以二氧化碳为合成子形成C-N键的方法学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳既是最主要的温室气体,同时也是地球上分布最广、储量最丰富的碳一资源。无论从资源利用还是环境保护的角度考虑,二氧化碳的固定和化学转化的研究都具有重要意义。噁唑啉酮、脲、咪唑啉酮、氨基甲酸酯等,这几类氨基甲酸衍生物均广泛应用于医药、农药、有机合成等多个重要领域,以二氧化碳为合成子构建C-N键,合成上述有机物,既可以解决二氧化碳排放过量所引起的“温室效应”问题,又可以实现二氧化碳的循环利用,实现可持续发展,是符合绿色化学观点的。
     噁唑啉酮是一类重要的五元杂环化合物,在有机合成中广泛应用于有机合成中间体、手性合成助剂、生物活性化合物的合成。以二氧化碳为原料合成嗯唑啉酮,其中以二氧化碳与氮杂环丙烷的环加成反应原子经济性最高,底物适应面最广,而由烯烃作为底物,选择合适的氮源合成氮杂环丙烷,不仅大大降低了原料的成本,并且能够大规模扩展底物范围。四正丁基三溴化铵/四正丁基溴化铵双组分催化剂可以催化烯烃、氯胺-T和二氧化碳高区位选择性地一步合成5-取代-2-噁唑啉酮,其中四正丁基三溴化铵可以催化烯烃的吖啶化反应,而四正丁基溴化铵可以催化二氧化碳与氮杂环丙烷的环加成反应。对于其中两步反应——吖啶化和环加成的催化剂的选择及对反应条件的优化对于合成5-取代-2-嗯唑啉酮起着极其重要的作用。
     脲衍生物是一类重要的羰基化合物,可广泛用作农业上的除草剂、杀虫剂、植物生长调节剂或医药领域中的重要中间体,并且也可作为汽油的抗氧化剂和塑料的添加剂。其中作为除草剂、杀虫剂、消毒杀菌剂、植物生长调节剂、灭鼠剂、医药或其中间体等用途的非对称取代脲类化合物现已工业化生产。脲传统的合成方法要使用光气、异氰酸酯等剧毒且高危险性的原料。由二氧化碳代替剧毒原料合成脲具有十分重要的意义。在不使用任何脱水剂的情况下,聚乙二醇1000负载氢氧化钾可以高效催化胺与二氧化碳合成对称脲,其中聚乙二醇对于碱催化这个反应有很强的促进作用,并通过核磁测试证实了反应中主客体加合物的生成。以脂肪伯胺、脂肪肿胺、脂肪邻二胺为原料合成相应的脲,均可以得到较为满意的结果。此外,催化剂可以通过简单的萃取过滤即可实现回收,重复使用5次后催化活性无明显下降。
     有机氨基甲酸酯广泛应用于医药、农药,并在合成化学中作为关键中间体或保护基团。以往使用二氧化碳作为原料的合成方法往往要过量的相转移催化剂(如季铵盐)和昂贵的碱(如碳酸铯)。以聚乙二醇400作为溶剂,廉价的碳酸钾作为缚酸剂,使用胺、二氧化碳、卤代烃在温和的条件(常压室温)下能够高效且环境友好地合成氨基甲酸酯。其中聚乙二醇既作为溶剂,又可以作为相转移催化剂,从而不需要额外添加相转移催化剂。聚乙二醇的存在既可以抑制副反应——胺的烷基化,提高生成氨基甲酸酯的选择性;又可以增强碳酸钾的碱性,促进反应的进行。并且通过简单的萃取得到了产物,大大简化了分离步骤。
Carbon dioxide is the most abundant greenhouse gas and can be also regarded as a typical renewable natural resource. The development of environmentally friendly process utilizing CO2 has received much attention from the viewpoint of resources utilization and green chemistry. In this context, one of the major successes is the utilization of CO2 as the starting materials to prepare oxazolidinones, urea and carbamate via the coupling of CO2 with amines in view of green chemistry.
     2-Oxazolidinones are an important class of five-membered heterocycles showing a plethora of applications as intermediates and chiral auxiliaries in organic synthesis. Cycloaddition of CO2 with nitrogen source and olefin is one of the most promising methods for synthesis of oxazolidinones. We have developed a binary catalyst system composed of n-Bu4NBr3/n-Bu4NBr for facile synthesis of 5-substituted 2-oxazolidinones with perfect regioselectivity in a single operation directly from olefins, Chloramine-T and CO2. The choice of efficient binary catalysts for two steps, i.e. aziridination and cycloaddition, and the optimization of reaction condition are keys to the one-pot synthesis of 5-substituted 2-oxazolidinones. A possible mechanism for the present one-pot synthesis of oxazolidinones was also proposed.
     Urea derivatives are an important class of carbonyl compounds and useful chemical intermediates in the synthesis of Pharmaceuticals, agricultural chemicals, dyes; and they are also used as antioxidants in gasoline and additives in plastics. Therefore, the synthesis of ureas starting from CO2 has drawn much attention because CO2 is a renewable, abundant, cheap, and non-toxic source of functional carbon unit. We have developed polyethylene glycol-supported potassium hydroxide (KOH/PEG1000) as a recyclable catalyst for facile synthesis of urea derivatives from amines and CO2 without utilization of additional dehydrating agents. Primary aliphatic amines, secondary aliphatic amines and diamines can be converted into the corresponding urea derivatives in moderate yields. Furthermore, the catalyst can be recovered after a simple separation procedure, and reused over 5 times with retention of high activity.
     Organic carbamates hold extensive applications in pharmaceutical industry, agriculture and have been widely used as key intermediates or protecting groups in synthetic chemistry. We have developed an efficient and environmentally benign method for the synthesis of organic carbamates. Amines, CO2 and alkyl halides underwent a three-component reaction with the aid of K2CO3 and polyethylene glycol (PEG400, MW=400), affording the organic carbamates under ambient conditions. PEG could presumably act as a solvent, phase transfer catalyst (PTC). Notably, the presence of PEG could also depress the alkylation of both the amine and the carbamate, thus resulting in enhanced selectivity toward the target carbamate.
引文
[1]Clark J H. Green chemistry:challenges and opportunities. Green Chem,1999,1 (1):1-8
    [2]Trost B M. The atom economy-a search for synthetic efficiency. Science,1991,254(5037): 1471-1477
    [3]Anastas P T, Warner J C. Green Chemistry:Theory and Practice. Oxford University Press: New York,1998.30
    [4]徐京磐,张金森.二氧化碳资源循环利用.小氮肥设计技术,2005,26(1):6-10
    [5]贾彦雷,许文,刘家祺.二氧化碳的化学利用.天然气化工,2004,29(3):54-58
    [6]IPCC. Climate Change 1995:IPCC Second Assessment Report. December 1995
    [7]Mertz B, Davidson O, Swart R, et al. The Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. Cambridge University Press:Cambridge UK,2001
    [8]曲格平.关于我国参加联合国环境与发展大会的情况报告,迈向21世纪.北京:中国环境科学出版社,1992
    [9]王绍武,龚道溢.对气候变暖问题争议的分析.地理研究,2001,20(2):153-160
    [10]梁斌.C02与环氧丙烷不对称环加成反应催化体系的设计与研究:[硕士学位论文].大连:大连理工大学,2004
    [11]周家贤.二氧化碳开发利用综述.化工设计,2004,14(4):7-9
    [12]周忠清.二氧化碳催化还原成碳的发展.石油化工高等学校学报,1994,7(1):33-38
    [13]顾蕊瑛,李颖华.C02资源的综合利用.湖北化工,1993,2:33-35
    [14]李昆瑜.C02的应用及产品开发.天然气化工,1996,21(3):40-43
    [15]Arakawa H, Aresta M, Armor J N, et al. Catalysis research of relevance to carbon management:progress, challenges, and opportunities. Chem Rev,2001,101 (4):953~956
    [16]Sakakura T, Choi J, Yasuda H. Transformation of carbon dioxide. Chem Rev,2007,107 (6):2365~2387
    [17]Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res,2002,35 (9):746~756
    [18]付月.超临界流体技术及其研究进展.河北农业科学,2007,11(6):112-115
    [19]杨基础,沈忠耀.超临界流体技术与超细颗粒的制备.化工进展,1995,(2):8-31,53
    [20]郑来久,刘志伟,季婷等.超临界CO2染色技术.化学工程,2006,34(9):71-74
    [21]Burk M J, Feng S, Gross M F. Asymmetric catalytic hydrogenation reactions in supercritical carbon dioxide. J Am Chem Soc,1995,117 (31):8277~8278
    [22]Xiao J L, Nefkens S C A, Jessop P G. Symmet ric hydrogenation of a-unsaturated carboxylic acids in supercritical carbon dioxide. Tetrahedron Lett,1996,37 (16):2813~2816
    [23]Kainz S, Brinkmann A. Iridium-catalyzed enantioselective hydrogenation of imines in supercritical carbon dioxide. J Am Chem Soc,1999,121 (27):6421~6429
    [24]Levi A, Modena G, Scorrano G. Asymmetric reaction of carbon-nitrogen, carbon-oxygen and carbon-carbon double bonds by homogeneous catalytic hydrogenation. J Chem Soc, Chem Commun,1975, (1):6~7
    [25]Solinas M, Pfaltz A, Cozzi P G, et al. Enantioselective hydrogenation of imines in ionic liquid/carbon dioxide media. J Am Chem Soc,2004,126 (49):16142~16147
    [26]Jessop P G, Hsiao Y, Ikariya T, et al. Homogeneous catalysis in supercritical fluids: hydrogenation of supercritical carbon dioxide to formic acid, alkyl formates, and formamides. J Am Chem Soc,1996,118 (2):344~345
    [27]Hitzler M G, Poliakoff M. Continuous hydrogenation of organic compounds in supercritical fluids. Chem Commun,1997, (17):1667~1668
    [28]Rathke J W, Klinger R J, Krause T R. Propylene hydroformylation in supercritical carbon dioxide. Organometallics,1991,10 (5):1350~1355
    [29]Kainz S, Koch D, Baumann W, et al. Perfluoroalkyl substituted arylphosphanes as ligands for homogenous catalysis in supercritical carbon dioxide. Angew Chem Int Ed,1997,36 (15):1628~1630
    [30]Jia L, Jiang H, Li J. Selective carbonylation of norbornene in scCO2. Green Chem,1999, 1 (12):91~93
    [31]李金恒,江焕峰,李国平.超临界二氧化碳介质中钯催化末端炔烃羰基化反应的影响因素.广州化学,2000,25(1):1-5
    [32]Tsuji J, Takahashi M, Takahashi T. Facile synthesis of acetylenecarboxylates by the oxidative carbonylation of terminal acetylenes catalyzed by PdCl2 under mild conditions. Tetrahedron Lett,1980,21 (9):849~850
    [33]Li J H, Jiang H F, Feng A Q. Novel stereospecific synthesis of 3-chloro-acrylate esters via palladium catalyzed carbonylation of terminal acetylenes. J Org Chem,1999,64 (16) 5984~5987
    [34]Li J, Jiang H, Jia L. A novel stereoselective synthesis of maleate derivatives via palladium-catalyzed dicarboalkoxylation of terminal alkynes. Synth Commun,1999,29 (21):3733~3738
    [35]Li J, Jiang H, Chen M. Palladium-catalyzed carbonylation of terminal acetylenes:a new method for synthesis of acetylene ecarboxylates. Synth Commun,2001,31 (2):199~202
    [36]Li J, Jiang H, Chen M. Palladium-catalyzed dicarbonylation of terminal acetylenes:a new method for selective synthesis of unsaturated diesters and maleic anhydrides. Synth Commun,2001,31 (20):3131~3134
    [37]Li J H, Jiang H F, Chen M C. Palladium-catalyzed carbonylation of primary amines in supercritical carbon dioxide. Chin J Chem,2001,19 (11):1153~1156
    [38]Alper H, Hartstock F W. An exceptionally mild, catalytic homogeneous method for the conversion of amines into carbamate esters. J Chem Soc, Chem Commun,1985, (16): 1141~1142
    [39]李金恒,江焕峰,陈鸣才,等.超临界二氧化碳介质中钯催化伯胺羰基化反应的研究.广州化学,2001,26(4):1-5
    [40]Darr J A, Poliakoff M. New directions in inorganic and metal-organic coordination chemistry in supercritical fluids. Chem Rev,1999,99 (2):495~542
    [41]Leitner W. Supercritical carbon dioxide as a green reaction medium for catalysis. Acc Chem Res,2002,35(9):746~756
    [42]Srinivas P, Mukhopadhyay M. Oxidation of cyclohexane in supercritical carbon dioxide medium. Ind Eng Chem Res,1994,33 (12):3118~3124
    [43]Wu X, Oshima Y, Koda S. Aerobic oxidation of cyclohexane catalyzed by Fe(III) (5,10,15,20-tetrakis(penta-fluorophenyl)porphyrin)Cl in sub-and super-critical CO2. Chem Lett,1997, (10):1045~1046
    [44]Jessop P G, Ikariya T, Noyori R. Homogeneous catalysis in supercritical fluids. Chem Rev, 1999,99 (2):475~493
    [45]Jessop P G. Homogeneously-catalyzed syntheses in supercritical fluids. Top Catal,1998,5: 95~103
    [46]Kreher U, Schebesta S, Walther D. Organometallics of transition metals in supercritical carbon dioxide:solubilities, reactions, catalysis. Z Anorg Allg Chem,1998,624 (4) 602~612
    [47]Pesiri D R, Morita D K, Glaze W, et al. Selective epoxidation in dense phase carbon dioxide. Chem Commun,1998, (9):1015~1016
    [48]Katsuki T, Sharpless K B. The first practical method for asymmetric epoxidation. J Am Chem Soc,1980,102 (18):5974~5976
    [49]Thompson R L, Graser R, Bush D, et al. Rate variations of a hetero-Diels-Alder reaction in supercritical fluid CO2. Ind Eng Chem Res,1999,38 (11):4220~4225
    [50]Carroll M A, Holmes A B. Palladium-catalysed carbon-carbon bond formation in supercritical carbon dioxide. Chem Commun,1998, (13):1395~1396
    [51]Miyaura N, Yanagi T, Suzuki A. The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth Commun,1981,11(7): 513~519
    [52]Morita D K, David S A, Tumas W, et al. Palladium-catalyzed cross-coupling reactions in supercritical carbon dioxide. Chem Commun,1998, (13):1397~1398
    [53]Hitzler M, Smail F R, Ross S K, et al. Friedel-Crafts alkylation in supercritical fluids: continuous, selective and clean. Chem Commun,1998, (3):359~360
    [54]吕小兵.超临界条件下环状碳酸酯的催化合成:[博士学位论文].大连:大连理工大学,2002
    [55]Guan Z, Combes J R, DeSimone J M, et al. Homogeneous free radical polymerizations in supercritical carbon dioxide:2. Thermal decomposition of 2,2'-azobis(isobutyronitrile). Macromolecules,1993,26 (11):2663~2669
    [56]DeSimone J M, Maury E E, Menceloglu Y Z, et al. Dispersion polymerizations in supercritical carbon dioxide. Science,1994,265 (5170):356~359
    [57]Hsiao Y L, Maury E E, DeSimone J M, et al. Dispersion polymerization of methyl methacrylate stabilized with poly (1,1-dihydroperfluorooctyl acrylate) in supercritical carbon dioxide. Macromolecules,1995,28 (24):8159~8166
    [58]Canelas D A, Betts D E, DeSimone J M. Dispersion polymerization of styrene in supercritical carbon dioxide:importance of effective surfactants. Macromolecules,1996,29 (8):2818~2821
    [59]Pasta P, Maggala T, Carrea T. Subtilisin-catalyzed transesterification in supercritical carbon dioxide. Biotechnol Lett,1989,11 (9):643~648
    [60]Mori T, Kolayashi A, Okahata Y. Biocatalytic esterification in supercritical carbon dioxide by using a lipid-coated lipase. Chem Lett,1998, (9):921~922
    [1]Makhtar T M, Wright G D. Streptogramins, oxazolidinones, and other inhibitors of bacterial protein synthesis. Chem Rev,2005,105 (2):529~542
    [2]Aurelio L, Brownlee R T C, Hughus A B. Synthetic preparation of N-methyl-a-amino acids. Chem Rev,2004,104 (12):5823~5846
    [3]Shi Z D, Liu H P, Zhang M C, et al. Synthesis of the first a-fluoro-phosphotyrosyl mimetic. Synth Commun,2004,34 (21):3883~3889
    [4]Andreou T, Costa A M, Esteban L, et al. Synthesis of (-)-amphidinolide K fragment C9-C22. Org Lett,2005,7 (19):4083~4086
    [5]Watson R J, Batty D, Baxter A D, et al. An enantioselective synthesis of sulphonamide hydroxamic acids as matrix metalloproteinase inhibitors. Tetrahedron Lett,2002,43 (4): 683~685
    [6]Prashad M, Liu YG, Kim H Y, et al. Enantioselective synthesis of (2S,2'R)-erythro-methylphenidate. Tetrahedron:Asymmetry,1999,10 (18):3479~3482
    [7]Gawley R E, Campagna S A, Santiago M, et al. Lithiated camphor-derived oxazolidinone S,N-acetals as chiral formyl anion synthons in additions to aldehydes. Asymmetric synthesis of a-hydroxy aldehydes and a-hydroxy acids. Tetrahedron:Asymmetry,2002,13(1):29~36
    [8]Phoon C W, Abell C. Solid phase aldol and conjugate addition reactions using Evans' oxazolidinone chiral auxiliary. Tetrahedron Lett,1998,39 (17):2655~2658
    [9]Brickner S J. Oxazolidinone antibacterial agents. Curr Pharm Des,1996,2(2):175~194
    [10]Barbachyn M R, Ford C W. Oxazolidinone structure-activity relationships leading to linezolid.Angew Chem Int Ed,2003,42 (18):2010~2023
    [11]Zurenko G E, Yagi B H, Schaadt R D, et al. In vitro activities of U-100592 and U-100766, novel oxazolidinone antibaicterial agents. Antimicrob Agents Chemother,1996,40 (4): 839~845
    [12]孟庆国,王琦,刘浚Synthesis and in vitro antibacterial activities of new 3,5-disubstituted oxazolidinone compounds药学学报,2003,38(10):754-759
    [13]Tascedda P, Dunach E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide. Chem Commun,2000, (6):449~450
    [14]Kawanami H, Ikushima Y. Regioselectivity and selective enhancement of carbon dioxide fixation of 2-substituted aziridines to 2-oxazolidinones under supercritical conditions. Tetrahedron Lett,2002,43 (21):3841~3844
    [15]Kawanami H, Matsumoto H, Ikushima Y. Effective scCO2-ionic liquid reaction system based on symmetric aliphatic ammonium salts for the rapid CO2 fixation with aziridine to 2-oxazolidinone. Chem Lett,2005,34 (1):60~61
    [16]Hancock M T, Pinhas A R. A convenient and inexpensive conversion of an aziridine to an oxazolidinone. Tetrahedron Lett,2003,44 (29):5457~5460
    [17]Sudo A, Morioka Y, Koizumi E, et al. Highly efficient chemical fixations of carbon dioxide and carbon disulfide by cycloaddition to aziridines under atmospheric pressure. Tetrahedron Lett,2003,44 (43):7889~7891
    [18]Du Y, Wu Y, Liu A-H, et al. Quaternary ammonium bromide functionalized polyethylene glycol:a highly efficient and recyclable catalyst for selective synthesis of 5-aryl-2-oxazolidinones from carbon dioxide and aziridines under solvent-free conditions. J Org Chem,2008,73 (12):4709-4712
    [19]Shen Y M, Duan W L, Shi M. Chemical fixation of carbon dioxide Co-catalyzed by a combination of schiff bases or phenols and organic bases. Eur J Org Chem,2004, (14): 3080~3089
    [20]Miller A W, Nguyen S T. (Salen)chromium(Ⅲ)/DMAP:an efficient catalyst system for the selective synthesis of 5-substituted oxazolidinones from carbon dioxide and aziridines. Org Lett,2004,6 (14):2301~2304
    [21]Wu Y, He L-N, Du Y, et al. Zirconyl chloride:an efficient recyclable catalyst for synthesis of 5-aryl-2-oxazolidinones from aziridines and CO2 under solvent-free conditions. Tetrahedron,2009,65 (31):6204~6210
    [22]Jiang H-F, Ye J-W, Qi C-R, et al. Naturally occurring a-amino acid:a simple and inexpensive catalyst for the selective synthesis of 5-aryl-2-oxazolidinones from CO2 and aziridines under solvent-free conditions. Tetrahedron Lett,2010,51 (6):928~932
    [23]Sudo A, Morioka Y, Sanda F, et al. N-Tosylaziridine, a new substrate for chemical fixation of carbon dioxide via ring expansion reaction under atmospheric pressure. Tetrahedron Lett, 2004,45 (7):1363~1365
    [24]Kodaka M, Tomohiro T, Lee A L, et al. Carbon dioxide fixation forming oxazolidone coupled with a thiol/Fe4S4 cluster redox system. J Chem Soc, Chem Commun,1989, (19): 1479~1481
    [25]Kodaka M, Tomohiro T, Okuno H. The mechanism of the mitsunobu reaction and its application to CO2 fixation. J Chem Soc, Chem Commun,1993, (1):81~82
    [26]Dinsmore C J, Mercer S P. Carboxylation and mitsunobu reaction of amines to give carbamates:retention vs inversion of configuration is substituent-dependent. Org Lett,2004, 6 (17):2885~2888
    [27]Kubota Y, Kodaka M, Tomohiro T, et al. Formation of cyclic urethanes from amino alcohols and carbon dioxide using phosphorus(III) reagents and halogenoalkanes. J Chem Soc Perkin Trans I,1993, (1):5-6
    [28]Casadei M A, Feroci M, Inesi A, et al. The reaction of 1,2-amino alcohols with carbon dioxide in the presence of 2-pyrrolidone electrogenerated base. New synthesis of chiral oxazolidin-2-ones. J Org Chem,2000,65 (15):4759~4761
    [29]Ariza X, Pineda O, Urpi F, et al. Stereoselective cyclopropanation of 3-aryl-2-phosphono-acrylates induced by the (-)-8-phenylmenthyl group as a chiral auxiliary. Tetrahedron Lett, 2001,42 (34):4995~4999
    [30]Mitsudo T, Hori Y, Yamakawa Y, et al. Ruthenium catalyzed selective synthesis of enol carbamates by fixation of carbon dioxide. Tetrahedron Lett,1987,28 (38):4417~4418
    [31]Costa M, Chiusoli G P, Rizzardi M. Base-catalysed direct introduction of carbon dioxide into acetylenic amines. Chem Commun,1996, (14):1699~1670
    [32]Costa M, Chiusoli G P, Taffurelli D, et al. Superbase catalysis of oxazolidin-2-one ring formation from carbon dioxide and prop-2-yn-1-amines under homogeneous or heterogenous conditions. J Chem Soc Perkin Trans I,1998, (9):1541~1546
    [33]沈玉梅,施敏.二氧化碳固定研究的最新进展.有机化学,2003,23(1):22-29
    [34]Shi M, Shen Y M. Transition-metal-catalyzed reactions of propargylamine with carbon dioxide and carbon disulfide. J Org Chem,2002,67 (1):16~21
    [35]Bacchi A, Chiusoli G P, Costa M, et al. Palladium-catalysed sequential carboxylation-alkoxycarbonylation of acetylenic amines. Chem Commun,1997, (13):1209~1210
    [36]Feroci M, Orsini M, Sotgiu G, et al. Electrochemically promoted C-N bond formation from acetylenic amines and CO2. Synthesis of 5-methylene-1,3-oxazolidin-2-ones. J Org Chem, 2005,70 (19):7795~7798
    [37]Kayaki Y, Mori N, Ikariya T. Palladium-catalyzed carboxylative cyclization of α-allenyl amines in dense carbon dioxide. Tetrahedron Lett,2009,50 (47):6491~6493
    [38]Jagtap S R, Patil Y P, Fujita S-I, et al. Characterization and oxidation states of Cu and Pd in Pd-CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation. Appl Catal A:Gen,2008,341 (1~2):133~138
    [39]Patil Y P, Tambade P J, Jagtap S R, et al. Selective alcohol oxidation to aldehydes and ketones over base-promoted gold-palladium clusters as recyclable quasihomogeneous and heterogeneous metal catalysts. J Mol Catal A:Chem,2008,289 (1-2):14~21
    [40]Jiang H-F, Zhao J-W. Silver-catalyzed activation of internal propargylic alcohols in supercritical carbon dioxide:efficient and eco-friendly synthesis of 4-alkylidene-1,3-oxazolidin-2-ones. Tetrahedron Lett,2009,50 (1):60~62
    [41]Evans D A, Faul M M, Bilodeau M T. Development of the copper-catalyzed olefin aziridination reaction. J Am Chem Soc,1994,116 (7):2742~2753
    [42]Ney J E, Wolfe J P. Synthesis and reactivity of azapalladacyclobutanes. J Am Chem Soc, 2006,128 (48):15415~15422
    [43]Handy S T, Czopp M. Simple, tunable aziridination catalysts based on poly(pyrazolyl)borate-copper complexes. Org Lett,2001,3 (10):1423~1425
    [44]Handy S T, Ivanow A, Czopp M. Practical aziridinations Ⅱ:electronic modifications to poly(pyrazolyl)borate-copper catalysts. Tetrahedron Lett,2006,47 (11):1821~1823
    [45]Cui Y, He C. Efficient aziridination of olefins catalyzed by a unique disilver(Ⅰ) compound. J Am Chem Soc,2003,125 (52):16202~16203
    [46]Mayer A C, Salit A-F, Bolm C. Iron-catalysed aziridination reactions promoted by an ionic liquid. Chem Commun,2008, (40):5975~5977
    [47]Li Z, Ding X, He C. Nitrene transfer reactions catalyzed by gold complexes. J Org Chem, 2006,71(16):5876~5880
    [48]Guthikonda K, When P M, Caliando B J, et al. Rh-catalyzed alkene oxidation:a highly efficient and selective process for preparing N-alkoxysulfonyl aziridines. Tetrahedron,2006, 62 (49):11331~11342.
    [49]Varszegi C, Ernst M, Laar F, et al. A micellar iodide-catalyzed synthesis of unprotected aziridines from styrenes and ammonia. Angew Chem Int Ed,2008,47(8):1477~1480
    [50]Jeong J U, Tao B, Sagasser I, et al. Bromine-catalyzed aziridination of olefins. A rare example of atom-transfer redox catalysis by a main group element. J Am Chem Soc,1998, 120 (27):6844~6845
    [51]Ando T, Minakata S, Ryu I, et al. Nitrogen atom transfer to alkenes utilizing Chloramine-T as a nitrogen source. Tetrahedron Lett,1998,39 (3~4)309~312
    [52]Ando T, Kano D, Minakata S, et al. Iodine-catalyzed aziridination of alkenes using Chloramine-T as a nitrogen source. Tetrahedron,1998,54 (44):13485~13494
    [53]Kano D, Minakata S, Komatsu M. Novel organic-solvent-free aziridination of olefins: Chloramine-T-I2 system under phase-transfer catalysis conditions. J Chem Soc Perkin Trans I,2001, (23):3186~3188
    [54]Minakata S, Kano D, Oderaotoshi Y, et al. Silica-water reaction media:its application to the formation and ring opening of aziridines. Angew Chem Int Ed,2004,43 (1):79~81
    [55]Nicolas C, Lacour J. Triazatriangulenium cations:highly stable carbocations for phase-transfer catalysis. Org Lett,2006,8 (19):4343~4346.
    [56]Martinez-Garcia H, Morales D, Perez J, et al. Calix[4]pyrrole as a promoter of the CuCl-catalyzed reaction of styrene and Chloramine-T. Organometallics,2007,26 (26): 6511~6514.
    [57]Antunes A M M, Bonifacio V D B, Nascimento S C C, et al. Palladium(Ⅱ) mediated aziridination of olefins with bromamine-T as the nitrogen source:scope and mechanism. Tetrahedron,2007,63 (30):7009~7017
    [58]Chanda B M, Vyas R, Bedekar A V. Investigations in the transition metal catalyzed aziridination of olefins, amination, and other insertion reactions with Bromamine-T as the source of nitrene. J Org Chem,2001,66 (1):30~34
    [59]Gao G-Y, Harden J D, Zhang X P. Cobalt-catalyzed efficient aziridination of alkenes. Org Lett,2005,7 (15):3191~3193
    [60]Kajigaeshi S, Kakinami T, Okamoto T, et al. Synthesis of bromoacetyl derivatives by use of tetrabutylammonium tribromide. Bull Chem Soc Jpn,1987,60 (3):1159~1160
    [61]Buckles R E, Popov A I, Zelezny W F, et al. Spectrophotometric study of tetrabutylammonium tribromide. J Am Chem Soc,1951,73 (10):4525~4528
    [62]Destarac M, Bessiere J-M, Boutevin B. Atom transfer radical polymerization of styrene initiated by polychloroalkanes and catalyzed by CuCl/2,2-bipyridine:A kinetic and mechanistic study. J Polym Sci, Part A Polym Chem,1998,36 (16):2933~2947
    [1]Takumi M, Takanobu K, Takatoshi I, et al. Synthesis of aromatic urea herbicides by the selenium-assisted carbonylation using carbon monoxide with sulfur. Synth Commun,2000, 30 (9):1675~1688
    [2]薛燕,吴思忠,彭爱东,等.非对称取代脲的合成与应用.有机化学,2002,12(8):529-535
    [3]Fujita S, Bhanage B M, Arai M. Synthesis of N,N'-disubstituted urea from ethylene carbonate and amine using CaO. Chem Lett,2004,33 (6):742~743
    [4]Fujita S, Bhanage B M, Kanamaru H, et al. Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide. J Mol Catal A:Chem,2005,230(1-2):43~48
    [5]Jagtap S R, Patil Y P, Fujita S-I, et al. Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2-imidiazolidinones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A:Gen,2008,341 (1-2):133~138
    [6]Patil Y P, Tambade P J, Jagtap S R, et al. Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using Br-Ph3+P-PEG6oo-P+Ph3Br-as homogenous recyclable catalyst. J Mol Catal A:Chem,2008, 289 (1-2):14~21
    [7]Xiao L-f, Xu L-w, Xia C-g. A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and β-aminoalcohols or 1,2-diamines. Green Chem,2007,9 (4):369~372
    [8]Shi M, Shen Y M. Transition-Metal-catalyzed reactions of propargylamine with carbon dioxide and carbon disulfide. J Org Chem,2002,67 (1):16~21
    [9]Fu Y, Baba T, Ono Y. Carbonylation of o-phenylenediamine and o-aminophenol with dimethyl carbonate using lead compounds as catalysts. J Catal,2001,197(1):91-97
    [10]Ballini R, Fiorini D, Maggi R, et al. TBD-catalysed solventless synthesis of symmetrically N,N-substituted ureas from primary amines and diethyl carbonate. Green Chem,2003, (4): 396~398
    [11]Han C, Porco J A. Synthesis of carbamates and ureas using Zr(IV)-catalyzed exchange processes. Org Lett,2007,9 (8):1517~1520
    [12]Fournier J, Bruneau C, Dixneuf P H, et al. Ruthenium-catalyzed synthesis of symmetrical N,N'-dialkylureas directly from carbon dioxide and amines. J Org Chem,1991,56 (14): 4456~4458
    [13]Nomura R, Hasegawa Y, Ishimoto M, et al. Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem,1992,57(26):7339~7342
    [14]Porwanski S, Menuel S, Marsura X, et al. The modified 'phosphine imide' reaction:a safe and soft alternative ureas synthesis. Tetrahedron Lett,2004,45 (26):5027~5029
    [15]Tai C-C, Huck M J, McKoon E P, et al. Low-temperature synthesis of tetraalkylureas from secondary amines and carbon dioxides. J Org Chem,2002,67 (25):9070~9072
    [16]Peterson S L, Stucka S M, Dinsmore C J. Parallel synthesis of ureas and carbamates from amines and CO2 under mild conditions. Org Lett,2010,12 (6):1340~1343
    [17]Munshi P, Heldebrant D J, McKoon E P, et al. Formanilide and carbanilide from aniline and carbon dioxide. Tetrahedron Lett,2003,44 (13):2725~2727
    [18]Shi F, Deng Y, SiMa T, et al. Alternatives to phosgene and carbon monoxide:synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed,2003, 42 (28):3257~3260
    [19]Jiang T, Ma X, Zhou Y, et al. Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem,2008,10 (4) 465~469
    [20]Shi F, Zhang Q, Ma Y, et al. From CO oxidation to CO2 activation:an unexpected catalytic activity of polymer-supported nanogold. J Am Chem Soc,2005,127 (12):4182~4183
    [21]Ion A, Parvulescu V, Jacobs P, et al. Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis. Green Chem,2007,9(2):158~161
    [22]Bhanage B M, Fujita S-i, Ikushima Y, et al. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem,2003,5 (3):340~342
    [23]Seki T, Kokubo Y, Ichikawa S, et al. Mesoporous silica-catalysed continuous chemical fixation of CO2 with N,N-dimethylethylenediamine in supercritical CO2:the efficient synthesis of 1,3-dimethyl-2-imidazolidinone. Chem. Commun,2009, (3):349~351
    [24]宫志强,李彦春,祝德义.增塑剂对壳聚糖-明胶复合膜物理性能的影响.食品工业科技,2008,29(3):231-233
    [25]王晶,任发政,商洁静,等.增塑剂对乳清蛋白-丝胶复合可食用膜性能的影响.食品科学,2008,29(6):59-63
    [26]钱欣,田怡.聚乙二醇增塑聚乳酸的等温结晶动力学研究.塑料工业,2006,34:221-223
    [27]Guo H X, Heinamaki J, Yliruusi J. Stable aqueous film coating dispersion of zein. J Colloid Interf Sci,2008,322 (2):478~484
    [28]Bu S J, Cui C X, Liu X X, et al. Preparation of nanocrystalline porous titania films on titanium substrates by a sol-gel method with polyethylene glycol as a template. J Sol-Gel Sci Techn,2007,43 (2):151~159
    [29]Samari J H, Taghdisian H, Afshar S, et al. Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film. Surf Coat Technol,2009,203 (14) 1991~1996
    [30]Sabataityte J, Oja I, Lenzmann F, et al. Characterization of nanoporous TiO2 films prepared by sol-gel method. Cr Chim,2006,9 (5-6):708~712
    [31]王保国,王素梅,张金利,等.纳米晶Ti02半导体薄膜的制备和性能.化学工业与工程,2005,22(1):1-31
    [32]Wang W, Qiao X L, Chen J G, et al. Preparation and characterization of Ti-doped MgO nanopowders by a modified CO2 precipitation method. J Alloy Compd,2008,461 (1-2): 542~546
    [33]Wang W, Qiao X L, Chen J G, et al. Facile synthesis of magnesium oxide nanoplates via chemical precipitation. Mater Lett,2007,61 (14~15):3218~3220.
    [34]Li J H, Zhu Q M, Liang Y, et al. Efficient and reusable PdCl2/CuCl2/PEG-400 system for cyclization of alkenyl β-ketoesters and amindes. J Org Chem,2005,70 (13):5347~5349
    [35]Li J H, Liu W J, Xie Y X. Recyclable and reuseble Pd(OAc)2/DABCO/PEG-400 system for suzuki-miyaura cross-coupling reaction. J Org Chem,2005,70 (14):5409~5412.
    [36]Chandrasehar S, Narsihmulu C H, Sultana S S, et al. Anion recognition and redox sensing amplification by self-assembled monolayers of 1,1'-bis(alkyl-N-amido) ferrocene. Chem Commun,2002, (16):1716~1717
    [37]Chen J, Spear S K, Huddleston J G, et al. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem,2005,7 (2):64~82.
    [38]Haimov A, Neumann R. Microwave-accelerated Suzuki cross-coupling reaction in polyethylene glycol (PEG). Chem Commun,2002,14 (8):876~877
    [39]Hou Z, Theyssen N, Brinkmann A, et al. Biphasic aerobic oxidation of alcohols catalyzed by poly(ethylene glycol)-stabilized palladium nanoparticles in supercritical carbon dioxide. Angew Chem Int Ed,2005,44 (9):1346~1349.
    [40]Perrier S, Gemici H, Li S. Poly(ethylene glycol) as solvent for transition metal mediated living radical polymerisation. Chem Commun,2004, (5):604~605.
    [41]Tian J-S, Miao C-X, Wang J-Q, et al. Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halidefunctionalized polyethylene glycol. Green Chem,2007,9 (6):566~571
    [42]Burley G A, Davies D L, Griffith G A, et al. Cu-catalyzed N-alkynylation of imidazoles, benzimidazoles, indazoles, and pyrazoles using PEG as solvent medium. J Org Chem,2010, 75 (3):980~983
    [43]Chandrasekhar S, Narsihmulu C, Sultana S S, et al. Poly(ethylene glycol) (PEG) as a reusable solvent medium for organic synthesis. Application in the heck reaction. Org Lett, 2002,4 (25):4399~4401
    [44]Miao C-X, He L-N, Wang J-Q, et al. Biomimetic oxidation of alcohols catalyzed by TEMPO-functionalized polyethylene glycol and copper(I) chloride in compressed carbon dioxide. Synlett,2009, (20):3291~3294
    [45]Firouzabadi H, Iranpoor N, Abbasi M. A one-pot, efficient, and odorless synthesis of symmetrical disulfides using organic halides and thiourea in the presence of manganese dioxide and wet polyethylene glycol (PEG-200). Tetrahedron Lett,2010,51 (3):508~509
    [46]Neumann R, Sasson Y. Base-catalyzed autoxidation of weak carbon acids using poly(ethylene glycols) as phase-transfer catalysts. J Org Chem,1984,49 (7):1282~1284
    [47]Wang J-X, Alper H. Phase-transfer-catalyzed conversion of alkynes to lactones induced by manganese carbonyl complexes. J Org Chem,1986,51 (2):273~275
    [48]Zucchi C, Palyi G. Cobalt-catalyzed carbonylation of benzyl halides using polyethylene glycols as phase-transfer catalysts. Organometallics,1996,15 (14):3222~3231
    [49]Das B, Krishnaiah M, Balasubramanyam P, et al. A remarkably simple N-formylation of anilines using polyethylenelycol. Tetrahedron Lett,2008,49 (14):2225~2227
    [50]Luo Y Y, Duan G T, Ye M, et al. Poly (ethylene glycol)-mediated synthesis of hollow ZnS microspheres. J Phys Chem C,2008,112 (7):2349~2352
    [51]Aresta M, Quaranta E. Role of the macrocyclic polyether in the synthesis of N-alkylcarbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers.Tetrahedron,1992,48 (8):1515~1530
    [52]Rogers R D, Bond A H, Aguinaga S, et al. Complexation chemistry of bismuth(III) halides with crown ethers and polyethylene glycols. Structural manifestations of a stereochemically active lone pair. J Am Chem Soc,1992,114 (8):2967~2977
    [53]Rogers R D, Jez M L, Bauer C B. Effects of polyethylene glycol on the coordination sphere of strontium in SrCl2 and Sr(NO3)2 complexes. Inorg Chem,1994,33 (25)5682~5692
    [54]Abribat B, Bigot Y L, Gaset A. Etherification of alcohols in the absence of solvent:catalytic function of polyethers in a solid/liquid medium. Synth Commun,1994,24 (15):2091~2096
    [55]Rogers R D, Bond A H, Roden D M. Structural chemistry of poly(ethylene glycol) complexes of lead(II) nitrate and lead(Ⅱ) bromide. Inorg Chem,1996,35(24):6964~6973
    [56]Rogers R D, Zhang J, Bauer C B. The effects of choice of anion (X=Cl-,SCN-,NO3-) and polyethylene glycol (PEG) chain length on the local and supramolecular structures of LnX3/PEG complexes. J Alloy Compd,1997,249 (1-2):41~48
    [57]Xu D Q, Luo S P, Wang Y F, et al. Organocatalysts wrapped around by poly(ethylene glycol)s (PEGs):a unique host-guest system for asymmetric Michael addition reactions. Chem Commun,2007, (42):4393-4395
    [58]Luo S, Zhang S, Wang Y, et al. Complexes of ionic liquids with poly(ethylene glycol)s. J Org Chem,2010,75 (6):1888~1891
    [59]Totten G E, Clinton N A. Poly[ethylene glycol] derivatives as phase transfer catalysts and solvents for organic reactions. J Macromol Sci Rev Macromol Chem Phys,1988, C28: 293~337
    [1]Herskovitz T. Reactions of transition metal-nitrogen.sigma. bonds.3. Early transition metal N,N-dimethylcarbamates. Preparation, properties, and carbon dioxide exchange reactions. J Am Chem Soc,1977,99 (3):782~792
    [2]Aresta M, Quaranta E. Role of the macrocyclic polyether in the synthesis of N-alkyl- carbamate esters from primary amines, CO2 and alkyl halides in the presence of crown-ethers. Tetrahedron,1992,48 (8):1515~1530
    [3]McGhee W D, Pan Y, Riley D P. Highly selective generation of urethanes from amines, carbon dioxide and alkyl chlorides. J Chem Soc Chem Commun,1994, (6):699~700
    [4]McGhee W, Riley D, Christ K, et al. Carbon dioxide as a phosgene replacement:synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J Org Chem, 1995,60 (9):2820~2830
    [5]Salvatore R N, Shin S, Nagle A S, et al. Efficient carbamate synthesis via a three-component coupling of an amine, CO2, and alkyl halides in the presence of Cs2CO3 and tetrabutyl-ammonium iodide. J Org Chem,2001,66 (3):1035~1037
    [6]Salvatore R N, Ledger J A, Jung K W. An efficient one-pot synthesis of N-alkyl carbamates from primary amines using Cs2CO3. Tetrahedron Lett,2001,42 (35):6023~6025
    [7]Salvatore R N, Flanders V L, Ha D, et al. Cs2CO3-promoted efficient carbonate and carbamate synthesis on solid phase. Org Lett,2000,2 (18):2797~2800
    [8]Fox D L, Ruxer J T, Oliver J M, et al. Mild and efficient synthesis of carbazates and dithiocarbazates via a three-component coupling using CS2CO3 and TBAI. Tetrahedron Lett, 2004,45 (2):401~405
    [9]Yoshida M, Hara N, Okuyama S. Catalytic production of urethanes from amines and alkyl halides in supercritical carbon dioxide. Chem. Commun.2000, (2):151~152
    [10]Casadei M A, Moracci F M, Zappia G. Electrogenerated superoxide-activated carbon dioxide. A new mild and safe approach to organic carbamates. J Org Chem,1997,62 (20): 6754~6759
    [11]Srivastava R, Srinivas D, Ratnasamy P. Zeolite-based organic-inorganic hybrid catalysts for phosgene-free and solvent-free synthesis of cyclic carbonates and carbamates at mild conditions utilizing CO2. Appl Catal A:Gen,2005,289 (2):128~134
    [12]Chaturevdi D, Mishra N, Mishra V. An efficient and novel synthesis of carbamate esters from the coupling of amines, halides and carbon dioxide in the presence of basic resin. Chin Chem Lett,2006,17 (10):1309~1312
    [13]Shi M, Jiang J-K, Shen Y-M, et al. An unexpected carbon dioxide insertion in the reaction of trans-2,4-disubstituted azetidine, trans-2,5-disubstituted pyrrolidine, or trans-2,6-disubstituted piperidine with diphenylthiophosphinic chloride and diphenylselenophosphinic chloride. J Org Chem,2000,65 (11):3443~3448
    [14]Chaturvedi D, Kumar A, Ray S. A high yielding one-pot, novel synthesis of carbamate esters from alcohols using Mitsunobu's reagent. Tetrahedron Lett,2003,44 (41):7637~7639
    [15]Chaturvedi D, Mishra N, Mishra V. An efficient, one-pot synthesis of carbamates from the corresponding alcohols using Mitsunobu's reagent. Monatsh Chem,2007,138:57~60
    [16]Dinsmore C J, Mercer S P. Carboxylation and Mitsunobu reaction of amines to give carbamates:retention vs inversion of configuration is substituent-dependent. Org Lett,2004, 6 (17):2885~2888
    [17]Abla M, Choi J-C, Sakakura T. Halogen-free process for the conversion of carbon dioxide to urethanes by homogeneous catalysis. Chem Commun,2001, (21):2238~2239
    [18]Sasaki Y, Dixneuf P H. Decarboxylation of isatoic anhydride in the crystalline state. J Org Chem,1987,52 (2):315~316
    [19]Mahe R, Sasaki Y, Bruneau C, et al. Catalytic synthesis of vinyl carbamates from carbon dioxide and alkynes with ruthenium complexes. J Org Chem,1989,54(7):1518~1523
    [20]Selva M, Tundo P, Perosa A. The synthesis of alkyl carbamates from primary aliphatic amines and dialkyl carbonates in supercritical carbon dioxide. Tetrahedron Lett,2002,43 (7):1217~1219
    [21]Che Abst,1997,126,118011
    [22]Ion A, Doorslaer C V, Parvulescu V, et al. Green synthesis of carbamates from CO2, amines and alcohols. Green Chem,2008,10 (1):111~116
    [23]Abribat B, Bigot Y L, Gaset A. Etherification of alcohols in the absence of solvent:catalytic function of polyethers in a solid/liquid medium. Synth Commun,1994,24(10):2091~2096.
    [24]Totten G E, Clinton N A. Poly[ethylene glycol] derivatives as phase transfer catalysts and solvents for organic reactions. J Macromol Sci Rev Macromol Chem Phys,1988, C28: 293~337
    [25]de Boer J A A, Reinhoudt D N. Complexation of tert-butylammonium perchlorate by crown ethers in polar solvents studied by proton NMR spectroscopy. J Am Chem Soc,1985,107 (19):5347~5351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700