添加物对渣油热反应生焦的影响及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善渣油加工过程中反应器的结焦和生焦状况,在高压反应釜中研究了碳质颗粒添加物和可溶性添加物对渣油热反应生焦、结焦的影响;通过碳质颗粒表面性质的表征、模型化合物反应、X射线光电子能谱、紫外-可见光谱、红外光谱、电导率和Zeta电位测定等手段尝试对添加物的作用机理进了解释。
     碳质颗粒可以在热反应初期抑制渣油热反应生焦,明显改变生焦的形貌,使焦的粒度减小;并将其吸附在颗粒表面,提高焦在体系中的悬浮能力,防止焦向器壁和反应器底部沉积。其物理作用机理为:碳质颗粒添加物选择性吸附渣油中的沥青质,锚定在表面,抑制其在热反应初期的聚并,从而抑制焦的形成;化学作用机理为:碳质颗粒添加物促进由芳香分中的可供氢部分向易缩合生焦的沥青质的氢转移,及时封闭因热反应产生的大分子自由基,从而抑制沥青质自由基之间的缩合反应,减少生焦。
     具有沥青质分散作用的可溶性添加物在渣油热反应初期对生焦有一定的抑制作用,使沥青质在热反应初期生成较多、较细小的生焦中心。在后期生焦过程中因生焦中心较多,在同样生焦量的情况下,可以有效降低焦的粒度,增加其在液相的悬浮能力,从而减缓向反应器底部与器壁的沉积。
     沥青质表面含有碱性的吡啶氮和弱碱性的吡咯氮,碳氧单键和碳氧双键型态的氧,脂肪类含硫化合物和噻吩类含硫化合物。可溶性添加物通过头部官能团与沥青质表面杂原子的羟基和氨基中的氢形成分子间氢键,从而吸附在沥青质表面。添加物分散沥青质需要其头部官能团与沥青质表面杂原子之间有足够的酸碱作用的强度和合适的烷基链长以形成空间稳定层。
     粘度测定表明,可溶性添加物在达到一定浓度后能够抑制胶团的聚并;胶团的粒径的增加说明可溶性添加物确实吸附在沥青质表面,因所吸附的添加物尾部烷基链与溶剂的相互作用,胶团溶剂化程度增加。可溶性添加物能够增加沥青质胶团的分散度,使之更趋向多分散。
     沥青质溶液电导率的测定也表明可溶性添加物可以与沥青质发生作用,对沥青质具有分散稳定作用,能改进渣油的胶体稳定性,但发生热反应后,因添加物的热分解,添加物不再具有改善胶体稳性的作用。
     Zeta电位测定表明可溶性添加物对渣油胶体稳定性的影响主要来自于烷基侧链的空间斥力,而不是头部官能团引起的电性质变化。不同渣油的沥青质胶团在同一种溶剂中表现出的zeta电位的正负并不相同,该电位的正负可能会影响不同类型的可溶性添加物与沥青质的作用。
In order to improve the coking and fouling condition in the reactor during residue upgrading, the effects of carbonous particles and soluble additives on coke formation and reactor wall fouling were investigated in an autoclave;The mechanisms of additives’effects were elucidated through the characterization of carbonous particle surface, the reaction of model compounds, X-ray photoelectron spectroscopy (XPS) analysis, UV-Vis spectroscopy analysis, FT-IR analysis and the measurement of electric conductivity and Zeta potential.
     Carbonous particles depressed the coke formation at the initial period of thermal reaction. The shape of the coke was changed, and its size was decreased as well. It was found that the coke was absorbed on the surface of carbonous particles and could be suspended in the oil, resulting in the reduction of the amount of coke deposited on the bottom and wall of the reactor. The particles absorbed the asphaltene selectively in the residue and anchored it on its surface, restraining the aggregation and condensation of asphaltene during thermal reaction. The particles could promote the hydrogen transfer from the donor in aromatics to asphaltene in thermal reaction, and annihilated the radical generated from asphaltene thermal cracking, terminating the condensation of asphaltenic radicals.
     The soluble additives which could disperse asphaltene depressed the coke formation at the initial period of residue thermal reaction, producing more but smaller coking centers. Subsequently, the coke size was decreased because the coking center was more compared with the same coke yield. Interestingly, the suspending ability of the coke particles was improved. Therefore, the coke content deposited on the reactor bottom was reduced.
     It was found that the nitrogens at the surface of asphaltene existed in the form of pyrrole and pyridine, that the oxygen existed in the form of carbon-oxygen single bond and carbon-oxygen double bond, and that the sulfurs existed in the form of thiophen and aliphatic sulfide. The head group of soluble additives formed hydrogen bonds with the hydrogens in the hydroxyl and amine groups at the asphaltene surface. Thus, the additives must be absorbed on the asphaltene surface. The acid-base interaction between the additive head group and asphaltene surface should be strong enough and the length of additive side chains should be appropriate for dispersing the asphaltene particles.
     The measurement of viscosity showed that the soluble additives could suppress the aggregation of the asphaltene colloidal particles by surface adsorption. The size conformed the adsorption of soluble additives on the asphaltene surface. Because the aliphatic side chains interacted with the solvent, the solvation of asphaltene particles also increased. The additives could increase the polydispersity of asphaltene colloidal particles as well.
     The conductivity of the asphaltene solution also conformed that the soluble additives could interact with asphaltene and improve the colloidal stability of residue. However, after thermal reaction, the additives decomposed and they could not changed the stability of residue any longer.
     The Zeta potential measurement showed that the main stabilizing effect arose from the side chains, instead of the head groups. Different asphaltenes had different Zeta potentials in the same solvent. The nature of the surface potential might be an important factor to account for the interaction between asphaltene and soluble additives.
引文
[1] 梁文杰. 石油化学. 东营:石油大学出版社,1995:250-254.
    [2] 梁文杰. 重质油化学. 东营:石油大学出版社,2000:1-4.
    [3] 程之光. 重油加工技术. 北京:中国石化出版社,1994:1-8.
    [4] F. J. Nellensteyn. The constitution of asphalt. J. Inst. Petro. Technologists, 1924; 10(43): 311-325.
    [5] Nellensteyn F. J.. The science of petroleum. Oxford University Press, London, 1938.
    [6] Mack C. Colloidal chemistry of asphalts. J. Phys. Chem, 1932; 36(3):2901-2914.
    [7] Pfeiffer J. Ph, Doormaal P. M. Van. The rheological properties of asphaltic bitumens.J. Inst.Petro.Technologists,1936; 22(152): 414-440.
    [8] Pfeiffer J. Ph,Saal R. N. J.. Asphaltic bitumen as colloidal system. J. Phys. Chem, 1940; 44(2): 139-141.
    [9] Dickie J. P., Yen T. F.. Macrostructure of the asphaltic fractions by various instrumental method. Anal. Chem, 1967; 39(14): 1847-1857.
    [10] Yen T. F.. Present status of the structure of petroleum heavy ends and its significance to various technical applications. Preprints, Div. Petrol. Chem., ACS, 1972; 17(3): 102-114.
    [11] Yen T. F.. The colloidal aspects of a macrostructure of petroleum asphalt. Fuel Sci. Tech., Int’l, 1992; 10(4-6): 723-733.
    [12] Li S., Liu C., Que G.. Colloidal structures of three Chinese petroleum vacuum residues. Fuel, 1996; 75(8): 1025-1029.
    [13] Lichaa P M, Herrera L. Electrical and other effects related to the formation and prevention of asphaltene deposition problem in Venezuelan crudes. 1975, SPE 5304.
    [14] Spencer E. Taylor. The electrodeposition of asphaltenes and implications for asphaltenes structure and stability in crude and residue oils. Fuel, 1998; 77(8): 821-828.
    [15] Per Fotland, Hilde Anfindsen, Finn H Fadnes. Detection of asphaltene precipitationand amounts precipitated by measurement of electrical conductivity. Fluid phase equilibria, 1993; 82(1): 149-156.
    [16] Per Fotland, Hilde Anfindsen. Electrical conductivity of asphaltene in organic solvents. Fuel science and technology int’l, 1996; 14(1&2): 101-115.
    [17] Per. Fotland. Precipitation of asphaltene at high pressures; experimental technique and results. Fuel science and technology int’l, 1996; 14(1&2): 313-325.
    [18] 李美霞,刘晨光,梁文杰. 用电导率法研究石油中沥青质沉积问题. 石油学报(石油加工),1998;14(4):598-603.
    [19] 张龙力.渣油胶体稳定性的研究:[石油大学博士论文],石油大学,东营: 2003.
    [20] 张龙力,杨国华,孙在春,等. 质量分率电导率法研究几种不同渣油的胶体稳定性. 燃料化学学报,2003;31(2);115-118.
    [21] 张龙力,杨国华,孙在春,等. 质量分数电导率法研究中东常压渣油中的沥青质聚沉. 石油学报(石油加工),2002;18(6):56-60.
    [22] 张龙力,张世杰,杨国华,等. 常压渣油热反应过程中胶体的稳定性.石油学报(石油加工),2003;19(2):82-87.
    [23] 张龙力,杨国华,张庆轩,等. 渣油胶体稳定性与热反应生焦性能的关系. 石油化工高等学校学报,2005;18(1):4-6.
    [24] 李美霞,刘晨光,梁文杰. 用粘度法研究沥青质沉积的起始点.石油大学学报(自然科学版),1997;21(5):75-78.
    [25] Norman F. Carnahan, Jean-Louis, Raquel Antón, et al. Properties of resins extracted from Boscan crude oil and their effect on the stability of asphaltenes in Boscan and Hamaca crude oils. Energy & Fuels, 1999; 13(2): 309-314.
    [26] Jesper Bartholdy, Ivar Anderson. Changes in asphaltene stability during hydro- treating. Energy & Fuels, 2000; 14(1): 52-55.
    [27] E. Y. Sheu, M. M. De Tar, Dave A. Storm, et al. Aggregation and kinetics of asphaltenes in organic solvents. Fuel, 1992; 71(3): 299-302.
    [28] Kyeongseok Oh, Scott C. Oblad, Francis V. Hanson, et al. Examination of asphaltenes precipitation and self-aggregation. Energy & Fuels, 2003; 17(2):508-509.
    [29] Narve Aske. Asphaltene Aggregation from crude oils and model systems studied by high-Pressure NIR spectroscopy. Energy & Fuels, 2002; 16(5): 1287-1295.
    [30] Piyarat Wattana,H. S. Fogle. Study of asphaltene precipitation using refractive index measurement. Petroleum Science and Technology, 2003; 21(3 & 4): 591-613.
    [31] Que Guohe, Liang Wenjie. Thermal conversion of Shengli residue and its constituents. Fuel, 1992; 71(12): 1483-1485.
    [32] 邓文安,阙国和. 胜利减压渣油胶质热反应生焦特性的研究. 石油学报(石油加工),1997;13(1):1-6.
    [33] Irwin A. Wiehe. A solvent-resid phase diagram for tracking resid conversion. Ind. Eng. Chem. Res., 1992; 31(2): 530-536.
    [34] J. B. Green, E. J. Zagula, J. W. Reynolds, et al. Relating feedstock composition to product slate and composition in catalytic cracking. 1. Bench scale experiments with liquid chromatographic fractions from Wilmington, CA, >650 .0F resid. Energy & Fuels, 1994; 8(4): 856-867.
    [35] Parviz Rahimi, Thomas Gentzis, Edgar Cotte. Investigation of the thermal Behavior and interaction of Venezuelan heavy oil fractions obtained by Ion-exchange chromatography. Energy & Fuels, 1999; 13(3): 694-701.
    [36] Irwin A. Wiehe. The pendant-core building block model of petroleum residua. Energy & Fuels, 1994; 8(3): 536-544.
    [37] Savage P. E., Klein M. T.. Asphaltene reaction pathway. 1.Thermolysis. Ind. Eng. Chem. Proc. Des. Dev., 1985; 24(4): 1169-1174.
    [38] Savage P. E., Klein M. T.. Asphaltene reaction pathway. 2. Pyrolysis of n-pentadecylbenzene. Ind. Eng. Chem. Res., 1987, 26(3): 488-494.
    [39] Savage P. E., Klein M. T.. Asphaltene reaction pathway. 3. Effect of reaction environment. Energy & Fuels, 1988; 2(5): 619-628.
    [40] Savage P. E., Klein M. T.. Asphaltene reaction pathway. 4. Pyrolysis of tridecylcyclohexane and 2-ethyltetralin, Ind. Eng. Chem. Res., 1988; 27(8):1348-1356.
    [41] Savage P. E., Klein M.T. Asphaltene reaction pathway. 5. Chemical and mathematical modeling. Chemical Engineering Science, 1989; 44(2): 393-404.
    [42] Irwin A. Wiehe. A Phase-separation kinetic model for coke formation. Ind. Eng. Chem. Rev., 1993; 32(11): 2447-2454.
    [43] 马加利尔. 石油化学加工过程理论基础. 徐亦方等译. 北京:石油工业出版社,1982: 145-161.
    [44] 李生华. 减压渣油的胶状结构及其热反应体系的相分离行为:[石油大学博士论文],石油大学,北京:1994.
    [45] I. D. Singh, V. Kothiyal, V. Ramaswamy, et al. Characteristic changes of asphaltenes during visbreaking of North Gujarat short residue. Fuel, 1990; 69(3): 289-292.
    [46] I. D. Singh, Vimal Kothiyal, Mahendra P. Kapoor, et al. Structural changes during visbreaking of light Arabian mix short residue: comparison of feed and product asphaltenes. Fuel, 1993; 72(6): 751-754.
    [47] T. Y. Yan, Coke formation in visbreaking process. Prepr. Paper ACS Div.Pet chem., 1987; 32(2): 490-495.
    [48] J. W. Bunger. Inhibition of coke formation in hydropyrolysis of residual oils. Prepr.-Am. Chem. Soc., Div. Pet. Chem., 1985;30(3): 549-554.
    [49] J. Bla?ek, Gustav ?ebor. Formation of asphaltenes and carbenes during thermal conversion of petroleum maltenes in the presence of hydrogen. Fuel, 1993; 72(2): 199-204.
    [50] E. C. Sanford. Molecular approach to understanding residuum conversion. Ind. Eng. Chem. Res., 1994; 33(1): 109-117.
    [51] Martin John Kirk. Upgrading of Bitumen: [Ph. D. dissertation of University of Calgary], University of Calgary, Canada: 1989.
    [52] Bernard Fixari, Pierre Le Perchec, Frank-Dieter Kopinke, et al. 14C polyaromatics as radio isotope tracers for grafting analysis during heavy oil pyrolysis. Fuel, 1994;73(4): 505-509.
    [53] P. E. Savage. Are aromatic diluents used in pyrolysis experiments inert?. Ind. Eng. Chem. Res., 1994; 33(5): 1086-1089.
    [54] Farhad Khorasheh, Murray Gray. High-pressure thermal cracking of n-hexadecane in aromatic solvents. Ind. Eng. Chem. Res., 1993; 32(9): 1864-1876.
    [55] Magaril R. Z., Aksenora E. I.. Study of the mechanism of coke formation in the cracking of petroleum resins. Int. Chem. Eng. 1968; 8: 727-729.
    [56] Magaril R. Z., Aksenora E.I.. Investigation of the mechanism of coke formation during thermal decomposition of asphaltenes. Khim. Tekhnkl. Topl. Masel, 1970; 7(1): 22-24.
    [57] Magaril, R. Z.; Ramazeava, L. F.; Aksenora, E.I. Kinectics of the formation of coke in thermal processing of crude oil. Int. Chem. Eng. 1971; 11: 250-251.
    [58] Sosnowski J., Turner D. W., Eng J. Upgrading heavy crudes to clean liquid products. Paper 88th AIChE National Meeting, 1980.
    [59] Takatsuka, T.; Kajiyama, R.; Hashimoto, H.; Matsui, T.; Miwa, S. A practical model of thermal cracking of residual oil. J. Chem. Eng. Jpn. 1989; 22(3): 304-310.
    [60] Takatuska T., Wada Y., Hirohama S. et al. A prediction model for dry sludge formation in residue hydroconversion. J. Chem. Eng. Jpn., 1989; 22(3): 298-299.
    [61] Schucher, R. C., Keweshan, C. F.. The reactivity of cold lake asphaltenes. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.,1980; 25(1): 155-164 .
    [62] 李生华,刘晨光,梁文杰. 实时监控渣油热反应过程的光学显微镜法. 炼油设计,1998; 28(1):27-32.
    [63] Thomas Gentzis, Parviz Rahimi, Ripudaman Malhotra, et al. The effect of carbon additives on the mesophase induction period of Athabasca bitumen. Fuel Processing Technology, 2001; 69(3): 191-203.
    [64] Rahimi, P., Gentzis, T., Dawson W. H., et al. Investigation of coking propensity of narrow cut fractions from Athabasca bitumen using hot-stage microscopy. Energy & Fuels, 1998; 12(5): 1020-1030.
    [65] Parviz Rahimi, Thomas Gentzis. Coking propensity of Athabasca bitumen vacuum bottoms in the presence of H-donors—formation and dissolution of mesophase from a hydrotreated petroleum stream (H-donor). Fuel Processing Technology, 1999; 60(3): 157-170.
    [66] 冀勇,刘朗,查庆芳.热台显微镜与VHS摄像机联用观察沥青相变动态过程.分析仪器,1994;(1):21-23.
    [67] Wang Z., Que G., Liang W., et al. Chemical structure analysis of Shengli crude vacuum residuum related to thermal convrsion. Preprints, Div. Petrol. Chem., ACS, 1998; 43(3): 151-154.
    [68] 王宗贤. 渣油悬浮床加氢裂化生焦及抑焦机制:[石油大学博士论文],石油大学,北京:1999.
    [69] L. S. Kotlyar, B. D. Sparks, J. R. Woods, et al. Solids associated with the asphaltene fraction of oil sands bitumen. Energy & Fuels, 1999; 13(2): 346-350.
    [70] Parviz Rahimi, Thomas Gentzis, Craig Fairbridge. Interaction of clay additives with mesophase formed during thermal treatment of solid-free bitumen fractions. Energy & Fuels 1999; 13(4): 817-825.
    [71] Katsumori Tanable, Murray R. Gray. Role of fine solids in the coking of vacuum residues Energy & Fuels, 1997; 11(5): 1040-1043.
    [72] A.Figueiras, M. Granda, E. Casal, et al. Influence of primary QI on pitch pyrolysis with reference to unidirectional C/C composites. Carbon, 1998; 36(7-8): 883-891.
    [73] Yozo Korai, Yong-Gang Wang, Seong-Ho Yoon, et al. Effects of carbon black addition on preparation of meso-carbon microbeads. Carbon, 1997; 35(7): 875-884.
    [74] K. Sakanishi, T. Manabe, I. Watanabe, et al. Characterization and adsorption treatment of vacuum residue fractions with carbons Prepr.Symp.-Am. Chem. Soc. Div. Fuel Chem. 1999; 44(4): 759-762.
    [75] Rahimi P. M., Dawson W. H., Kelly J. F.. Determination of hydrogen donor ability of heavy oils/bitumens and its effect on coal dissolution. Fuel, 1991; 70(1): 95-99.
    [76] Meyer D., Oviawe P., Nicole D., et.al. Modeling of hydrogen transfer in coalhydroliquefication--4. The reaction of benzylphenylether with four hydroaromatic solvents at 300 ℃. Fuel, 1990; 69(10): 1309-1316.
    [77] Yokono T, Marsh H, Yokono M.. Hydrogen donor and acceptor abilities of pitch: 1H NMR study of hydrogen transfer to anthracene. Fuel, 1987; 60(5): 607-611.
    [78] Yokono T., Obara T., Iyama S., et.al. Hydrogen donor and acceptor ability of coal and pitch—factors governing mesophase development from low rank coal during carbonization. Carbon,1984; 22(6): 623-624.
    [79] 郭爱军. 渣油热反应体系内部氢转移行为的研究: [硕士研究生论文] 石油大学,东营: 2000.
    [80] Harrison G,Ross A B.. Hydrogen transfer reactions in coal/tyre liquefaction: quantification of H-donor contents. Prep., Am. Chem. Soc., Div. Fuel Chem., 1997; 42(1): 142-145.
    [81] Hu J., Whitcomb J. H., Tierney J. W., et. al. Assessment of donatable hydrogen in coal, recycle solvents and heavy oil by catalytical dehydrogenation. Prep., Am. Chem. Soc., Div. Pet. Chem., 1994; 39(3): 323-326.
    [82] Wang S. L., Curtis C. W.. An investigation of hydrogen transfer in coprocessing using model donors and reduced residues. Energy & Fuels, 1994; 8(2): 446-454.
    [83] Lin-Bing Sun, Zhi-Ming Zong, Xian-Yong Wei, et al. Activated carbon-catalyzed hydrogen transfer to α, ω-diarylalkanes. Energy & Fuels, 2005; 19(1): 1-6.
    [84] Gonzalez G., Antonieta Middea. Peptization of asphaltene by various oil soluble amphiphiles. Colloids Surf., 1991; 52(1): 207-217.
    [85] Chia-Lu Chang, H. Scott Fogler. Stabilization of asphaltenes in aliphatic solvents using alkylbenzne-derived amphiphiles. 1, Effect of the chemical structure of amphiphiles on asphaltene stabilization. Langmuir, 1994; 10(6): 1749-1757.
    [86] Chia-Lu Chang, H. Scott Fogler. Stabilization of asphaltenes in aliphatic solvents using alkylbenzne-derived amphiphiles. 2. Study of the asphaltene-amphiphile interactions and structures using Fourier transform infrared spectroscopy and small –angle X-ray scattering techniques. Langmuir, 1994; 10(6): 1758-1766.
    [87] Olga León, Estrella Rogel, Argelia Urbina, et al. Study of the adsorption of alkyl benzene-derived amphiphiles on asphaltene particles. Langmuir, 1999; 15(22): 7653-7657.
    [88] Olga León, Contreras E., Rogel E., et al. The influence of the adsorption of amphiphiles and resins in controlling asphaltene flocculation. Energy & Fuels, 2001; 15(5): 1028-1032.
    [89] Estrella Rogel, Olga León. Study of the adsorption of alkyl-benzene-derived amphiphiles on an asphaltene surface using molecular dynamics simulations. Energy & Fuels, 2001; 15(5): 1077-1086.
    [90] Horst Laux, Iradj Rahimian, Thorsten Butz. Theoretical and practical approach to the selection of asphaltene dispersing agents. Fuel Processing Technology, 2000; 67(1): 79-89.
    [91] Irwin A, Wiehe, Torris G. Jermansen. Design of synthetic dispersants for asphaltenes. Petroleum Science and Technology, 2003; 21(3&4): 527-536.
    [92] 申宝剑,王月霞,邓先梁. 一种结焦积垢抑制剂及其制备方法和应用. CN1308117A. 中国,2001.
    [93] Kyeongseok Oh, Milind Deo. Effect of organic additives on the onset of asphaltene precipitation. Energy & Fuels, 2002; 16(3): 694-699.
    [94] Sanyi Wang, Keng Chung, Murray R. Gray, et al. Toluene-insoluble fraction from thermal cracking of Athabasca gas oil: formation of a liquid-in-oil emulsion that wets hydrophobic dispersed solids. Fuel, 1998; 77(14): 1647-1653.
    [95] D. A. Storm, R. J. Barresi, E. Y. Sheu, A. K. Bhattacharya, et al. Microphase behavior of asphaltic micelles during catalytic and thermal upgrading. Energy & Fuels, 1998; 12(1): 120-128.
    [96] Liu Liming. Effect of solids on coke formation from Athabasca bitumen and vacuum residue: [PhD dissertation of University of Alberta], University of Alberta ,Canada: 2002.
    [97] Bi Weidong. Role of fine solids in coke formation during residue conversion: [MScthesis, of University of Alberta], University of Alberta ,Canada: 2005.
    [98] 刘东,王宗贤,阙国和,等. 渣油组分亚甲基与甲基比值和周边取代情况研究. 石油大学学报(自然科学版), 1999; 23(6):70-72.
    [99] 余钢,王志贤. 用接触角法估算复合材料的表(界)面特性. 粘结,2000; 21(5): 28-32.
    [100] 任兰正,王道宏,王日杰,等. 炭黑粉末润湿性质的研究. 化学工业与工程,2003;20(4): 200-204.
    [101] Boehm H P, Diehl E, Heck W, Sappok R. Oberfl?choxyde des Kohlenstoffs. Angew. Chem., 1964; 76(17): 742-751.
    [102] Hussein Alboudwarej, Rajesh K. Jakher, William Y. Syreek, et al. Spectrophotometric measurement of asphaltene concentration. Petroleum science and technology, 2004; 22(5&6): 647-664.
    [103] S. T. Dubey, M.H.Waxman. Asphaltene adsorption and desorption from mineral surfaces. SPE Reservoir Engineering, 1991; 8, 389-395.
    [104] Joong S N, James A S. Effect of HNO3 treatment on the surface acidity of activated carbons. Carbon, 1990; 28(5): 675-682.
    [105] T. J. Faish, D. E. Schleifer. Surface Chemistry and the carbon black work function. Carbon, 1984; 22(1):19-38.
    [106] Z. G. Zhang, K. Okada, M. Yamamoto, et al. Hydrogenation of anthracene over active carbon-supported nickel catalyst. Catalysis Today, 1998; 45(1-4): 361-366.
    [107] Zhan Guo Zhang, Tasashi Yoshida. Behavior of hydrogen transfer in the hydrogenation of anthracene over activated carbon. Energy & Fuels, 2001; 15(3): 708-713.
    [108]王宗贤,何岩,郭爱军, 等. 辽河与孤岛渣油供氢能力与生焦趋势. 燃料化学学报,1999;27(3): 251-255
    [109] Obara T, Yokono T, Sanada Y. Relations between hydrogen donor abilities and chemical structure of organic compounds in terms of coal liquefaction. Fuel, 1983; 62(7): 813-816
    [110] R. Billmers, L.L. Griffith, S. E. Stein. Hydrogen transfer between anthracene structures. The Journal of Physical Chemistry, 1986; 90(3): 517-523.
    [111] Donald M. Camaioni, S. Tom Autrey, James A. Franz. Comment on “Hydrogen Transfer between Anthracene Structures”. J. Phys. Chem., 1993; 97(21): 5791-5792.
    [112] A. C. Bunchanan III, A. S. Dworkin, G.. P. Smith. Molten salt catalyzed transfer hydrogenation of polycyclic aromatic hydrocarbons. Selective hydrogenation of anthracene and naphthacene by tetralin in molten antimony trichloride. The journal of organic chemistry, 1982; 47(4): 603-607.
    [113] Isabel W. C. E. Arends, Peter Mulder. Study of hydrogen shuttling reactions in anthracene/9,10-dihydroanthracene-naphthyl-x mixtures. Energy & Fuels, 1996; 10(1): 235-242.
    [114] J. Machnikowski, H. Kaczmarska, A. Leszczyńska,et al. Hydrogen-transfer ability of extrographic fractions of coal-tar pitch. Fuel Processing Technology, 2001; 69(2): 107–126.
    [115] M.A. Díez, A. Domínguez, C. Barriocanal, et al. Hydrogen donor and acceptor abilities of pitches from coal and petroleum evaluated by gas chromatography. Journal of Chromatography A, 1999; 830(1): 155–164.
    [116] Gerald C. Grunewald, Russell S. Drago. Carbon molecular sieves as catalysts and catalyst supports. J. Am. Chem. Soc., 1991; 113(5): 1636-1639.
    [117] Hsienjen Lian, Jiuun-Ren Lin, Teh Fu Yen. Peptization studies of asphaltene and solubility parameter spectra. Fuel, 1994; 73(3): 423-428.
    [118] Pornruedee Permsukarom, Chialu Chang, H. Scott Fogler. Kinetic study of asphaltene dissolution in amphiphile/alkane solutions. Ind. Eng. Chem. Res., 1997; 36(9): 3960-3967.
    [119] Ant?nio Carlos da Silva Ramos, Lilian Haraguchi, Fábio R. Notrispe, Watson Loh, et al. Interfacial and colloidal behavior of asphaltenes obtained from Brazilian crude oils. Journal of Petroleum. Science and Engineering, 2001; 32 (2-4): 201–216.
    [120] Taher A. Al-Shhaf, Mohammed A. Fahim, Amal S. Elkilani. Retardation of asphaltene precipitaton by addition of toluene, resins, deasphalted oil and surfactants. Fluid Phase equilibria, 2002; 194-197(1): 1045-1057.
    [121] Inge Harald Auflem, Trond Erik Havre, Johan Sj?blom. Near-IR study on the dispersive effects of amphiphiles and naphthenic acids on asphaltenes in model heptane-toluene mixtures. Colloid & polymer science, 2002; 280(8): 695-700.
    [122] Hussam H. Ibrahim, Raphael O. Idem. Interrelationships between asphaltene precipitation inhibitor effectiveness, asphaltenes characteristics, and precipitation behavior during n-heptane ( light paraffin hydrocarbon )-induced asphaltene precipitation. Energy & Fuels, 2004; 18(4): 1038-1048.
    [123] Luiz Carlos Rocha Junior, Maira Silva Ferreira, Antonio Carlos da Silva Ramos Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles. Journal of Petroleum Science and Engineering. 2006; 51 (1-2): 26–36.
    [124] Moreira L. F. B., Lucas E. F., González G.. Stabilization of asphaltene by phenolic compounds extracted from cashew-nut shell liquid. Journal of Applied Polymer Science. 1999; 73(1): 29–34.
    [125] Vaibhav Nalwaya, Veerapat Tantayakom, Scott Fogler. Studies on asphaltenes through analysis of polar fractions. Ind. Eng. Chem. Res. 1999; 38(3): 964-972.
    [126] Thomas J. Kaminski, H. Scott Fogler, Nick Wolf, et al. Classification of asphaltenes via fractionation and the effect of heteroatom content on dissolution kinetics. Energy & Fuels, 2000; 14(10): 25-30.
    [127] M. A. Aquino-Olivos, E. Buenrostro-Gonzalez, S. I. Andersen, et al. Investigations of inhibition of asphaltene precipitation at high pressure using bottomhole samples. Energy & Fuels, 2001; 15(5): 236-240.
    [128] María del Carmen García, Lante Carbognani. Asphaltene-paraffin structural interactions. Effect on crude oil stability. Energy & Fuels, 2001; 15(5), 1021-1027.
    [129] Olga León, Eliasara Contreras, Estrella Rogel, et al. Adsorption of Native Resins on Asphaltene Particles: A Correlation between Adsorption and Activity. Langmuir. 2002; 18(13 ): 5106-5112.
    [130] O. León,E. Contreras, E. Rogel. Amphiphile assorption on asphaltene particles: adsorption isotherms and asphaltene stabilization. Colloids and surfaces A: physicochemical and engineering aspects. 2001; 189(1-3): 123-130.
    [131] Fabricio Arteaga Larios,Ana Cosultchi,Elías Pérez. Dispersant adsorption during asphaltene aggregation studied by fluorescence resonance energy transfer (FRET). Energy & Fuels, 2005; 19(2): 477-484.
    [132] 黄惠忠. 论表面分析及其在材料研究中的应用. 北京: 科学技术文献出版社, 2002: 35-90.
    [133] 张守玉,吕俊复,岳光溪,等. 煤种及炭化条件对活性焦表面化学性质的影响. 化学工程,2004;32(5):39-43.
    [134] 胡旭东,臧良,崔树茂,等. 煤中有机硫的化学性质和结构. 华东理工大学学报,1994;20(3):321-326.
    [135] 朱珍平,崔洪,李允梅,等. 二种高硫煤中硫氮化学形态的研究. 环境化学,1995;14(6):483-488.
    [136] 王丽,张蓬洲,郑敏. 用固体核磁共振和电子能谱研究我国高硫煤的结构. 燃料化学学报,1996;24(6):539-543.
    [137] 陈鹏. 用 XPS 研究兖州煤各显微组分中有机硫存在形态. 燃料化学学报,1997;25(3):238-241.
    [138] 赵鹏,史士东. 用 XPS 研究胜利褐煤中有机氧的赋存形态. 煤炭科学技术,2004;32(7):51-52.
    [139] 徐秀峰,张蓬洲. 用 XPS 表征氧、氮、硫元素的存在形态. 煤炭转化,1996;19(1):72-77.
    [140] 陈鹏. 应用 XPS 研究煤中有机硫在脱硫时的存在形态. 洁净煤技术,1997;3(2):17-20.
    [141] 姚明宇,刘艳华,车得福. 宜宾煤中氮的形态及其变迁规律研究. 西安交通大学学报,2003;37(7):759-763.
    [142] 朱宏斌,倪燕慧,唐黎华,等. 烟煤快速加氢热解的研究 VI 煤和半焦中氮化学形态剖析. 燃料化学学报,2001;29(2):124-128.
    [143] 朱子彬,朱宏斌,吴勇强,等. 烟煤快速加氢热解的研究 V:煤和半焦中有机硫化学形态剖析. 燃料化学学报,2001;29(2):44-48.
    [144] 李登新,高晋生,岳光溪,等. 煤中有机硫的电化学脱硫机理. 燃烧科学与技术,2002;8(5):421-425.
    [145] 李文,郭树材. 煤的超临界醇萃取脱硫 III. 形态硫的变化. 燃料化学学报,1995;23(1):94-98.
    [146] 刘艳华,车得福,徐通模. 利用X射线光电子能谱确定煤及其残焦中硫的形态. 西安交通大学学报,2004;38(1):101-104.
    [147] 陈鹏. 鉴定煤中有机硫类型的方法研究. 煤炭学报,2000;25(增刊):174-181.
    [148] M. Siskin, S. R. Kelemen, C. P. Eppig, et al. Asphaltene molecular structure and chemical influences on the morphology of coke produced in delayed coking. Energy & Fuels, 2006; 20 (3): 1227-1234.
    [149] Jenny Ann ?stlund, Magnus Nydén, H. Scott Fogler, et al. Functional groups in fractionated asphaltenes and the adsorption of amphiphilic molecules. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2004; 234 (1): 95–102.
    [150] Suoqi Zhao, Zhiming Xu, Chunming Xu, et al. Systematic characterization of petroleum residua based on SFEF. Fuel, 2005; 84(6): 635–645.
    [151] Fa?cüal Larachi, Souma?¨ne Dehkissia, Alain Adnot, et al. X-ray photoelectron spectroscopy, photoelectron energy loss spectroscopy, X-ray excited auger electron spectroscopy, and Time-of-flight-secondary ion mass spectroscopy studies of asphaltenes from Doba-Chad heavy crude hydrovisbreaking. Energy & Fuels 2004; 18(6): 1744-1756.
    [152] 王宗贤,李希方,阙国和,等. 胜利和孤岛减压渣油中的硫醚硫和噻吩硫的测定. 燃料化学学报,1995;23(4):423-428.
    [153] 王宗贤,阙国和,梁文杰. 渣油中硫和硫类型分布对热转化产物中硫分布的影响. 石油学报(石油加工), 1999;15(1):17-21.
    [154] 梁文杰. 重质油化学. 东营:石油大学出版社, 2000: 132-133.
    [155] 邓文安. 在分散型催化剂下渣油及其组分临氢热反应行为的研究:[博士学位论文], 中国石油大学, 东营:2005.
    [156] 张华,彭勤纪,李亚明,等. 现代有机波谱分析. 北京:化学工业出版社,2005: 302-306.
    [157] R. Fryczkowski, W. Binia?, J. Farana, et al. W?ochowicz. Spectroscopic and morphological examination of polypropylene fibres modified with polyaniline. Synthetic Metals . 2004; 145(2-3): 195–202.
    [158] T. Del Castillo-Castro, M. M. Castillo-Ortega, I. Villarreal, F. Brown, H. Grijalva, M. Pérez-Tello, S. M. Nun?-Donlucas, J. E. Puig. Synthesis and characterization of composites of DBSA-doped polyaniline and polystyrene-based ionomers. Composites Part A: applied science and manufacturing. 2006 in press.
    [159] 梁文杰. 重质油化学. 东营:石油大学出版社, 2000: 59-64.
    [160] 秦匡宗,郭绍辉. 石油沥青质. 北京:石油工业出版社,2002: 32-33.
    [161] Mohammed Shahid Akhlaq. Characterization of the isolated wetting crude oil components with infrared spectroscopy. Journal of Petroleum Science and Engineering. 1999; 22(4): 229–235.
    [162] 张华,彭勤纪,李亚明,等. 现代有机波谱分析. 北京:化学工业出版社,2005: 267-275
    [163] David A. Storm, Eric Y. Sheu. Characterization of colloidal asphaltenic particles in heavy oil. Fuel, 1995; 74(8): 1140-1145.
    [164] D. A. Storm, E. Y. Sheu, M. M. DeTar, et al. A comparison of the macrostructure of ratawi asphaltenes in toluene and vacuum residue. Energy & Fuels, 1994; 8(3): 567-569.
    [165] Y. Bouhadda, D. Bendedouch, E. Sheu, et al. Some preliminary results on a physico-chemical characterization of a Hassi Messaoud petroleum asphaltene. Energy & Fuels, 2000; 14(4): 845-853.
    [166] Yen T. F.. Composition and macrostructure of asphaltene in heavy crude oils. Fuel Science & Technology Int’l, 1992; 10(4~6): 723-725.
    [167] 张龙力,杨国华,阙国和. 中东常压渣油热反应样品 Zeta 电位的研究. 燃料化学学报,2005;33(1): 125-128.
    [168] Grégoire Porte, Honggang Zhou, Véronique Lazzeri. Reversible description of asphaltene colloidal association and precipitation. Langmuir, 2003; 19(1): 40-47.
    [169] Keith L. Gawrys, George A. Blankenship, Peter K. Kilpatrick. Solvent entrainment in and flocculation of asphaltenic aggregates probed by small-angle neutron scattering. Langmuir, 2006; 22(10): 4487-4497.
    [170] Eric Y. Sheu, David A. Storm. Reply to S. E. Taylor from E. Y. Sheu and D. A. Storm. Fuel, 1994; 73(8): 1368-1368.
    [171] E. Y. Sheu, D. A. Storm, S. De Canio. Colloidal properties of asphaltenes in organic solvents. In asphaltene-fundamentals and applications; Plenum: New York, 1993; pp 1-52.
    [172] Igor N. Evdokimov, Nikolay Yu Eliseev, Bulat R. Akhmetov. Initial stages of asphaltene aggregation in dilute crude oil solutions: studies of viscosity and NMR relaxation. Fuel, 2003; 82(7): 817-823.
    [173] Igor N. Evdokimov, Nikolay Yu Eliseev, Bulat R. Akhmetov. Asphaltenedispersions in dilute oil solutions. Fuel, 2006; 85(10-11): 1465-1472.
    [174] Chandra W. Angle, Leo Lue, Tadeusez Dabros, et al. Viscosity of heavy oils in heptol in a study of asphaltenes self-Interactions. Energy & Fuels, 2005; 19(5): 2014-2020.
    [175] Rao B. M. L., Serrano J. E.. Viscometric study of aggregation interactions in heavy oil. Fuel Science & Technology Int’l, 1986; 4(4): 483-500.
    [176] 周华, 水恒福. 煤的缔合结构研究. Ⅱ溶液黏度变化. 燃料化学学报,2005;33(1):43-46.
    [177] K. H. Altgelt, O. L. Harle. The effect of asphaltene on asphalt viscosity. Ind. Eng. Chem., Prod. Res. Dev., 1975; 14(4): 240-246.
    [178] 中国石油化工股份有限公司. 石油和石油产品试验方法行业标准汇编 2005(下). 北京:中国石化出版社,2005 年:1221-1226.
    [179] 刘澄蕃,滕弘霓,王世权. 物理化学实验. 北京:化学工业出版社,2002:84-88.
    [180] 赵国玺.表面活性剂物理化学.第二版. 北京:北京大学出版社,1991:194-213.
    [181] Rahoma S. Mohamed, Ant?nio C. S. Ramos. Aggregation behavior of two asphaltenic fractions in aromatic solvents. Energy & Fuels. 1999; 13(2): 323-327.
    [182] 丁福臣,魏洁,王宇航,等. 石油沥青质胶体分散特性的研究. 石油化工高等学校学报,2001;14(3):7-9.
    [183] Verina J., Wargadalam, Koyo Norinaga, et al. Size and shape of a coal asphaltene studied by viscosity and diffusion coefficient measurements. Fuel, 2002; 81(11-12): 1403-1407.
    [184] Eric Y. Sheu, Oliver Mullins. Frequency-dependent conductivity of Utah crude oil asphaltene and deposit. Energy & Fuels 2004; 18(5): 1531-1534.
    [185] E. Y. Sheu,M. M. de Tar, D. A. Storm. Dielectric properties of asphaltene solutions. Fuel, 1994; 73(1): 45-50.
    [186] Socrates Acevedo, Gastón Escobar, María A. Ranaudo, et al. Observations about the structure and dispersion of petroleum asphaltenes aggregates obtained from dialysis fractionation and characterization. Energy & Fuels, 1997; 11(4): 774-778.
    [187] Bernard Siffert, Jerzy Kuczinsky, Eugene Papirer. Relationship between electrical charge and flocculation of heavy oil distillation residues on organic medium. Journal of colloid and interface science, 1990; 135(1): 107-117.
    [188] Abraham T., Christendat D., Karan K.,et al. Asphaltene-Silica interactions in aqueous solutions: Direct force measurements combined with electrokinetic studies. Industry & Engineering Chemistry research, 2002; 41(9); 2170-2177.
    [189] Hilda Parra-Barraza, Daniel Hernández-Montiel, Jaime Lizardi, et al. The zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions. Fuel, 2003; 82(8): 869-874.
    [190] Jada A., Salou M.. Effects of the asphaltene and resin contents of the bitumens on the water– bitumen interface properties. J. Pet. Sci. Eng. , 2002;33(1-3): 185– 193.
    [191] Jada A., Salou M., Siffert B.. Effects of bitumen polar fractions on the stability of bitumen aqueous dispersions. Pet. Sci. Technol, 2001; 19 (1– 2), 119– 127.
    [192] Jada A., Ait Chaou A., Bertrand Y.,et al. Adsorption and surface properties of silica with transformer insulating oils. Fuel, 2002; 81(9): 1227– 1232.
    [193] A. Jada, A. Ait Chaou. Surface properties of petroleum oil polar fraction as investigated by Zetametry and DRIFT spectroscopy. Journal of Petroleum Science and Engineering, 2003; 39 (3-4): 287– 296.
    [194] A. Jada, A. Ait Chaou. Use of pyrogenic silicas for petroleum polar fraction characterization. Fourier transform infrared spectroscopy and microelectrophoreis studies. Fuel, 2002; 81(13):1669-1678.
    [195] Heriberto Grijalva-Monteverde, Oscar V. Arellano-Tánori, Miguel A. Valdez. Zeta potential and Langmuir films of asphaltene polar fractions. Energy & Fuels,2005; 19(6): 2416-2422.
    [196] Gaspar González, Guilherme B. M. Neves, Sandra M. Saraiva, et al. Electrokinetic characterization of asphaltenes and the asphaltenes-resins interaction. Energy & Fuels, 2003; 17(4): 879-886.
    [197] Martine Salou, Bernard Siffert, Amane Jada. Interfacial characteristics of petroleum bituments in contact with acid water. Fuel, 1998; 77(4): 343-346.
    [198] James R. Wright, Richard R. Minesinger.The electrophoretic mobility of asphaltenes in nitromethane. Journal of Colloid Science, 1963; 18(3): 223-236.
    [199] Sunil Kokal, Thompson Tang, Laurier Schramm, et al. Electrokinetic and adsorption properties of asphaltenes. Colloids and surfaces A: Physicochemical and engineering aspects, 1995; 94(2-3): 253-265.
    [200] Ian D. Morrison. Electrical charges in nonaqueous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993; 71(1): 1-37.
    [201] Bernard Siffert, Pierre Rageul, Eugène Papirer. Acid-base characteristics ofasphaltenes isolated from mechanical sheared oil distillation residues. Fuel, 1996; 75(14): 1625-1628.
    [202] León O, Rogel E, Torres G, et al. Electrophoretic mobility and stabilization of asphaltenes in low conductivity media. Petrleum Science and technology, 2000; 18(7/8): 913-927.
    [203] 郑忠. 胶体科学导论. 北京:高等教育出版社,1989:252-299.
    [204] 戴维. P. 休梅尔,卡尔. W. 加兰,杰夫里. I. 斯坦费尔德,等. 物理化学实验. 俞鼎琼,廖志伟译. 北京: 化学工业出版社,1990: 379-390.
    [205] 郑忠,李宁. 分子力与胶体的稳定和聚沉. 北京:高等教育出版社,1995:44-91.
    [206] 周祖康,顾惕人. 胶体化学基础. 北京:北京大学出版社,1987: 239-263.
    [207] 郝兰锁,王莉,董鹏,等. 以残渣油组分为原料制备高性能电流变液的研究. 石油学报(石油加工), 2001; 17(增刊): 36-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700