基于分数阶控制器的永磁同步电动机速度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PID控制作为线性最佳控制在工业过程控制中得到了广泛的应用。PID控制器依据对象模型进行设计,方法规范成熟,简单实用,是其得以广泛应用的根本原因。然而,控制对象的现有模型往往是忽略许多时变、非线性等因素而简化得到的。对于高性能的控制系统,上述因简化被忽略的因素将直接影响系统的性能。本文尝试利用分数阶微积分理论来设计PID控制器——分数阶PIλDμ控制器,旨在继承和发扬传统PID控制器的优点和弥补其不足,满足高性能的速度控制需求。研究围绕分数阶典型环节特性研究、分数阶速度控制系统性能研究和分数阶速度控制系统实验研究三个方面展开。
     一、论文通过频率特性和阶跃响应系统深入地分析了分数阶积分环节、分数阶微分环节、分数阶比例积分环节、分数阶比例微分环节和分数阶比例积分微分环节等典型环节的特性。分数阶典型环节不同于整数阶典型环节的特性,有可能为在高性能系统中设计期望的频率特性拓展空间。
     二、在传统的速度控制系统中,用分数阶控制器代替整数阶控制器,利用理论分析和仿真实验深入研究了分数阶速度控制系统的性能,包括稳定性、快速性和鲁棒性。证明了采用分数阶控制器的速度控制系统的稳定性。采用仿真实验研究的方法分别对采用分数阶控制器和整数阶控制器的速度控制系统的阶跃响应进行了比较研究并得出了采用分数阶控制器的速度控制系统快速性要优于采用整数阶控制器速度控制系统的结论。并给出了采用分数阶控制器的速度控制系统满足系统鲁棒性的条件。
     三、在理论研究的基础上,分别研究了分数阶比例积分(FO-PI)控制器、分数阶比例微分(FO-PD)控制器和分数阶比例[微分](FO-[PD])控制器,并将其应用于交流永磁同步电动机的速度控制。在相同的条件下,对采用按照最优化方法设计的整数阶比例积分(IO-PI)控制器的系统与采用本文提出的分数阶比例积分(FO-PI)控制器、分数阶比例微分(FO-PD)控制器和分数阶比例[微分](FO-[PD])控制器的系统,分别进行了仿真和实验研究。仿真和实验结果表明采用提出的分数阶速度控制器的系统响应速度、跟随性能、抗扰性能、超低速控制效果和鲁棒性均优于采用整数阶速度控制器的系统,并且具有很好的节能效果。上述实验研究结果与理论研究结论接近。分数阶控制器能够提高PMSM速度控制系统的控制性能,增强系统的抗干扰能力,减少能量消耗,适合于对控制性能要求更高或对降低能耗有一定要求的速度控制系统。研究结果为分数阶控制器在PMSM速度控制系统中的应用提供了理论基础和实际应用依据。
As a linear optimal control, PID control has been widely used in industrial processcontrol. PID controller based on object model design, method standard mature, simple andpractical, it is the root cause can be widely applied. However, the existing models of thecontrol object is often to ignore the time-varying, nonlinear factors and simplified to get. Forhigh-performance control system, these neglected factors will directly affect the systemperformance. Looking forward to developing the merit of the classic PID controllers andovercoming the flaw of the classic PID controllers to meet the high performance speed controlneeds. This paper attempts to use the fractional calculus theory to design a PIDcontroller-fractional PIλDμcontroller. Research focus on three aspects of the fractional ordertypical links features, fractional order speed control system performances and the fractionalorder speed control system experimental study.
     1. In-depth analysis of these typical aspects of the fractional integrator, the fractionaldifferential link, the fractional proportional integral link, the fractional proportion differentiallinks and fractional order proportional integral derivative link by frequency characteristics andstep responses. The characteristics of fractional order typical links are different from integerorder typical links, may expand the space for the desired frequency characteristics in thehigh-performance system design.
     2. Replaced the integral order controller by fractional order controller in traditional speedcontrol system, in-depth study of the properties of fractional order speed control system bytheoretical analysis and simulation, which include stabilization, rapidity and robustness.Proved the stabilization of fractional order speed control system. Simulation research hasbeen used to compare the step response performance of fractional order controller and integralorder controller in speed control system, and obtain the conclusion of the rapidity of fractionalorder speed control system is better than integral order speed control system. Also gives theconditions of the fractional order speed control system to meet the robustness.
     3. Proposed a fractional order proportional integral controller, fractional orderproportional derivative controller and fractional order [proportional derivative] controller onthe basis of theoretical studies, and applied to a permanent magnet synchronous motor(PMSM) speed control. In the same conditions, the simulation and experimental study areimplemented to validate the effectiveness and advantages of the designed fractional ordercontrollers by comparing with the optimized integer order controller in the real-time PMSMservo system. Simulation and experimental show that the designed fractional order controllers outperform the traditional optimal integer order controller in transient response, trackingperformance, load disturbance rejection, robustness to the loop gain variations and theultra-low speed tracking performance with severe nonlinear effects, and also have a goodenergy-saving effect, suitable for the speed control system demanding higher performancerequirements or lower the energy consumption. The above experimental results andtheoretical conclusions close. Fractional order controllers can improve the controlperformance of the PMSM speed control system, enhanced load disturbance rejectioncapability of the system, reduce energy consumption. Suitable for speed control system indemand of higher control performance and decreasing energy consume. Research resultprovide a theoretical basis and practical application basis for application of fractional ordercontroller in PMSM speed control system.
引文
[1]尔桂花,窦曰轩.运动控制系统[M].北京:清华大学出版社,2002.
    [2]戴先中.自动化科学与技术学科的内容、地位与体系[M].北京:高等教育出版社,2002.
    [3] Richard M. Murray,etc. Future Directions in Control in an Information-Rich World[M].IEEE Control System Magazine, Apr.,2003:22-33.
    [4]杨耕,罗应立等.电机与运动控制系统[M].北京:清华大学出版社,2006.
    [5]孙树栋.工业机器人技术基础[M].西安:西北工业大学出版社,2006.
    [6]李言俊,张科.自适应控制理论及应用[M].西安:西北工业大学出版社,2005.
    [7]刘叔军,盖晓华,樊京,崔世林. MATLAB7.0控制系统应用与实例[M].北京:机械工业出版社,2006.
    [8] Torvik P J, Bagley R L. On the appearance ofthe fractional derivative in the behavior ofreal material[J].J of Applied Mechanics, Transaction of the ASMF,1984,51(2):294-298.
    [9] Podlubny I. Fractional-order systems and controllers[J]. IEEE Transon AutomaticControl,1999,44(1):208-214.
    [10]Vinagre, Blas M. and Yang Quan Chen,Lecture notes on fractional calculus applicationsin automatics and robotics in4lst IEEE CDC2002Tutorial Workshop#2(Blas.M.Vinagreand YangQuan Chen,Eds.), LasVegas,Nevada, USA.2002,PP.l-310.
    [11]薛定宇,陈阳泉,高等应用数学问题的MATLAB求解[M].第2版.北京:清华大学出版社,2008.
    [12]Luo Ying, Li Hong-sheng, Chen Yang-quan. Fractional order proportional and derivativecontroller synthesis for a class of fractional order systems: tuning rule andhardware-in-the-loop experiment [C]//Proceedings of the48th IEEE Conference onDecision and Control and28th Chinese Control Conference. Shanghai: IEEE,2009:5460-5465.
    [13]Chen Y Q, Dou H F, Vinager B M, et al. A robust tuning method for fractional order PIcontrollers [C]//Proceedings of the2nd IFAC Workshop on Fractional Differentiation andIts Applications. Porto,: Hindawi Publishing Corporation,2006:19-21.
    [14]RichardL. Magin. Fractional calculus in bioengineering[J]. Critical Reviews TM inBiomedical Engineering,32(1-4),2004.
    [15]Lokenath Debnath. A brief historical introduction to fractional calculus[J]. InternationalJournal of Mathematical Edu cation in Science and Technology,35(4):487-501,2004.
    [16]YangQuan Chen. Ubiquitous fractional order controllers In Proc.of The Second IFACSymposium on Fractional Derivatives and Applications (IFAC FDA06, Plenary Paper.),pages19-21, Porto,Portugal,2006.
    [17]D. Xue, C. N. Zhao, and Y. Q. Chen. Fractional order pid control of a dc-motor with anelastic shaft: a case study[C]. In Proceedings of American Control Conference,2006:3182-3187, Minneapolis, Minnesota, USA,2006.
    [18]金永顺.面向鲁棒运动控制系统的分数阶PID控制器设计、自整定及实验研究[D].湖南大学博士学位论文,2010.
    [19]OUSTALOUP A, MOREAU X, NOUILLANT M. The CRONE suspension[J]. ControlEngineering Practice,1996,4(8):1101-1108.
    [20]MACHADO J A T. Analysis and design of fractional-order digital control systems[J].System Analysis Modeling Simulation,1997,27:107-122.
    [21]B.M.Vinagre, Igor Podlubny. Using Fractional Order Adjustment Rules and FractionalOrder Reference Models in Model-Reference Adaptive Control[M]. Nonlinear Dynamics,2002:269-279.
    [22]I. Petras, I.and O'Leary P. Podlubny, L. Dorcak. Analogue fractional-ordercontrollers:Realization, tuning and implementation. In: Proceedings of the ICCC'2001.Poland,2001:9-14
    [23]I.Podlubny. Fractional-order systems and PIλDμ-controllers[J]. IEEE Transactions onAutomatic Control,1999,44(1),208-214.
    [24]Vinagre B. M., Petras I, Podlubny I, etal. Using fractional order adjustment rules andfractional order reference models in model reference adaptive control[J]. NonlinearDynamic,2002,29:269-279.
    [25]Tarte Y., Chen Y. Q., Ren W., et al. Fractional Horsepower Dynamometer-A GeneralPurpose Hardware-In-The-Loop Real-Time Simulation Platform for Nonlinear ControlResearch an Education[C]. In: Proceedingsof the IEEE Conference on Decision andControl.2006:3912-3917.
    [26]J.G.Ziegler, N.B.Nichols.Optimum Setting for Automatic Controllers[J]. Transactions ofthe A.S.M.E,1942:759-768.
    [27]Oldham K B, Spanier J. The fractional calculus [M]. New York: Academic,1974.
    [28]Dorcak L.Numerical models for simulation the fractional-ordercontrol systems[Z]. TheAcademy of Science Institute of Experimental Physics,Kosice.Slovak Republic,1994.
    [29]OUSTALOUP A. La Dèrivation non Entière [M].Paris:HERMES,1995.
    [30]OUSTALOUP A, MATHIEU B, LA NUSSE P. The CRONE control of resonant plants:appli ca ti o n to a flexibletransmission[J]. European Journal of Control,1995,1(2):113-121.
    [31]AJ Calderón. Control Fraccionario de Convertidores Electronicos de Potencia tipo Buck.MS Thesis, Escuela de Ingenier as Industriales, Universidad de Extremadura,Badajoz,Spain,2003.
    [32]AJ Calderón, B.M. Vinagre, V. Feliu. Linear fractional order control of a DC-DC buckconverter. Proceedings of European Control Conference, Cambridge, UK,2003.
    [33]B.M. Vinagre, I. Petras, P. Merch′an, et al. Two digital realizationsof fractionalcontrollers: application to temperature control of a solid. Proceedings of the EuropeanControl Conference, Porto, Portugal.2001:1764-1767.
    [34]I. Petras, B.M. Vinagre. Practical application of digital fractional order controller totemperature control. Acta Montanistic Slovakia,2002,7(2):131-137.
    [35]I. Petras, B.M. Vinagre, L. Dorcak, et al. Fractional digital control of a heat solid:experimental results. Proceedings of the International Carpathian Control Conference,Malenovice, Czech Republic.2002:365–370.
    [36]J. Sabatier, P. Melchior, A. Oustaloup. Realisation d’unbanc dessais thermique pour l’enseignement des systemes non entier. Proceedings of the Colloque sur l’Enseignementdes Technologies et des Sciences de l’Information et des Systemes, Universit′e PaulSabatier, Toulouse, France.2003:361-364.
    [37]BHAMBHANI V., HAN Y. D., MUKHOPADHYAY S.; Luo Y., Chen Y. Q..Hardware-in-the-loop experimental study on a fractional order networked control systemtestbed. Communications in Nonlinear Science and Numerical Simulation Volume:15:2486-2496.
    [38]Inés Tejado, Blas M. Vinagre and YangQuan Chen. Fractional Gain and Order SchedulingController for Networked Control Systems with Variable Delay. Application to a SmartWheel. In Proceedings of the4th IFAC Workshop on Fractional Differentiation and ItsApplications, University of Extremadura, Badajoz, Spain, October18-20,2010.
    [39]YangQuan Chen. Fractional Calculus, Delay Dynamics and Networked Control Systems.In Proceedings of the3rd International Symposium on ResilientControl Systems,August10-12,2010, Idaho Falls, ID, U.S.A.:58-63.
    [40]Haiyang Chao, Ying Luo, Yangquan Chen,”Fractional Order Flight Control of A SmallFixed-Wing UAV (I): Controller Design and Simulation Study”, in Proceedings ofFourth Symposium on Fractional Derivatives and Their Applications, San DiegoConvention Center, San Diego, California, August30-September2,2009.
    [41]Haiyang Chao, Ying Luo, Yangquan Chen,”Fractional Order Flight Control of A SmallFixed-Wing UAV (II): In-Flight System Identification and FOPI Controller Tuning”, inProceedings of Fourth Symposium on Fractional Derivatives and Their Applications,San Diego Convention Center, San Diego, California August30-September2,2009.
    [42]Ying Luo, Long Di, Jinlu Han, Haiyang Chao,YangQuan Chen. VTOL UAV AltitudeFlight Control Using Fractional Order Controllers. In Proceedings of the4th IFACWorkshop on Fractional Differentiation and Its Applications, University of Extremadura,Badajoz, Spain, October18-20,2010.
    [43]Chen, Y.Q, C.H.Hu and K.L Moore, Relay feedback tuning of robust PID controllers withiso-damping Property, In Proceedings of The42ndIEEE Conference on Decision andControl,Hawaii,2003.
    [44]C. A. Monje, B. M. Vinagre, Y. Q. Chen, and V. Feliu. Proposals for fractional PIλDμ-tuning. presented at the1st IFAC Symp. Fractional Differentiation Its Appl.(FDA),Bordeaux, France,2004.
    [45]Ying Luo, Yang Quan Chen. Fractional order [proportional derivative] controller for aclass of fractional order systems[J]. Automatic45(2009):2446-2450.
    [46]Ying Luo, Yang Quan Chen. Fractional-order [Proportional Derivative] Controller forRobust Motion Control: Tuning Procedure and Validation[C].2009American ControlConference Hyatt Regency Riverfront, St. Louis, MO, USA June10-12,2009.
    [47]Ying Luo,HongSheng Li, and YangQuan Chen. Fractional order proportional andderivative controller synthesis for a class of fractional order systems: Tuning rule andhardware-in-the-loop experiment[C]. Proceedings of the48th IEEE Conference onDecision and Control and28th Chinese Control Conference (submitted), Shanghai,China, December2009:5460-5465.
    [48]Ying Luo, Yang Quan Chen, Chun Yang Wang, You Guo Pi. Tuning fractional orderproportional integral controllers for fractional order systems[J]. Journal of ProcessControl2010(20):823–831.
    [49]HongSheng Li, Ying Luo, YangQuan Chen. A Fractional Order Proportional andDerivative (FOPD) Motion Controller:Tuning Rule and Experiments[J].IEEETransactions on Control Systems Technology, March2010,Vol.18(2):516-520.
    [50]苏海军.前庭系统数学模型及分数阶微积分的应用[D].山东大学博士论文,2001.
    [51]段俊生.分数阶反常扩散方程若干问题及其解[D].山东大学博士论文,2001.
    [52]姚奎.分形函数与分数阶微积分二构造性方法的应用[D].浙江:浙江大学,2003.
    [53]孙轶民.分形维数和分数阶微积分[D].南京大学硕士论文,2000.
    [54]杨小军,高峰,钟卫平,徐丛丛.分数阶定积分学[J].世界科技研究与发展,2008(5):636-638.
    [55]曾庆山.分数阶控制系统的研究及其在MCFC中的应用[D].上海交通大学博士论文,2004.
    [56]王振滨.分数阶线性系统及其应用[D].上海交通大学博士论文,2004.
    [57]王振滨,曹广益.分数阶微积分的两种系统建模方法[J].系统仿真学报,2004(4):810-813.
    [58]薛定宇,赵春娜.分数阶系统的分数阶PID控制器设计[J].控制理论与应用,2007,24(5):771-776.
    [59]赵春娜,李英顺,陆涛.分数阶系统分析与设计[M].北京:国防工业出版社,2011.
    [60]曾庆山,曹广益,王振滨.分数阶PIλDμ控制器的仿真研究[J],系统仿真学报,2004(3):465-473.
    [61]曹军义,曹秉刚.分数阶控制器的数字实现及其特性[J].控制理论与应用,2006,23(5):791-794.
    [62]李文,赵慧敏.一种分数阶微积分算子的有理函数逼近方法[J].自动化学报,2011(8):999-1005.
    [63]梁涛年,陈建军.分数阶参数不确定系统的PIλ控制器[J].控制理论与应用,2011(3):400:407.
    [64]史金光,王中原,常思江,张比升.制导弹箭分数阶控制系统[J].南京理工大学学报(自然科学版),2011(1):52-56.
    [65]齐乃明,秦昌茂,王威.分数阶系统的最优Oustaloup数字实现算法[J].控制与决策,2010(10):1598-1560.
    [66]陈伯时.电力拖动自动控制系统:运动控制系统[M].北京:机械工业出版社,2003。
    [67]K. B. Oldham and J. Spanier,“The Fractional Calculus,” Academic Press, New York andLondon,1974.
    [68]Miller KS, Ross B. An introduction to the fractional calculus and fractional differentialequations. New York: Wiley;1993.
    [69]Podlubny I.,“Fractional differential equations,” Academic Press,1999.
    [70]Oustaloup A., Sabatier J., Lanusse P.. From fractional robustness to CRONE control [J].Fractional Calculus and Application Analysis,1999,2(1):1-30.
    [71]Igor Podlubny, Ivo Petras, Blas M. Vinagre, YangQuan Chen, Paul O'Leary and LubormirDorcak."Analogue Realization of Fractional Order Controllers," Acta MontanisticaSlovaca, vol.8, no.4:233-235,2002.
    [72]Blas M. Vinagre, YangQuan Chen and Ivo Petras. Two Direct Tustin DiscretizationMethods for Fractional-order Differentiator/Integrator. Journal of The Franklin Institute,Pages349-362. Volume340, Issue5, August2003.
    [73]YangQuan Chen and Blas M. Vinagre. A New IIR-Type digital fractional orderdifferentiator. Signal Processing.(Elsevier). Vol.83, no.11:2359-2365,2003.
    [74]Chen Yang-quan. Impulse response invariant discretization of fractional order integrators/differentiators compute adiscrete-time finite dimensional (z) transfer function toapproximate sλwith r a real number [DB/OL]. Category: Filter Design and Analysis,2008,MATLAB Central, http://www.mathworks.com/matlabcentral/fileexchange/loadFile.doobjectId=21342objectType=FILE.
    [75]郭庆鼎,孙宜标,王丽梅.现代永磁电动机交流伺服系统[M].北京:中国电力出版社,2006.
    [76]王晓明,王玲.电动机的DSP控制-TI公司DSP应用[M].北京:航空航天大学出版社2004.
    [77]王振滨,曹广益,朱新坚.分数阶线性定常系统的稳定性及其判据[J],控制理论应用,第21卷第6期,2004年12月.
    [78]Rui Ping Wang,You Guo Pi. Fractional Order Proportional and Derivative ControllerDesign for Second-order Systems with Pure Time-delay[C],2011InternationalConference on Mechatronic Science, Electric Engineering and Computer, Jilin, China,August2011:1321-1325.
    [79]Awouda A E A, Bin Mamat R. Refine PID tuning rule using ITAE criteria
    [C]//Proceedings of Computer and Automation Engineering the2ndInternationalConference. Singapore:IEEE,2010:171-176.
    [80]Dorf R C, Bishop R H. Modern control systems[M]. Upper Saddle River: PearsonPrentice Hall,2005,270-278.
    [81]郁建平.机电综合实践[M].北京:科学出版社,2008.
    [82]R. L. Bagley and R. A. Calico. Fractional-order state equations for the control ofviscoelastic damped structures[J]. Guidance, Control and Dynamics, vol.14, no.2, pp.304–311,1991.
    [83]A. Oustaloup, X. Moreau, M. Nouillant, The CRONE suspension, Control Eng.Pract.4(8)(1996)1101–1108.
    [84]赵春娜,赵雨,张祥德,李英顺.分数阶控制器与整数阶控制器仿真研究[J].系统仿真学报,第21卷第3期,2009年2月。
    [85]H.N.Koivo and J.N. Tanttu. Tuning of PID Controllers: Survey of SISO and MIMOte ch ni qu es[J]. In Proceeding s of Intelligent Tuning and Adaptive Control, Singapore,1991.
    [86]S.Yamamo to and I. Hasimoto. Present status and future needs: the view from Japaneseindustry[C]. In Arkun and Ray, editors, Proceedings.4th International Conference onChemical Process Control, Texas,1991.
    [87]Jun-ling Yang RuiZhang, Le-peng Song and Timothy Hoffman. Dc motor speed controlsystem simulation based on fuzzy self-tuning PID[J], Advances in Intelligent and SoftComputing, vol.2, pp.967–975,2009.
    [88]朱呈祥,邹云.分数阶控制研究综述[J].控制与决策,第24卷第2期,2009年2月.
    [89]薛定宇,陈阳泉.控制数学问题的MATLAB求解[M].北京:清华大学出版社,2007.
    [90]YangQuan Chen. Impulse response invariant discretization of fractional order low-passfilters discretize[1/(s1)] with γ a real number. Category: Filter Design and Analysis,MATLAB Central, http://www.mathworks.com/matlabcentral/fileexchange/loadFile.doobjectId=21365objectType=FILE,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700