基于工业以太网的总线型交流伺服系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交流永磁同步伺服系统在现代数控加工和机器人等运动控制领域具有无可替代的地位,然而由于国内伺服行业起步晚、经验少、技术水平低等原因,高端伺服驱动系统仍然被国外所垄断。为促进我国产业升级,提升民族制造业水平,本文对总线型交流伺服驱动系统的关键技术进行了深入研究。通过对伺服系统总线接口技术的研究,将工业以太网技术应用于交流伺服驱动系统,立足实现伺服驱动系统网络化控制;通过分析和研究模型参考自适应系统(Model Reference Adaptive System, MRAS)和卡尔曼滤波器(Kalman Filter, KF)等相关理论,实现了伺服系统控制参数在线自整定以及超低速下的平稳控制。
     首先,研究了实时工业以太网在伺服驱动系统中的应用。对课题组自主研发的以太网总线技术EtherMAC (Ethernet for Manufacturing Automation Control)进行了改进和完善,针对伺服驱动装置对总线控制接口的特殊要求,设计了EtherMAC伺服驱动从站的物理层、数据链路层和应用层。规划了用于伺服驱动系统的以太网数据帧协议标准,其中包括通讯控制指令、伺服控制指令及运行状态反馈数据。实验结果表明,在不使用强实时操作系统和专用网卡条件下,本文所设计的总线型伺服驱动从站可以满足伺服系统对实时性和同步性的要求。
     其次,依据现代控制理论分析了伺服驱动系统各环节的传递函数,为实现被控对象参数辨识、闭环控制参数自整定以及超低速平稳控制等研究提供良好的理论依据,并依此建立了电流环、速度环和位置环三环串级控制结构中各环路的数学模型。为提高内埋式永磁同步电机(Interior Permanent Magnet Synchronous Motor, IPMSM)的驱动效率,改善调速性能,本文针对其特殊的磁路结构,研究了最大转矩电流比(Maximum Torque Per Ampere, MTPA)的电流矢量控制策略,提出了一种适于工程应用的近似实现方法。
     然后,对伺服驱动系统控制参数自整定策略进行了研究。通过对伺服系统中的被控对象进行特征分析,提出了基于模型参考自适应理论的被控对象特征参量的在线辨识方法。建立了永磁同步电动机(Permanent MagnetSynchronous Motor, PMSM)电枢绕组电阻、等效同步电感、永磁体磁链和系统转动惯量在线辨识的可调参数模型,并依据Popov超稳定理论设计了自适应规则。通过分析各控制环节的数学模型,依据二阶最佳系统、三阶最佳系统等系统矫正理论,推导出伺服驱动系统电流环、速度环和位置环中控制参数的整定规则,并利用在线辨识出的特征参数实现控制参数的在线自整定。仿真和实验表明,本文提出的参数在线辨识方法收敛速度快、辨识精度高且具有良好的适应性,可在需要更新被控对象特征参数时随时执行;控制参数经自整定后有效地改善了伺服系统的动态性能,增强了伺服驱动系统的鲁棒性。
     此外,研究了交流永磁同步伺服系统超低速控制策略。针对伺服驱动系统中低速和超低速平稳控制这一难点问题,提出了一种基于(扩展)卡尔曼滤波器(Extended Kalman Filter, EKF)最优估计理论,适用于宽转速、高噪声环境下的电机瞬时转速、角位移和等效负载转矩的在线估计方法。并利用MRAS在线辨识出的系统转动惯量对估计器的状态矩阵进行实时更新,实现转动惯量自适应状态估计。依据估计出的等效负载转矩设计了转矩前馈环节,用以提高伺服驱动系统的转矩响应速度,降低负载变化率。同时,对常规M/T速度检测方法进行改进,以消除非完整编码器脉冲周期造成的测速误差。根据伺服驱动系统在不同速度区间的运行特性,提出了一种伺服驱动系统变结构优化控制方案。该方案根据当前电机转速的不同,动态调整电流环和速度环的控制周期,并配置最优的控制和参量反馈策略。实验结果表明,该优化配置策略可以提高伺服系统中、高速区域的动态响应,且保证电机在低速和超低速区域的平稳运行,使得伺服驱动系统在较宽的速度范围内均可获得良好的控制性能。
     最后,研发了基于实时工业以太网的总线型交流伺服驱动系统。设计了总线型伺服驱动硬件平台,开发了基于STM32F4系列ARM (Advanced RISC Machines)控制器的PMSM矢量控制算法库和以太网应用层程序,并设计了上位机图形化用户应用程序用于伺服控制和调试。实验结果表明,所设计的总线型伺服驱动系统具有良好的电流环、速度环和位置环动、静态性能。
     本研究的成功实施为工业以太网总线在伺服驱动领域的广泛应用提供了一条有效的途径,为解决伺服驱动系统中控制参数在线自整定、超低速平稳控制等难点问题提供了一套可行的方案。
AC permanent magnet synchronous motor (PMSM) servo system plays an irreplaceable role in the field of motion control such as the modern numerical control machining and robotics. However, because of the late beginning, insufficient experience and low technological level for the domestic servo industry, most of high-end servo drive systems are monopolized by foreign countries. In order to promote Chinese manufacturing industry upgrading and raise the level of national manufacturing, the key technologies of bus-type servo system were further researched in this dissertation. Industrial Ethernet technology was applied to the AC servo system to realize a networked control servo drive system by means of research on bus interface technology for the servo system. On-line self-tuning for servo system control parameters and high-performance speed control in ultra-low speed range were realized by means of analyzing and studying the related theories which include model reference adaptive system (MRAS) and Kalman filter (KF).
     First of all, the study was focused on the application of real-time industrial Ethernet in the servo drive system. The EtherMAC (Ethernet for Manufacturing Automation), which was developed by our research group, was improved and perfected. According to the special requirements of bus control interface for servo drivers, the physical layer, data link layer and application layer of EtherMAC based servo driver slave station were designed. And the communication protocol, which includes communication commands, servo commands and data feedback in Ethernet data frames, was planned for bus-type servo drive system. The experimental results show that, without the hard real-time operating system and special equipments, the designed bus-type servo drive slave station can meet the requirements of real-time and synchronism for servo system.
     Secondly, in order to provide a good theoretical basis for controlled object parameters identification, system control parameters self-tuning and ultra-low speed stable control, the transfer functions of each link were analyzed and the mathematical models of current loop, speed loop and position loop were built correspondingly. Besides, in order to improve the efficiency and speed adjusting performance of interior permanent magnet synchronous motors (IPMSM), an engineering approximate algorithm for maximum torque per ampere (MTPA) control was given to facilitate engineering application.
     Thirdly, the self-tuning strategy for servo system control parameters was studied. The MRAS based on-line controlled object parameters identification was presented by means of analyzing the controlled object of servo system. The adjustable parameter models of permanent magnet synchronous motor (PMSM) winding resistance, equivalent inductance, permanent magnet flux linkage and system total inertia were built. Then the corresponding adaptive laws were designed according to Popov hyperstability theory. Based on the deep research on each control loop mathematical model, self-tuning rules for current loop, speed loop and position loop were derived according to two-rank optimum system and three-rank optimum system theories. And the identified parameters were used to realize the self-tuning of control parameters. The simulation and experimental results show a good adaptability of the proposed on-line identification method. The varying parameters can be identified with enough response time and identification precision. The dynamic performance and robustness of servo system are improved with the self-tuning control parameters.
     Then, the ultra-low speed control strategies for PMSM servo system were studied. According to the difficulty of low and ultra-low speed control for servo drive system, an optimal state estimator based on the extended Kalman filter (EKF) was used to provide exact estimation for instantaneous speed, position and equivalent disturbance load torque in a random noisy environment. The MRAS was incorporated to identify the variations of inertia moment real-timely, and the identified inertia was used to adapt the EKF for better dynamic performance. The estimated equivalent load torque was used for feedforward control which can decrease the torque ripple of the motor effectively. Meanwhile, the conventional M/T speed detection method was improved so as to eliminate the error from non-complete pulse period. With analyzing the servo system operation characteristics in different speed ranges. a variable structure optimization for servo drive system was designed. This optimization method adjusts the sampling periods of current loop and speed loop dynamically and configures the optimized speed feedback method according to the current speed. The experimental results show that the optimization method can improve the dynamic response of medium and high speed region, and confirm stable in low and ultra-low speed range. The presented strategy provides a precise speed control over a wide range of speeds and the proposed system is robust to modeling error and system noise.
     Finally, a real-time industrial Ethernet based bus-type AC servo system was developed, which includes the bus-type servo driver hardware platform, the field oriented control library, application layer software based on STM32F4ARM processor and graphical user application for servo control and debugging. The experimental results show that the designed bus-type servo drive system has good dynamic and static performance of current, speed and position loop.
     The successful implementation of this research provides an effective way to apply industrial Ethernet in servo drive system. It also gives a solution to solve the key problems of control parameters self-tuning and ultra-low speed stable control.
引文
[1]张东亮.面向开放式数控系统的智能软件交流伺服系统研究与开发[D].山东大学机械制造及其自动化,2001.
    [2]李烨,严欣严.永磁同步电动机伺服系统研究现状及应用前景[J].微电机,2001,34(4):30-33.
    [3]王季秩.电机在电子信息特殊领域中的应用[J].微电机,2003,36(1):47-49.
    [4]符曦.高磁场永磁式电动机及其驱动系统[M].北京:机械工业出版社,1997.
    [5]郭宏,郭庆吉.永磁同步电机伺服系统[J].哈尔滨工业大学学报,1996,28(3):82-89.
    [6]白玉成.交流伺服系统控制策略及现场总线接口技术[D].华中科技大学,2009.
    [7]王宝仁.网络化运动控制系统多轴协同关键技术研究[D].山东大学,2008.
    [8]金钰,胡祜德,李向春.伺服系统设计指导[M].北京:北京理工大学出版社,2000.
    [9]S. B. A brief history of servomechanisms[J]. IEEE Control Systems Magazine,1994,2(14):75-79.
    [10]王广雄,何朕.工业伺服系统[J].电机与控制学报,2006,10(3):329-332.
    [11]Gibson J. Theory of servomechanisms[J]. Automatic Control, IEEE Transactions on,1966,11(2):335.
    [12]陈荣.永磁同步电机伺服系统研究[D].南京航空航天大学,2005.
    [13]王瑞明.交流伺服驱动系统新型控制策略研究[D].浙江大学,2005.
    [14]王健.现代交流伺服系统技术和市场发展综述[J].世界仪表与自动化,2008,12(9):22-24.
    [15]陈伯时,陈敏狲.交流调速系统[M].2.北京:机械工业出版社 2005.
    [16]Shumway-Cook A, Woollacott M. Motor Control:Thery and Practical Applications[M]. Second edition. Philadelphia:Lippincott Williams & Wilkins,1995.
    [17]唐任远.现代永磁电机:理论与设计[M].北京:机械工业出版社,1997.
    [18]刘栋良,赵光宙.交流伺服系统及其控制策略综述[J].电气时代,2006(2):38-39.
    [19]诸静.模煳控制原理与应用[M].2.机械工业出版社,1995.
    [20]李士勇.模糊控制神经控制和智能控制论[M].哈尔滨工业大学出版社,1996.
    [21]刘栋良.永磁同步电机伺服系统非线性控制策略的研究[D].浙江大学,2005.
    [22]Wang G J, Fong C T, Chang K J. Neural-network-based self-tuning PI controller for precise motion control of PMAC motors[J]. IEEE Transactions on Industrial Electronics,2001,48(2):408-415.
    [23]Cheng M, Sun Q, Zhou E. New self-tuning fuzzy PI control of a novel doubly salient permanent-magnet motor drive[J]. IEEE Transactions on Industrial Electronics,2006,53(3):814-821.
    [24]关丽荣,杨俊友.反推控制在电机伺服控制中的研究现状与展望[J].微电机,2009(9):69-72.
    [25]葛宝明.交流传动系统的新型控制策略[D].浙江大学,2000.
    [26]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [27]黄声华,吴芳.永磁交流伺服系统国内外发展概况[J].微特电机,2008,36(5):52-56.
    [28]李华德.交流调速控制系统[M].北京:电子工业出版社,2003.
    [29]吴茂刚.矢量控制永磁同步电动机交流伺服系统的研究[D].浙江大学,2006.
    [30]吴浦升.基于模糊控制的永磁同步电机直接转矩控制研究[D].西安理工大学,2004.
    [31]崔纳新,张承慧,吕志强,等.基于电压空间矢量的电动汽车电驱动系统高效快转矩响应控制[J].电工技术学报,2009(3):61-66.
    [32]陈荣,严仰光.交流永磁伺服系统控制策略研究[J].电机与控制学报,2004,8(3):205-208.
    [33]Morimoto S, Sanada M, Takeda Y. Effects and compensation of magnetic saturation in flux-weakening controlled permanent magnet synchronous motor drives[J]. IEEE Transactions on Industry Applications,1994,30(6):1632-1637.
    [34]Morimoto S, Sanada M, Takeda Y. Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator[J]. IEEE Transactions on Industry Applications, 1994,30(4):920-926.
    [35]伍小杰,戴鹏,姜建国.同步电动机转子位置检测的一种方法及实现[J].电气传动,2001,31(1):22-23.
    [36]王伟,张晶涛.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347-355.
    [37]夏红,赏星耀,宋建成.P1D参数自整定方法综述[J].浙江科技学院学报,2003,15(4):236-240.
    [38]吕骎,吴云洁.基于混沌PID参数寻优的伺服系统控制方法研究[J].系统仿真学报,2006(S2):750-752.
    [39]胡海兵,胡庆波,吕征宇.基于粒子群优化的PID伺服控制器设计[J].浙江大学学报(工学版),2006,40(12):2144-2148.
    [40]朱卫华,杨向宇.永磁同步电动机调速系统新型模糊控制方法[J].微特电机,2005,33(6):29-31.
    [41]周保,张安年,丁喆,等.基于复合控制的位置伺服系统控制方案[J].电机与控制应用,2008,35(3):21-23.
    [42]Mudi R K, Dey C, Lee T T. An improved auto-tuning scheme for PI controllers[J]. ISA Transactions,2008,47(1):45-52.
    [43]Kissling S, Blanc P, Myszkorowski P, et al. Application of iterative feedback tuning(IFT) to speed and position control of a servo drive[J]. Control Engineering Practice,2009,17(7):834-840.
    [44]郭宇婕,黄立培,等.交流伺服系统的转动惯量辨识及调节器参数自整定[J].清华大学学报:自然科学版,2002,42(9):1180-1183.
    [45]Saito K, Kamiyama K, Ohmae T, et al. A microprocessor-controlled speed regulator with instantaneous speed estimation for motor drives[J]. Industrial Electronics, IEEE Transactions on,1988,35(1):95-99.
    [46]Brown R H, Schneider S C, Mulligan M G. Analysis of algorithms for velocity estimation from discrete position versus time data[J]. Industrial Electronics, IEEE Transactions on,1992,39(1):11-19.
    [47]Hori Y. High performance control of servomotors with low precision shaft encoder using instantaneous speed observer and adaptive identification of inertia moment:Asia-Pacific Workshop on Advances in Motion Control, Singapore,1993[C].15-16 Jul 1993.
    [48]CHIASSON J. Modeling and High-Performance Control of Electric Machines[M]. New York:The Institute of Electrical and Electronics Engineers, Inc.,2005.
    [49]高扬,杨明,于泳,等.基于扰动观测器的PMSM交流伺服系统低速控制[J].中国电机工程学报,2005,25(22):125-129.
    [50]Sakai S I, Hori Y. Ultra-low speed control of servomotor using low resolution rotary encoder:IECON Proceedings (Industrial Electronics Conference), Orlando, FL, USA,1995[C].
    [51]李鸿儒,顾树生.基于神经网络的PMSM速度和位置自适应观测器的设计[J].中国电机工程学报,2002,22(12):32-35.
    [52]林平,胡长生,李明峰,等.基于模型参考自适应系统算法的速度估算核的研制[J].中国电机工程学报,2004,24(1):118-123.
    [53]刘艳强,郇极.基于现场总线的开放式数控系统数字伺服通信协议[J].制造业自动化,2006(1):50-53.
    [54]湛泽慧.工业以太网在工业中的应用[J].可编程控制器与工厂自动化,2007(7):30-32.
    [55]樊留群.实时以太网及运动控制总线技术[M].同济大学出版社,2009.
    [56]张民.浅谈现场总线的特点及概述[J].甘肃冶金,2008(3):68-69.
    [57]刘远静.电路板雕刻机数据处理及控制系统研发[D].山东大学,2011.
    [58]徐爱东,葛群,岳伟挺,等.工业以太网在电厂辅助监控系统中的应用[J].水利电力机械,2007(5):50-52.
    [59]Winkel L. Real-Time Ethernet in IEC 61784-2 and IEC 61158 series: Industrial Informatics,2006 IEEE International Conference on, 2006[C].16-18 Aug.2006.
    [60]缪学勤.20种类型现场总线进入IEC61158第四版国际标准[J].自动化仪表,2007,28(S1):25-29.
    [61]石忠东.民族伺服产业接口互联技术之我见[EB/OL]. http://www.gongkong.com/webpage/paper/200807/20080718 11472200002.htm.
    [62]饶运涛.现场总线CAN原理与应用技术[M].北京航空航天大学出版社,2003.
    [63]张建新,钟廷修IEEE 1394与现场总线[J].工业仪表与自动化装置,2002(5):3-7.
    [64]Schemm E. SERCOS to link with Ethernet for its third generation[J]. IEE Computing and Control Engineering,2004,15(2):30-33.
    [65]Larsen Ronald. SERCOS III的实时性[J].软件,2007(1):2.
    [66]Feld J. Profinet-Scalable factory communication for all applications: IEEE International Workshop on Factory Communication Systems-Proceedings, WFCS, Vienna, Austria,2004[C].
    [67]刘朝晖.下一代现场总线新标准PROFINET[J]机电产品市场,2007(9):12-13.
    [68]Ferrari P, Flammini A, Vitturi S. Response times evaluation of PROFINET networks:Industrial Electronics,2005. ISIE 2005. Proceedings of the IEEE International Symposium on,2005[C].June 20-23,2005.
    [69]Tovar E, Vasques F. Real-time fieldbus communications using Profibus networks[J]. Industrial Electronics, IEEE Transactions on, 1999,46(6):1241-1251.
    [70]Prytz G. A performance analysis of EtherCAT and PROFINET IRT: IEEE Symposium on Emerging Technologies and Factory Automation, ETFA, Hamburg, Germany,2008[C].
    [71]Cena G, Seno L, Valenzano A, et al. Performance analysis of Ethernet Powerlink networks for distributed control and automation systems[J]. Computer Standards & Interfaces,2009,31:566-572.
    [72]Jansen D, Buttner H. Real-Time Ethernet the Ethercat solution[J]. IEE Computing and Control Engineering,2004,15(1):16-21.
    [73]Cena G, Bertolotti I C, Scanzio S, et al. On the accuracy of the distributed clock mechanism in EtherCAT:IEEE International Workshop on Factory Communication Systems-Proceedings, WFCS, Nancy, France,2010[C].
    [74]云利军,孙鹤旭,雷兆明,等.运动控制网络的研究现状及发展趋势[J].控制工程,2006(4):289-293.
    [75]德国倍福公司.实时以太网:I/O层超高速以太网[J].自动化博览,2004,21(4):48-50.
    [76]云利军,孙鹤旭,雷兆明,等.基于SynqNet的网络化运动控制器研究[J].制造技术与机床,2006(2):40-43.
    [77]Matheson M. SynqNet:high performance motion control based on ethernet[J]. Computing & Control Engineering Journal, 2004,15(5):32-38.
    [78]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006.
    [79]Wang K, Zhang C, Ding X, et al. A new real-time Ethernet for numeric control:Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Jinan, China,2010[C].
    [80]胡天亮.STEP-Compliant开放式数控平台设计方法研究[D].山东大学,2008.
    [81]杨林.基于工业以太网的运动控制系统关键技术研究[D].山东大学, 2011.
    [82]BECKHOFF. EtherCAT slave controller IP core for Altera FPGAs[S]. 2008.
    [83]柳成.基于DSP的嵌入式交流永磁同步电动机伺服控制系统的研究[D].东北师范大学,2009.
    [84]陈鹏展.交流伺服系统控制参数自整定策略研究[D].华中科技大学,2010.
    [85]Fitzgerald A E, Kingsley C, Umans S D. Electric Machinery[M].6. New York:McGraw-Hill,2002.
    [86]王成元,孙宜标,夏加宽,等.电机现代控制技术[M].北京:机械工业出版社,2006.
    [87]秦忆.现代交流伺服系统[M].武汉:华中理工大学出版社,1995.
    [88]J D, S T, L M. Practical evaluation of different modulation techniques for current-controlled voltage source inverters[J]. IEEE Proceedings Electric Power Aplications,1996,143:301-306.
    [89]Bazanella A S, Reginatto R. Robust tuning of the speedloop in indirect field oriented control of induction motors [J]. Automatica, 2001,37(11):1811-1818.
    [90]Bose B K. Modern Power Electronics and Ac Drives[M]. New Jersey: Prentice Hall PTR,2002.
    [91]Faiz J, Mohseni-Zonoozi S H. A novel technique for estimation and control of stator flux of a salient-pole PMSM in DTC method based on MTPF[J]. Industrial Electronics, IEEE Transactions on, 2003,50(2):262-271.
    [92]Rahman M F, Zhong L, Khiang W L. A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening[J]. Industry Applications, IEEE Transactions on, 1998,34(6):1246-1253.
    [93]Chiricozzi E, Parasiliti F, Tursini M, et al. Fuzzy self-tuning PI control of PM synchronous motor drives[J]. International Journal of Electronics, 1996,80(2):211-221.
    [94]Hang C C, Astrom K J, Ho W K. Refinements of the Ziegler-Nichols tuning formula[J]. IEE Proceedings D:Control Theory and Applications, 1991,138(2):111-118.
    [95]Cha I, Han C. Auto-tuning PID controller using the parameter estimation: IEEE International Conference on Intelligent Robots and Systems, Kyongju, South Korea,1999[C].
    [96]王秀峰,卢桂章.系统建模与辨识[M].北京:电子工业出版社,2004.
    [97]李言俊,张科,余瑞星.系统辨识理论及应用[M].国防工业出版社2003.
    [98]Jerri A J. The Shannon sampling theorem—Its various extensions and applications:A tutorial review[J]. Proceedings of the IEEE, 1977,65(11):1565-1596.
    [99]Telford D, Dunnigan M W, Williams B W. Online identification of induction machine electrical parameters for vector control loop tuning[J]. Industrial Electronics, IEEE Transactions on,2003,50(2):253-261.
    [100]孙丽玲,许伯强,李和明.基于参数辨识技术的永磁同步电动机参数测定[J].华北电力大学学报,2002,29(4):26-29.
    [101]Lee K B, Song J H, Choy I, et al. An inertia identification using ROELO for low speed control of electric machine:Conference Proceedings IEEE Applied Power Electronics Conference and Exposition-APEC, Miami Beach, FL, United states,2003[C].
    [102]Marino R, Peresada S, Tomei P. On-line stator and rotor resistance estimation for induction motors[J]. IEEE Transactions on Control Systems Technology,2000,8(3):570-579.
    [103]Quntao A, Li S. On-line parameter identification for vector controlled PMSM drives using adaptive algorithm:Vehicle Power and Propulsion Conference,2008. VPPC'08. IEEE,2008[C].3-5 Sept.2008.
    [104]Senjyu T, Kinjo K, Urasaki N, et al. Parameter measurement for PMSM using adaptive identification:Industrial Electronics,2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on,2002[C].
    [105]秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社,1998.
    [106]刘辉.交流伺服系统及参数辨识算法研究[D].南京航空航天大学,2005.
    [107]Heui-Wook K, Seung-Ki S. A new motor speed estimator using Kalman filter in low-speed range [J]. Industrial Electronics, IEEE Transactions on,1996,43(4):498-504.
    [108]Parks P. Liapunov redesign of model reference adaptive control systems[J].1966,11(3):362-367.
    [109]Attaianese C, Damiano A, Gatto G, et al. Induction motor drive parameters identification[J]. Power Electronics, IEEE Transactions on, 1998,13(6):1112-1122.
    [110]Liu K, Zhang Q, Zhu Z Q, et al. Comparison of two novel MRAS based strategies for identifying parameters in permanent magnet synchronous motors[J]. International Journal of Automation and Computing, 2010,7(4):516-524.
    [111]敖然,肖岚,朱德明,等.永磁同步电机伺服系统电流环的研究[J].电力电子技术,2008(1):57-59.
    [112]Gross H, Hamann J, Wiegartner G. Electrical Feed Driver in Automation: basics, computation, dimensioning[M]. Munich:Publicis MCD Corporate Pub,2001.
    [113]Mohamed Y A R I. Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time[J]. IEEE Transactions on Energy Conversion,2006,21(4):855-862.
    [114]王划一,杨西侠,林家恒,等.自动控制原理[M].北京:国防工业出版社,2001.
    [115]Wertz H, Beineke S, Frohleke N, et al. Computer aided commissioning of speed and position control for electrical drives with identification of mechanical load:Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. Conference Record of the 1999 IEEE,1999[C].
    [116]陈伯时.电力拖动自动控制系统[M].3.北京:机械工业出版社,2003.
    [117]Schuette F, Beineke S, Rolfsmeier A, et al. Online identification of mechanical parameters using extended Kalman filters:Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), New Orleans, LA, USA,1997[C].
    [118]Salvatore L, Stasi S. Application of EKF to parameter and state estimation of PMSM drive [J]. Electric Power Applications, IEE Proceedings B,1992,139(3):155-164.
    [119]Ding X, Zhang C, Yu L, et al. A new state estimator of PMSM using adaptive extended Kalman filter:2012 International Conference on Frontiers of Advanced Materials and Engineering Technology, FAMET 2012, January 4,2012-January 5,2012, Xiamen, China,2012[C]. Trans Tech Publications.
    [120]丁信忠,张承瑞,李虎修,等.永磁同步电机的转动惯量识别及状态估计[J].山东大学学报,2012,42(2):70-76.
    [121]Taeg-Joon K, Dong-Seok H. High-performance speed control of electric machine using low-precision shaft encoder[J]. Power Electronics, IEEE Transactions on,1999,14(5):838-849.
    [122]Xinzhong D, Chengrui Z, Ke W, et al. Research on current loop of vector control for interior permanent magnet synchronous motor:Intelligent Control and Automation (WCICA),2010 8th World Congress on, 2010[C].7-9 July 2010.
    [123]龚仲华.交流伺服驱动从原理到完全应用[M].北京:人民邮电出版社,2010.
    [124]三菱电机.第四代DIP-IPM应用手册[S].2009.
    [125]Altera. Cyclone Ⅱ device handbook[S].2005.
    [126]STMicroelectronics.STM32F4xx reference manual[S].2011.
    [127]胡庆波,胡海兵,吕征宇.全数字伺服系统中电机转子初始定位的方法[J].电力系统及其自动化学报,2005,17(4):7-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700