综合利用高灰分废弃焦粉制备碳质还原剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对高灰分废弃焦粉采用湿法工艺脱灰制备碳质还原剂的工艺和理论进行了系统的研究。
     论文中首先对工业硅和电石行业用碳质还原剂进行概述,指出目前云南省工业硅和电石产业快速发展与碳质还原剂供应不足的现状之问存在的矛盾。同时归纳了焦炭作为还原剂的悠久历史,高灰分焦粉的来源和利用现状。总结了国内外现有脱灰技术的研究成果和工业应用状况,提出高灰分焦粉脱灰制备工业硅还原剂的研究方向,从而明确提出了本论文的研究意义和主要研究内容。
     本论文以云南地区焦化企业生产过程中产生的焦粉为研究对象,研究了焦粉中灰分杂质的存在形态及焦粉湿法脱灰热力学,据此提出了高压碱浸-常压酸浸联合浸出的焦粉脱灰技术路线,并对脱灰过程的有关的基础问题和相关机理进行了研究。
     (1)利用现代分析检测技术,研究了焦粉中灰分杂质元素的种类及含量、物相组成和分布特征。焦粉中主要的灰分杂质元素为Si、Al、Fe、Ca、Ti, S,通常以氧化物的形式存在于焦粉中。灰分矿物质的主要物相为石英(Quartz)、方石英(Cristobalite)、莫来石(Mullite)、赤铁矿(Hematite)、石膏(Anhydride)。焦粉中灰分矿物质大部分呈颗粒状与碳颗粒夹杂分布,少部分镶嵌于炭基体中。由于焦粉的物理性质与煤不同,利用物理方法很难使焦粉中的灰分颗粒与碳分离,化学浸出更适于去除焦粉灰分。
     (2)分析焦粉湿法浸出脱灰过程中的热力学规律,分别绘制了主要灰分元素Si、Al、Fe、Ca、Ti和Mg水溶物种的Igα-pH图,不同温度条件下Al-Si-H2O系的(p-pH图和Si-H2O系、Al-H2O系和Al-Si-H2O系的lg(c)-pH图。
     (3)从工艺角度研究了浸出剂种类及其浓度、焦粉粒度、反应温度、反应时间、液固比等多种因素对焦粉脱灰的影响。确定了合理的工艺参数为:碱浸:粒度<75μm,温度180~200℃, NaOH溶液浓度15wt.%,保温时间30min,液固比4:1~8:1,自蒸汽压;酸浸:温度90℃;H2SO4溶液浓度12wt.%;保温时间30min;液固比6:1。在此浸出条件下,进行了扩大试验,结果证明本工艺具有良好的放大效果和适用性。焦粉灰分去除率超过84%,灰分含量低于4.5%,焦粉中Si、Al、Mg去除率>85%,Ca去除率>97%,Fe去除率>70%。
     (4)在确定的条件下,对焦粉脱灰过程动力学进行了研究,利用“有固态产物层的固-液反应模型”建立了碱浸温度对焦粉灰分中含硅矿物和含铝矿物脱除率的动力学方程,研究Si和Al去除过程中的限制性环节。研究结果表明:Si和Al脱除反应的表观活化能分别为27.635kJ/mol和36.041kJ/mol,都属于内扩散控制。温度对含硅矿物和含铝矿物溶出率影响的动力学方程如下:Ink'si=0.51792+3.3239×103×T/1Ink'al=-1.13402+4.33495×103×T/1
     (5)研究了焦粉脱灰前后物理化学性质的变化,与现有工业硅和电石生产用碳质还原剂进行比较,提出脱灰焦粉在工业硅和电石生产中的应用方式。通过脱灰焦粉物理化学性质分析和还原实验证明了脱灰焦粉作为工业硅和电石生产碳质还原剂的可行性。
     (6)对工艺的经济性和环境影响进行了评价。经济性分析表明脱灰焦粉制备碳质还原剂生产成本为1855.25元/t,低于目前工业硅和电石生产用碳质还原剂的价格,具有比较可观的经济效益,在经济上是可行的。环境分析表明本项目产生的废水、废渣可得到很好的二次利用,对环境影响小,从环保角度考虑是可行的。
     (7)利用高灰分焦粉脱灰制备碳质还原剂,提高了高灰分焦粉的附加值,解决焦炭废弃堆存带来的环境问题,为工业硅和电石生产提供一种新的碳质还原剂,实现了焦煤资源的综合回收利用。
In the dissertation, the technology and fundamentals of the demineralization processing to prepare carbon reductants from high-ash waste coke breeze by pressure-leaching method are systematically studied.
     This dissertation firstly introduces the situations of silicon metal and calcium carbide industries and the carbon reductants used in silicon metal and calcium carbide production, and points out the contradiction between the rapid development of silicon metal and calcium carbide industries and the shortage of carbon reductants. Meanwhile, the history of coke using as a reductant and the source and usage status quo of high-ash coke breeze are also be introduced. On the basis of the over view of the domestic and international research results about demineralization techniques and the application status of these techniques, the direction in studies of the demineralization processing for carbon reductants from high-ash waste coke breeze are proposed. Thereby, significance and main contents of this resreach are put forward explicitly.
     The research chooses coke breeze from the coking plant in Yunnan as study object. According to the existing form of ash minerals in coke breeze and the thermodynamics analysis results of demineralization by pressure-leaching method, the technical route of pressure alkali leaching followed by acid leaching at atmospheric on coke breeze demineralization is put forward, and the theory foundation on demineralization are inveatigated.
     (1) The element categories and contents, the phase composition and distribution characteristics of ash in coke breeze are analysed with modern analysis and testing technology. The main ash elements in coke breeze are Si, Al, Fe, Ca, Ti and S, which exist generally as the oxidate. The main phase compositions of ash minerals are quartz, cristobalite, mullite, hematite, and anhydride. The mostly mineral particles are mixed with coke particles, and a few fine minerals particles are intimately associated with the coke matrix. It is difficult to separate minerals particles from coke particles by the physical method. The chemical leaching is more suitable for demineralization of coke breeze.
     (2) The thermodynamics laws of pressure leaching of coke breeze are analysed. The Igα-pH diagrams of Si, Al, Fe, Ca, Ti and Mg, the (p-pH diagram of Al-Si-H2O system at different temperature, the Ig(c)-pH diagrams of Si-H2O system, AI-H2O system and Al-Si-H2O system are construted respectively.
     (3) The effects of leaching agents, initial concentration, particle size, temperature, leaching duration, liquid-to-solid ratio, ect. on the degree of demineralization are examined from the technological angle. The reasonable technological conditions obtained by factor experiments are that alkali leaching; particle size<75μm, temperature180~200℃, NaOH solution concentration15wt.%, leaching duration30min, liquid-to-solid ratio4:1~8:1, self-pressure; acid leaching:temperature90℃, H2SO4solution concentration12wt.%, leaching duration30min, liquid-to-solid ratio6:1. The results of the extensive experiment conducted under the reasonable conditions prove the feasibility and applicability of the proposed demineralization method. The degree of demineralization is more than85%, the content of ash is less than4.5%, the degrees of the removal of Si, Al and Mg is more than85%, the degree of Ca removal is more than97%, and the degree of Fe removal is more than70%.
     (4)Under the determind conditions, the kinetics of coke breeze demineralization are studied. The original "kinetic model of Crank-Ginstling-Brounshtein" for liquid-solid reaction is used to obtain the kinetic equation for the removal of Si and Al in ash and investigate the controlled step of Si and Al removal. The results show that the Si and Al minerals removal reaction activation energy is27.635kJ/mol and36.041kJ/mol respectively, and the process of the Si and Al removal are both controlled by the interior diffusion. The kinetic equationfor the effect of alkali leaching temperature on the degree of Si and Al minerals removal are: In k'si=0.51792+3.3239×103×T/1In k'al=-1.13402+4.33495×103×T/1
     (5) The physical and chemical properties of coke breeze are studied before and after demineralization. Through the comparison with the reductant used in silicon metal and calcium carbide production, and the application mode of the de-ash coke breeze is put forward. The possibility of using de-ash coke breeze as reductant for silicon metal and calcium carbide production is proved by the analysis of physical and chemical property of de-ash coke breeze and the reduction experiments.
     (6) The environmental and economical evaluation of the process are made. The cost of the reductant from de-ash coke breeze is¥1855.25/t, lower than the price of carbon reductant for silicon metal and calcium carbide, which has considerable economic benefit. The results of environmental evaluation show that wastewater and dregs produced by the reductant production can be recycled, the productive process has low effect of environment. The results of the environmental and economical evaluation indicate that the process is feasible.
     (7) The reductant production from de-ash coke breeze increases the added value of high-ash coke breeze, which can solve the environmental treathens from waste piling, and it provides a new reductant resourse for silicon metal and calcium carbide production, and then to realize the comprehensive utilization of the coking coal.
引文
[1]YBT 4138-2005焦粉和小颗粒焦炭[s].中华人民共和国国家发展和改革委员会,2005
    [2]姚昭章,郑明东,炼焦学(第3版).北京:冶金工业出版社,2005
    [3]李红晓,李洪新.焦粉造块实验[J].铁合金,2003,4:34-36
    [4]刘长林,雒和明,苟国俊.焦粉成型技术[J].环境污染治理技术与设备,2002,3(12):73-75
    [5]郑明东,晏善成,何孝军.焦粉的高附加值利用[J].燃料与化工,2007,38(2):21-23
    [6]郑明东,水恒福,崔平.炼焦新工艺与技术[M].北京:化学工业出版社,2006
    [7]Gale W K V. The black country iron industry:A technical history [M]. London:The Iron and Steel Institute,1966
    [8]高晋生.炼焦工业的前景和德国炼焦新技术的开发[J].燃料与化工,1995,9:217-221
    [9]钟英飞.对各种炼焦工艺及无回收焦炉的评述[J].燃料与化工,2001,32(2):57-61
    [10]西岗邦彦.21世纪炼焦新技术的开发[J].燃料与化工,2005,36(6):54-58
    [11]《中国冶金百科全书》编辑部.中国冶金百科全书炼焦化工卷[M].北京:冶金工业出版社,1992
    [12]王利斌.焦化技术[M].北京:化学工业出版社,2011
    [13]张有芝.降低焦炭灰分提高焦炭质量[J].山西冶金,2007,1:22-23
    [14]鞍山冶金专科学校编.炼焦化学工艺学(上册)[M].北京:冶金工业出版社出版,1961
    [15]李慧.钢铁冶金概论[M].北京:冶金工业出版社出版,1993
    [16]陈居诚.焦炭灰分及其控制[J].江西冶金,1994,14(4):20-22
    [17]Stanislav Gornostayev, Jouko Harkki. Mineral matter crystallization and crack formation in tuyere coke[J]. Fuel,2006,85:1047-1051
    [18]徐伟蓉.焦粉在配煤中的应用[J].煤化工,1999(3):50-54
    [19]诸荣孙,李亚敏,杜先奎等.添加细焦粉配煤炼焦的实验室研究[J].安徽冶金,2011(3):3-4
    [20]欧阳曙光,吕青青,李红超等.回配焦粉捣固炼焦试验研究[J].武汉科技大学学报,2012,35(2):92-95
    [21]沈延春,王检.焦粉制造气化型焦技术的研究[J].煤气与热力,2002,22(1):37-38
    [22]张立其.焦粉与焦油渣配合制取化型焦的试验与研究[J].内蒙古煤炭经济,2005(5):89-92
    [23]Ayse Benka, Muzaffer Talub, Abdullah Coban, et al. Phenolic resin binder for the production of metallurgical uality briquettes from coke breeze:Part Ⅰ[J]. Fuel Processing Technology,2008(89):28-37
    [24]Ayse Benka, Muzaffer Talub, Abdullah Coban, et al. Phenolic resin binder for the production of metallurgical uality briquettes from coke breeze:Part I the effect of the type of the basic catalyst used inthe resol production on the tensile strength of the formed coke briquettes[J]. Fuel Processing Technology,2008(89):38-46
    [25]李飞明,武建军,韩甲业等.冶金焦粉脱矿物质的试验研究[J].能源技术与管理,2007,4:63-64
    [26]史磊.半焦的活化及脱灰研究[D].硕士论文.大连:大连理工大学,2007
    [27]任玖阳.高灰分焦粉提纯试验研究[D].硕士论文.昆明:昆明理工大学,2009
    [28]蔡璋,蒋荣立,罗时磊,等.极细粒煤泥分选新方法[J].中国矿业大学学报,1993(3):54-61
    [29]谢登封.选择性絮凝-浮选法制备超纯煤的试验研究[J].选煤技术,2008(10):25-27
    [30]M. Lemanowicz, Z. Jach, E. Kilian, et al. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant[J]. Chemical Engineering Journal,2011,168:159-169
    [31]朱昆阳,赵世永,杨兵乾,等.MJ复合药剂浮选法制备细粒级超纯煤研究[J].山西化工,2008(4):44-46
    [32]陈泉涌,张泾生,王淀佐,等.高气泡表面积通量浮选柱选煤参数的研究[J].矿冶工程,2006(4):33-37
    [33]张劲松.煤泥的浮选柱浮选试验研究[J].江西煤炭科技,2010,4:107-109
    [34]于伟,童洁,赵培培,等.超纯煤浮选制备研究[J].选煤技术.2011(8):13-16
    [35]J. Rivera-Utrilla, M. V. Lopez-Ramon, F. Carrasco-Marin, et al. Demineralization of a bituminous by froth flotation before obtaining activated carbons[J]. Carbon,1996, 34:917-921
    [36]G. Atesok, F. Boylu. M. S. Celik. Carrier flotation for desulfurization and deashing of difficult-to-float coals[J]. Minerals Engineering,2001,14:661-670
    [37]章新喜,段超红,梁春成.低灰洁净煤的电选制备[J].中国矿业大学学报,2001(11):570-572
    [38]章新喜,段超红,于凤琴,等.微粉煤的电性质及摩擦带点研究[J].中国矿业大学学报,2005(11):694-697
    [39]章新喜,高孟华,段超红,等.大同煤的摩擦电选试验研究[J].中国矿业大学学报,2003(11):620-623
    [40]温燕明,陈昌华,孔凡朔.高炉喷吹用煤的摩擦电选试验研究[J].钢铁,2006(2):11-15
    [41]高孟华,章新喜,陈清如.中梁山煤摩擦电选可选性研究[J].煤炭科学技术,2007(8):68-71
    [42]储建萍.煤化程度与其高压电选关系的研究[J].煤炭工程,2011,7:100-101
    [43]R. Q. Honaker. High capacity fine coal cleaning using an enhanced gravity concentrator[J]. Minerals engineering,1998,11:1191-1199
    [44]M. K. Mohanty, R. Q. Honaker, A. Patwardhan. Altair jig:an in-plant evaluation for fine coal cleaning[J]. Minerals engineering,2002,15:157-166
    [45]K. P. Galvin, E. Doroodchi, A. M. Callen, et al. Pilot plant trial of the reflux classifier[J]. Minerals engineering,2002,15:19-25
    [46]K. P. Galvin, A. Callen, J.Zhou, et al. Performance of the reflux classifier for gravity separation at full scale[J]. Minerals engineering,2005,18:19-24
    [47]Ya. Yo. E. Sydorovych, V. I. Gaivanovych, E. V. Martynets. Desulfurization of Donetsk basin coals by air-steam mixture[J]. Fuel,75(1):78-80
    [48]S. Mukherjee, S. Mahiuddin, P. C. Borthakur. Demineralization and desulfurization of subbituminous coal with hydrogen peroxide[J]. Energy & Fuels, 2001,15(6):1418-1424
    [49]W. Li, E. H. Cho. Coal desulfurization with sodium hypochlorite[J]. Energy & Fuels,2005,19(2):499-507
    [50]A. B. Waugh. Removal of mineral matter from bituminous coals by aqueous chemical leaching[J]. Fuel Processing Technology,1984,1:217-233
    [51]R. T. Yang,S. K. Das, B. M. C. Tsai. Coal demineralization using sodium hydroxide and acid solutions[J]. Fuel,1985,64:735-742
    [52]D. K. Sharma, S. Gihar. Chemical cleaning of low grade coals through alkali-acid leaching employing mild conditions under ambient pressure[J]. Fuel,1991,70: 663-665
    [53]J. Wang, A. Tomita, G. H. Taylor, et al. Microscopic observation of coal demineralization by Ca(OH)2 leaching[J]. Fuel,1997,76:369-374
    [54]E. Bolat, S. Saglam, S. Piskin. Chemical demineralization of a Turkish high ash bituminous coal[J]. Fuel Processing Technology,1998,57:93-99
    [55]S. Mukherjee, P. C. Borthakur. Chemical demineralization/desulphurization of high sulphur coal using sodium hydroxide and acid solutions[J]. Fuel,2001,80: 2037-2040
    [56]S.A. H. Zaidi. Application of sonic energy to caustic cleaning of coals[J]. Fuel Processing Technology,1997,53:31-39
    [57]Z. Wu, K. M. Steel. Demineralization of a UK bituminous coal using HF and ferric ions[J]. Fuel,2007,86:2194-2200
    [58]T. S. Yusupov, L. G. Shumskaya, A. P. Burdukov. Chemical demineralization of different metamorphic grade coals[J]. Journal of Mining Science,2009,45(4):404-410
    [59]尤隆渤,刘红斌.煤稀碱法连续脱灰制取超纯煤的研究[J].煤化j『:,1992,60(3):24-29
    [60]王同华,崔之栋,李华,等.用含氟酸脱灰制取超纯煤[J].大连理工大学学报,1993,33(1):112-116
    [61]陈茺,刘新兵,魏贤勇,等.温和条件下碱/酸法脱除煤中矿物质的研究[J].华东理工大学学报,1995,21(3):311-315
    [62]姜瑶瑶,周仕学,谭琪,等.酸碱法对无烟煤深度脱灰的研究[J].有色矿业,2006,22:151-152
    [63]袁庆春,张秀云.煤的超临界醇萃取脱硫[J].洁净煤技术,1996,2(2):19-21
    [64]郭树才,李文.煤的超临界萃取脱硫[J].洁净煤技术,1997,3(2):21-25
    [65]赵景联,张银元,王洪武,等.超声波强化四氯乙烯溶剂法脱除煤中有机硫的研究[J].燃料化学学报,2002,30(3):234-238
    [66]王建成.超声波和微波联合萃取和氧化脱除煤中硫[D].硕士论文,太原:太原理工大学,2004
    [67]Wikipedia. Silicon[BE/OL]. http://en.wikipedia.org/wiki/Silicon
    [68]《实用工业硅技术》编写组.实用工业硅技术[M].北京:化学工业出版社,2005
    [69]GB 2881-2008工业硅[s].中华人民共和国国家标准,2008
    [70]ASTM A 922-2010 Standard Specification for Silicon Metal [s].ASTM International,2010
    [71]何允平,王恩慧.工业硅生产[M].北京:冶金工业出版社,1989
    [72]硅业分会.中国有色金属工业协会硅业分会统计[BE/OL].http://www.metalip.com/2012/01/17/html/Review/86061
    [73]欧阳婷婷(整理).云南水能资源与水电开发[.J].云南电业,2004,8:47
    [74]本刊编辑部.云南水电大有作为[J].云南电业,2005,11:14-16
    [75]云南省工业和信息化委员会.云南省工业和信息化委关于2010年工业硅企业资源能源消耗情况的通报[BE/OL].http://www.ynetc.gov.cn/Item/9434.aspx
    [76]何允平,王金铎.工业硅科技新进展[M].北京:冶金工业出版社,2003
    [77]甘代顺.以煤替代木炭生产工业硅[J].铁合金,2002(2):25-27
    [78]田建强.精煤在工业硅生产中的应用[J].轻金属,2002(8):49-51
    [79]于志强,马文会,伍继君,等.工业硅熔炼过程的(?)分析[J].轻金属,2009(8):55-60
    [80]陈达.工业硅生产中碳质还原剂的选择[J].铁合金,2008(4):14-20
    [81]阎德志,富家玉.生产金属硅所用碳还原剂材料[J].轻金属,1990(5):42-46
    [82]熊谟远.电石生产及其深加工产品[M].北京:化学工业出版社.1989
    [83]电石生产及其应用[J].全国聚氯乙烯行业论文集.2006.
    [84]郭五林.电石生产的节能途径[J].维纶通讯,2011,31(2):35-37
    [85]熊谟远.电石生产工艺学[M].成都:成都科技大学出版社,1988
    [86]郭崇涛.煤化学[M].北京:化学工业出版社,1992
    [87]M. Grigore, R. Sakurovs, D. French, V. Sahajwalla. Mineral matter in coals and their reactions during coking[J]. International Journal of Coal Geology,2008,76: 301-308
    [88]J.Balej. Water vapour partial pressures and water activities in potassium and sodium hydroxide solutions over wide concentration and temperature ranges[J]. Int. J. Hydrogen Energy,1985,10(4):233-243
    [89]李洪桂等.湿法冶金学[M].长沙:中南大学出版社,2002
    [90]R. T. Pabalan, K. S. Pitzer. Thermodynamics of NaOH(aq) in hydrothermal solutions[J]. Geockimica et Cosmochimica Acta,1987,51:829-837
    [91]D. J. Wesolowski. Aluminum speciation and equilibria in aqueous solution:Ⅰ. The solubility of gibbsite in the system Na-K-Cl-OH-Al(OH)4 from 0 to 100℃[J]. Geockimica et Cosmochimica Acta,1992,56:1065-1091
    [92]H. Park, P. Englezos. Osmotic coefficient data for NaOH-NaCl-NaAl(OH)4-H2O system measured by an isopiestic method and modeled using Pitzer's modelat 298.15 K[J]. Fluid Phase Equilibria,1999,155:251-259
    [93]J. Zhou, Chen Q Y, Li J, etal. Isopiestic measurement of the osmotic and activity coefficients for the NaOH-NaAl(OH)4-H2O system at 313.2 K[J]. Geochimica et Cosmochimica Acta,2003,67 (18):3459-3472
    [94]李小斌,任万能,刘桂华,等. NaOH-NaAl(OH)4-H2O体系活度系数的计算模型[J].中南大学学报(自然科学版),2006,37(3):493-497
    [95]彭小奇,宋国辉,宋彦坡,等NaOH-NaAl(OH)4-Na2CO3-H2O体系活度因子的计算模型[J].中国有色金属学报,2009,19(7):1332-1337
    [96]杨显万.高温水溶液热力学数据计算手册[M].北京:冶金工业出版社,1983
    [97]J. G. Speight. Lange's handbook of chemistry(Sixteenth Edition)[M]. New York, 2005
    [98]杨扬,宁哲,谢克强,等.湿法冶金提纯废弃焦粉的热力学分析[J].煤质研究,2011,17(4):85-87
    [99]戴厚晨.酸法生产氧化铝的热力学讨论[J].有色矿冶,1997,(4):40-44
    [100]J. Y. Ren, W. H. Ma, Z.Ning, et al. Purification of high-ash powdercoke. Acta scientiaarum naturalium universitatis sunyatseni,2009,48:95-97
    [101]GB/T2001-91焦炭工业分析测定方法[s].中华人民共和国国家标准,1991
    [102]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社,2006
    [103]陈万坤.一水硬铝石型铝土矿的强化溶出技术[M].北京:冶金工业出版社,1997
    [104]T. Yuan, J. Wang, Z. Li. Measurement and modelling of solubility for calcium sulfate dihydrate and calcium hydroxide in NaOH/KOH solutions[J]. Fluid Phase Equilibria,2010,297:129-137
    [105]彭志宏,王浩宇,刘桂华,等.二氧化硅在铝酸钠溶液中的反应行为[J].矿冶工程,2009,11(6):57-60.
    [106]刘今,吴若琼,李晋尧.铝土矿动力学研究[J].中南矿冶学院学报,1985,4:1-9
    [107]谢中,王延明.首届轻金属冶金学会会议论文集,1986
    [108]顾松青,曹蓉江,陈新民.一水硬铝石型铝土矿溶出动力学的研究[M].金属学报,1987,23(6):269-276
    [109]袁京城,杨重愚.一水硬铝石焙烧前后的溶出的动力学[J].我国氧化铝工业发展战略研讨会第7届全国氧化铝学术会议论文集,1992
    [110]杨显万,邱定蕃.湿法冶金(第2版)[M].北京:冶金工业出版社,2011
    [111]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004
    [112]沈王庆,卿东红,卓莉,等.煤系高岭土脱硅率的数学表达式浸出动力学[J].内江师范学院学报,2007,22(4):68-70
    [113]吕东.碳热还原歧化法制备高品质硅的实验研究[D].硕士论文.昆明:昆明理工大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700