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, J. Fraxedes, G.A. Battiston, R. Gerbasi, A. Figueras, Designed Self-Doped Titanium Oxide Thin Film for Efficient Visible-Light Photocatalysis. Adv. Mater.2002,14,1399-1402.
    58. L.M. Qi, J.G Yu, M. Jaroniec, Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of CdS-Sensitized Pt/TiO2 Nanosheets with Exposed (001) Facets. Phys. Chem. Chem. Phys.2011,13,8915-8923.
    59. X. Li, J. Zhu, H.X. Li, Comparative Study on the Mechanism in Photocatalytic Degradation of Differnet-Type Organic Dyes on SnS2 and CdS. Appl. Catal, B 2012,123-124,174-181.
    60. A.A. Ismail, D.W. Bahnemann, Mesoporous Titania Photocatalysts:Preparation, Characterization and Reaction Mechanisms. J. Mater. Chem.2011,21, 11686-11707.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700