地幔底部热化学异常体演化及其对地幔对流格局影响的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地幔中存在各种尺度的不均匀性。其中以浅表岩石圈和深部D”区域的不均匀性最为显著。大陆岩石圈和海洋岩石圈间的差异是地球浅表最显著的横向不均匀;D”区域的不均匀包括尺度为上千公里的超级热柱(或低剪切波速度区,LowShear wave Velocity Zone)、尺度为数百公里的D”顶部的起伏,及尺度为几十公里的超低速区。大陆岩石圈(尤其是古老的克拉通)和海洋岩石圈热力学性质的差异主要表现为其具有较低的温度、较低的化学密度和较高的粘度;地幔底部D”区域的不均匀性的起源则争议很大。大尺度的超级热柱及小尺度的超低速区的不均匀性可能是化学起源的,中等尺度的D”层顶部的起伏则可能是相变成因的。同时,由于D”层是地幔和地核的边界,热不均匀性在D”层内扮演重要作用。由此可见,D”层可能同时包含热的、化学的和相变的不均匀性。它们的共同作用导致了复杂的地震波结构、火山玄武岩的地球化学微量元素、同位素的不均匀性等。
     对地幔,尤其是地幔底部不均匀性成因、演化的研究有助于理解地球的演化、地球化学不均匀性的起源等重要的科学问题。而对该领域的研究进展,主要源于地震学、地球化学、地球动力学和矿物物理学。由于计算机的发展,数值模拟地幔对流成为地球动力学领域研究地幔底部不均匀性成因及演化的最主要手段。本文利用数值模拟的方法研究了地幔底部不均匀性的演化及其对地幔结构的影响。其着重点在于地幔底部热化学异常的演化及大陆岩石圈、超低速区、钙钛矿-过钙钛矿相变可能对其演化产生的影响。论文主要包括以下内容:
     (Ⅰ)下地幔底部热一化学异常体演化的数值模拟
     非洲底部的低剪切波速度省(Large Low Shear wave Velocity Province, LLSVP)可能是具有原始起源的热化学异常体。其位置对应着升高的大地水准面。大火成岩省(Large Igneous Province, LIP)在过去的3亿年中的喷发位置及现今大部分深起源的热点与LLSVPs在CMB处的边界吻合。这意味着非洲热化学异常体的形态和位置可能在过去的3亿年中保持不变。我们进行了热化学对流的数值模拟,以研究在何种情况下,地幔底部的热化学异常体能够保存45亿年并且其形态和位置能够在3亿年的时间内保持基本不变。本文主要结论有(1)在2D中使用22.6km的分辨率能够较精确地估计高密度热化学异常的存活时间。(2)高粘度的热化学异常会促进热柱在其边缘而非内部产生。(3)对化学异常的携带速率在初始和最终时刻较慢,但在中间阶段较快。如果我们假定非洲热化学异常的体积在过去的3亿年中改变不大,则从其形成至今,非洲热化学异常的体积减小不超过一半(4)低粘度的热化学异常,其形态和位置改变速度较快。因此,下地幔底部热化学异常的高粘度可作为其长的存活时间、在过去的3亿年间位置和形态变化不大的一个解释。
     (Ⅱ)大陆岩石圈,地幔底部热化学异常体与周围地幔相互作用的数值模拟研究
     在地球表层存在着占地表面积约30%的具有低化学密度,高粘度的大陆岩石圈。由于其特殊的物理化学性质,大陆岩石圈通常不直接参与下方的地幔对流,但其与地幔对流格局有着重要的相互影响。大量研究显示,在中太平洋和非洲的下地幔底部,存在着两块占核幔边界(CMB)面积约20%的高密度热化学异常体。可以理解,异常体的演化既受地幔对流的影响,也受到大陆岩石圈的影响,同时也影响地幔物质运动的格局和动力学过程。本文系统研究了存在大陆岩石圈,下地幔热化学异常体的地幔对流模型。模拟结果显示:(1)当大陆体积较小时,其边缘地幔常伴随着较强的下降流动,大陆区域下伏地幔的平均垂向速度向下,海洋区域地幔的平均垂向速度向上。大陆岩石圈在水平方向处压应力状态。随着大陆体积的增大,大陆边缘的下降流逐渐减弱,大陆区域地幔的垂向速度逐渐转为向上,海洋区域地幔平均垂向速度逐渐转为向下。大陆岩石圈水平应力逐渐转为拉张。(2)岩石圈与软流圈边界(LAB)在大陆下方较深,温度较低;在海洋区域较浅,温度较高。随着大陆体积的增大,陆洋之间LAB深度、温度的差异逐渐减小。(3)大陆区域地幔底部热化学异常物质的丰度与大陆的体积呈正相关。当大陆体积较小时,大陆下方的热化学异常物质丰度比海洋区域少。随着体积的增大,大陆下方热化学异常物质的丰度逐渐增大,最终达到和海洋区域一致。(4)海洋地区地表热流高,且随时间波动大,大陆地区地表热流低,随时间波动较小。(5)下地幔热化学异常区域的核幔边界热流低。(6)下地幔底部热化学异常受地幔流场影响而产生变形,热柱在热化学异常的凸起处产生。
     (Ⅲ)钙钛矿-过钙钛矿相变对地幔底部大尺度热化学异常、超低速区的影响
     除地表岩石圈外,D”层是地幔内部最复杂的圈层。其可能同时具有相变的、化学的、温度的异常。前人研究丰富了我们对下地幔底部热化学异常(LLSVPs)、超低速区(Ultra Low Velocity Zone, ULVZ),过钙钛矿相变相互作用的理解。然而,仍有许多工作有待完善。如,过钙钛矿对超低速区分布及形态的影响、过钙钛矿对原始的化学层的影响,过钙钛矿对CMB地形的影响等。本文在2D直角坐标域进行了同时包含地幔底部热化学异常、超低速区、周围地幔以及钙钛矿-过钙钛矿相变的热化学地幔对流数值模拟。探讨了钙钛矿-过钙钛矿相变对地幔结构,地幔底部热化学异常、超低速区的影响。主要有以下结论:(1)超低速区趋向于位于热化学异常体的边缘及内部。热化学异常边缘区域的超低速区常比热化学异常内部超低速区大。随着热化学异常在下涌流的推动下在CMB滑移,超低速区的位置也跟着变化。在运移过程中,超低速区总是位于热化学异常的内部或者边缘。(2)加入相变面会使得高密度化学物质变得更不稳定。降低过钙钛矿的粘度,会导致过钙钛矿水平范围的增大并进一步降低热化学异常物质的稳定性。(3)包含低粘度的过钙钛矿相变会升高中上地幔的温度,包含正常粘度的过钙钛矿相变会升降低上地幔的温度。过钙钛矿相变对地幔底部的温度影响不大。(4)加入相变面,会使得地幔,尤其是地幔底部速度增大。当过钙钛矿具有低粘度时,这一现象尤其明显。(5)下涌区的CMB地形为负,当包含钙钛矿-过钙钛矿相变,且过钙钛矿具有较低粘度的时候,下涌区的CMB地形幅度会减小;包含钙钛矿-过钙钛矿相变,且过钙钛矿具有和钙钛矿相同的粘度的时候,下涌区的CMB地形幅度增大。(6)钙钛矿-过钙钛矿相变的出现,导致超低速区的水平起伏变化剧烈。(7)超低速区出现的区域,其CMB地形较周围低。由于超低速区的水平范围大多小于300km,因此,超低速区的出现对大尺度地形没有影响。
Multi-scales of heterogeneity exist in the mantle, especially in the lithosphere and in the D" zone (the lowermost part of the mantle). Difference between continental lithosphere and Oceanic lithosphere is the most prominent manifestation of the heterogeneity in the uppermost mantle. Heterogeneity in D" zone includes large scale superplume (or Large Low Velocity Zone, LLVZ), which is on the scale of thousands of kilometers, fluctuation of the top interface of D" zone, which is on the scale of hundreds of kilometers, and small scale ULVZ, which is on the scale of tens of kilometers. Continental lithosphere (especially the craton, which is the oldest part of the continental lithosphere) has lower intrinsic density, lower temperature and higher viscosity compared to that of oceanic lithosphere. Large scale superplume and small scale ULVZ may have chemical origin, medium-scale fluctuation of D" interface may origin from the Pv-pPv phase change. Because D" is the layer between mantle and out core, thermal heterogeneity may also play important role in the D" zone. It is thus very possible that thermal, phase, chemical heterogeneity may coexist in this region. The interaction between each factor lead to the complexity in this region revealed by seismic and geochemical observations.
     Studies on the origin and evolution of the heterogeneous in the lowermost mantle may help us to understand the evolution of the earth, the origin of geochemical heterogeneity and some other important problems in geoscience. Numerical simulation of mantle convection is now one of the most important method to investigate the evolution and origin of the heterogeneity in the lowermost mantle. We used numerical simulation of mantle convection in this paper to investigate the evolution of thermochemical piles in the lowermost mantle and its effect on the convective pattern of mantle. Main contributions of this paper are as follows.
     (1) Thermochemical Anomaly in the lowermost Mantle and its Evolution
     The large low shear wave velocity structure (LLSVPs) beneath Southern Africa is suggested to be a thermochemical anomaly generated early in the earth's history. LIP (large igneous province) eruption sites of the last0.3Ga and most deep origin hotspots today is observed to correlate well with the boundary of this anomaly on CMB, which suggests the shape of this anomaly can remain largely unchanged for at least0.3Ga. We performed numerical models on thermochemical convection to study under which conditions can one thermochemical block in the lowermost mantle survive for4.5Ga and keep its shape largely unchanged for at least0.3Ga. Our main conclusions are:(1) Calculations in2D with a resolution of128is accurate enough to estimate the survival time of a dense chemical pile.(2) Chemical anomaly with higher viscosity ratio will stimulate plumes to generate from its boundary instead of its interior.(3) The entrainment rate of chemical anomaly is slow at the beginning and ending while much faster at intermediate stage. If we assume the volume of Africa anomaly has not changed too much during the last0.3Ga, it's volume now should be about the same its volume when it is formed.(4) Chemical blocks with lower r|cl endured faster change in its morphology and location in its evolution. Thus high viscosity of the thermochemical anomaly in the lowermost mantle may serve as an explanation for its longevity and stability in shape and morphology in the past0.3billion years.
     (2) The interaction between continental lithosphere, surrounding mantle and thermochemical piles in the
     Continental lithosphere with low intrinsic density and high viscosity occupies about30%area of the Earth's surface. Because of its special physical and chemical properties, the continental lithosphere does not actively take part in the convective mantle overturn. However it influences the convective flow and vice versa. Below central Pacific ocean and Southern Africa lie two high dense thermochemical piles, covering20%of Core Mantle Boundary(CMB) area in total. The structure of these thermochemical piles is influenced by convective flows and thus by the continental lithosphere. On the other hand, thermalchemical piles have important effect on the pattern of mantle convection. Thermochemical convection models including continental lithosphere and thermochemical piles with earthlike parameters are conducted to investigate the interaction between continental lithosphere, convective mantle flow and thermochemical piles. Our model results show that (1) Violent downwelling flow at continental margins, downward mantle vertical velocity under continental region, upward mantle vertical velocity under oceanic region, and compressive horizontal stress in continental lithosphere characterize the main feature of the mantle when size of the continental lithosphere is small. With the increase of continental size, downwelling flow at continental margins abates; mantle vertical velocity under continental/oceanic region reverses; horizontal stress in the continental lithosphere transforms to tensile.(2) Lithosphere-Asthenosphere Boundary(LAB) in continental region is deeper and colder than that in oceanic region. With the increase of continental size, difference of LAB depth and temperature between continental and oceanic region decrease or is even reversed.(3) The abundance of thermochemical piles in continental region is positively correlated with the size of continental lithosphere, i.e. low at small continent size and high at large continent size.(4) Surface heat flux is high and fluctuates with time in the oceanic region but is low and fluctuates little with time in the continental region.(5) CMB heat flux under thermochemical piles is lower than surrounding region.(6) Thermochemical piles in the lowermost mantle distorts under the viscous forces exerted by convecting mantle. Thermochemical plumes origin from the peaks of these thermochemical piles.
     (3) The effect of Pv-pPv phase change on the evolution of Large scale thermochemical piles and ultra-low velocity zone
     D" zone in the lowermost mantle is the most complicated region in the mantle, except for lithosphere. Thermal, phase, chemical heterogeneity may coexist in this region. We conducted numerical simulations including Perovskite-post Perovskite (Pv-pPv) phase transition, thermochemical piles and Ultra Low Velocity Zone (ULVZ) in2D Cartesian coordinates to investigate the effect of Pv-pPv phase change on the evolution dense chemical piles and ULVZ. Our model results show that (1) Ultra low velocity zone prefer to reside at the boundary and interior of large scale thermochemical piles. The size of ULVZ at the boundary of large scale thermochemical piles is larger than that in the interior. As the location of the thermochemical piles changes, the location of ULVZ will also change to keep itself located in the interior or vicinity of the large thermochemical piles.(2) The appearance of Pv-pPv phase change will reduce the stability of thermochemical piles. If the viscosity in pPv phase is lower than that in Pv phase, the horizontal extent of pPv will be larger and this will reduce further the stability of thermochemical piles.(3) The appearance of Pv-pPv phase transition will increase the temperature in the upper mantle, but it has no significant effect on the temperature in the lowermost mantle.(4) The appearance of Pv-pPv phase transition will enhance the velocity rate in the mantle, especially in the lowermost mantle. If the viscosity in Pv phase is higher than that in pPv phase, this enhancement is even larger.(5) CMB topography in the downwelling region is negative, low viscosity pPv will reduce the amplitude of this negative topography while normal viscosity Pv will enhance it.(6) The appearance of Pv-pPv phase change make the fluctuation of the boundary of ULVZ more violent.(7) CMB topography in ULVZ region is lower compared with its adjacent region.
引文
傅容珊,黄建华,et al.(2001).地球动力学,高等教育出版社.
    陆金甫and关治(2004).偏微分方程数值解法,清华大学出版社有限公司.
    王青平,白武明,et al.(2010).“多重网格在二维泊松方程有限元分析中的应用.”地球物理学进展25(4).
    吴望一(1990).流体力学,北京:北京大学出版社.
    杨亭 (2009). 多重网格技术(multigrid solver)懿之的博客http://hi.baidu.com/imheaventian/item/8d8eccba0589dff063388eef.
    杨亭,傅容珊,黄金水.(2012)利用Moho面起伏及地表地形数据反演岩石圈有效弹性厚度的莫霍地形导纳法(MDDF).地球物理学报,55(11)
    杨亭,傅容珊,黄金水.(2013)利用Moho地形导纳法(MDDF)反演中国大陆岩石圈有效弹性厚度.地球物理学报,待刊
    章本照,印建安,et al.(2003).流体力学数值方法,机械工业出版社.
    Ammann, M., J. Brodholt, et al. (2010). "First-principles constraints on difusion in lower-mantle minerals and a weak D [prime][prime] layer." Nature 465(7297):462-465.
    Artemieva, I. M. (2009). "The continental lithosphere:reconciling thermal, seismic, and petrologic data." Lithos 109(1):23-46.
    Bercovici, D. (2003). "The generation of plate tectonics from mantle convection." Earth and Planetary Science Letters 205(3):107-121.
    Boyet, M. and R. Carlson (2005). "142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth." Science 309(5734):576-581.
    Bull, A. L., A. K. McNamara, et al. (2009). "Synthetic tomography of plume clusters and thermochemical piles." Earth and Planetary Science Letters 278(3):152-162.
    Burke, K., B. Steinberger, et al. (2008). "Plume generation zones at the margins of large low shear velocity provinces on the core-mantle boundary." Earth and Planetary Science Letters 265(1-2):49-60.
    Campbell, I. H. (2007). "Testing the plume theory." Chemical Geology 241(3):153-176.
    Chandrupatla,T. R. and A. D. Belegundu (2005).工程中的有限元方法,机械工业出版社.
    Christensen, U. R. and A. W. Hofinann (1994). "Segregation of subducted oceanic crust in the convecting mantle." Journal of Geophysical Research 99(B10):19867-19819,19884.
    Coltice, N., B. Phillips, et al. (2007). "Global warming of the mantle at the origin of flood basalts over supercontinents." Geology 35(5):391-394.
    Condie, K. C. (2000). "Episodic continental growth models:afterthoughts and extensions." Tectonophysics 322(1):153-162.
    Condie, K. C. (2004). "Supercontinents and superplume events:distinguishing signals in the geologic record." Physics of the Earth and Planetary Interiors 146(1):319-332.
    Davaille, A. (1999). "Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle." Nature 402(6763):756-760.
    Davies, D. R., S. Goes, et al. (2012). "Reconciling dynamic and seismic models of Earth's lower mantle:The dominant role of thermal heterogeneity." Earth and Planetary Science Letters 353: 253-269.
    Davies, G. F. (2005). "A case for mantle plumes." CHINESE SCIENCE BULLETIN-ENGLISH EDITION-50(15):1541.
    Davies, G. F. (2011). Mantle convection for geologists, Cambridge University Press.
    Davies, J. H. and D. Stevenson (1992). "Physical model of source region of subduction zone volcanics." Journal of Geophysical Research 97(B2):2037-2070.
    de Koker, N. (2010). "Thermal conductivity of MgO periclase at high pressure:Implications for the D "region." Earth and Planetary Science Letters 292(3):392-398.
    Deschamps, F., L. Cobden, et al. (2012). "The primitive nature of large low shear-wave velocity provinces." Earth and Planetary Science Letters 349:198-208.
    Deschamps, F., E. Kaminski, et al. (2011). "A deep mantle origin for the primitive signature of ocean island basalt." Nature Geoscience.
    Deschamps, F. and P. J. Tackley (2008). "Searching for models of thermo-chemical convection that explain probabilistic tomography:Ⅰ. Principles and influence of rheological parameters." Physics of the Earth and Planetary Interiors 171(1):357-373.
    Deschamps, F. and P. J. Tackley (2009). "Searching for models of thermo-chemical convection that explain probabilistic tomography. Ⅱ-nfluence of physical and compositional parameters." Physics of the Earth and Planetary Interiors 176(1):1-18.
    Deschamps, F., J. Trampert, et al. (2007). "Thermo-chemical structure of the lower mantle: seismological evidence and consequences for geodynamics." Superplumes:beyond plate tectonics. Springer:293-320.
    Deschamps, F., J. Trampert, et al. (2010). "The thermo-chemical structure of the deep mantle: observations and models." EGU General Assembly 2010, held 2-7 May,2010 in Vienna, Austria, p.5125 12:5125.
    Dziewonski, A. M. (1984). "Mapping the lower mantle:determination of lateral heterogeneity in P velocity up to degree and order 6." Journal of Geophysical Research 89(B7):5929-5952.
    Dziewonski, A. M., B. H. Hager, et al. (1977). "Large-scale heterogeneities in the lower mantle." Journal of Geophysical Research 82(2):239-255.
    Garnero, E. J. (2004). "A new paradigm for Earth's core-mantle boundary." Science 304(5672): 834-836.
    Garnero, E. J. and D. V. Helmberger (1996). "Seismic detection of a thin laterally varying boundary layer at the base of the mantle beneath the central-Pacific." Geophysical Research Letters 23(9):977-980.
    Garnero, E. J. and A. K. McNamara (2008). "Structure and dynamics of Earth's lower mantle." Science 320(5876):626-628.
    Garnero, E. J., J. Revenaugh, et al. (1998). "Ultralow velocity zone at the core-mantle boundary." Geodynamics Series 28:319-334.
    Gerya, T. (2010). Introduction to numerical geodynamic modelling, Cambridge University Press.
    Gordon, R. G. and D. M. Jurdy (1986). "Cenozoic global plate motions." Journal of Geophysical Research 91(B12):12389-12312,12406.
    Grand, S. P., R. D. van der Hilst, et al. (1997). "High resolution global tomography, a snapshot of convection in the Earth." Geological Society of America Today 7(4).
    Grove, T., C. Till, et al. (2009). "Kinematic variables and water transport control the formation and location of arc volcanoes." Nature 459(7247):694-697.
    Grove, T. L., C. B. Till, et al. (2012). "The role of H2O in subduction zone magmatism." Annual Review of Earth and Planetary Sciences 40:413-439.
    Gurnis, M. (1988). "Large-scale mantle convection and the aggregation and dispersal of supercontinents." Nature 332(6166):695-699.
    Hager, B. and M. Richards (1989). "Long-wavelength variations in Earth's geoid:physical models and dynamical implications." Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences:309-327.
    He, Y. and L. Wen (2009). "Structural features and shear-velocity structure of the "Pacific Anomaly"." Journal of Geophysical Research 114(B2):B02309.
    He, Y. and L. Wen (2012). "Geographic boundary of the "Pacific Anomaly" and its geometry and transitional structure in the north." Journal of Geophysical Research 117(B9):B09308.
    Hernlund, J. W., C. Thomas, et al. (2005). "A doubling of the post-perovskite phase boundary and structure of the Earth's lowermost mantle." Nature 434(7035):882-886.
    Hofmann, A. (1997). "Mantle geochemistry:the message from oceanic volcanism." Nature 385(6613):219-229.
    Hofmeister, A. M. (2008). "Inference of high thermal transport in the lower mantle from laser-flash experiments and the damped harmonic oscillator model." Physics of the Earth and Planetary Interiors 170(3):201-206.
    Huang, J. (2008). "Controls on entrainment of a dense chemical layer by thermal plumes." Physics of the Earth and Planetary Interiors 166(3):175-187.
    Huang, J., R. Fu, et al. (2010). "Influence of gradational compositional layering on plume entrainment and its implication for geochemistry." Physics of the Earth and Planetary Interiors 178(1):68-79.
    Ishii, M. and J. Tromp (1999). "Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle." Science 285(5431):1231-1236.
    Jellinek, A. M. and M. Manga (2002). "The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes." Nature 418(6899):760-763.
    Jellinek, A. M. and M. Manga (2004). "Links between long-lived hot spots, mantle plumes, D ", and plate tectonics." Reviews of Geophysics 42(3):RG3002.
    Karato, S.-i. and P. Wu (1993). "Rheology of the upper mantle:a synthesis." Science 260(5109): 771-778.
    Karato, S. (2010). "Rheology of the deep upper mantle and its implications for the preservation of the continental roots:a review." Tectonophysics 481(1):82-98.
    Katsura, T, A. Yoneda, et al. (2010). "Adiabatic temperature profile in the mantle." Physics of the Earth and Planetary Interiors 183(1):212-218.
    Kellogg, L. H., B. H. Hager, et al. (1999). "Compositional stratification in the deep mantle." Science 283(5409):1881-1884.
    Kennett, B., S. Widiyantoro, et al. (1998). "Joint seismic tomography for bulk-sound and shear wavespeed in the Earth's mantle." Journal of Geophysical Research 103(B6): 12.469-412.493.
    Khan, A., L. Boschi, et al. (2011). "Mapping the Earth's thermochemical and anisotropic structure using global surface wave data." Journal of Geophysical Research 116(B1):B01301.
    Konishi, K., K. Kawai, et al. (2009). "MORB in the lowermost mantle beneath the western Pacific: evidence from waveform inversion." Earth and Planetary Science Letters 278(3):219-225.
    Korenaga, J. (2005). "Firm mantle plumes and the nature of the core-mantle boundary region." Earth and Planetary Science Letters 232(1):29-37.
    Labrosse, S., J. Hemlund, et al. (2007). "A crystallizing dense magma ocean at the base of the Earth's mantle." Nature 450(7171):866-869.
    Lassak, T. M., A. K. McNamara, et al. (2010). "Core-mantle boundary topography as a possible constraint on lower mantle chemistry and dynamics." Earth and Planetary Science Letters 289(1):232-241.
    Lassak, T. M., A. K. McNamara, et al. (2007). "Influence of thermochemical piles on topography at Earth's core-mantle boundary." Earth and Planetary Science Letters 261(3):443-455.
    Lay, T. and E. J. Garnero (2007). "Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure." GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174:129.
    Lay, T., E. J. Garnero, et al. (2004). "Partial melting in a thermo-chemical boundary layer at the base of the mantle." Physics of the Earth and Planetary Interiors 146(3):441-467.
    Lay, T. and D. V. Helmberger (1983). "A shear velocity discontinuity in the lower mantle." Geophysical Research Letters 10(1):63-66.
    Lay, T., J. Hernlund, et al. (2006). "A post-perovskite lens and D" heat flux beneath the central Pacific." Science 314(5803):1272-1276.
    Lay, T., Q. Williams, et al. (1998). "The core-mantle boundary layer and deep Earth dynamics." Nature 392(6675):461-468.
    Lee, C. T. A., P. Luffi, et al. (2010). "Upside-down differentiation and generation of a 'primordial'lower mantle." Nature 463(7283):930-933.
    Li, Z. X. and S. Zhong (2009). "Supercontinent-superplume coupling, true polar wander and plume mobility:Plate dominance in whole-mantle tectonics." Physics of the Earth and Planetary Interiors 176(3):143-156.
    Lin, J.-F., V. V. Struzhkin, et al. (2005). "Spin transition of iron in magnesiowustite in the Earth's lower mantle." Nature 436(7049):377-380.
    Lin, S.-C. and P. E. van Keken (2006). "Dynamics of thermochemical plumes:1. Plume formation and entrainment of a dense layer." Geochemistry Geophysics Geosystems 7(2):Q02006.
    Lin, S.-C. and P. E. van Keken (2006). "Dynamics of thermochemical plumes:2. Complexity of plume structures and its implications for mapping mantle plumes." Geochemistry Geophysics Geosystems 7(3):Q03003.
    Lin, S. C. and P. E. van Keken (2006). "Dynamics of thermochemical plumes:1. Plume formation and entrainment of a dense layer." Geochemistry Geophysics Geosystems 7(2):Q02006.
    Lowrie, W. (2007). Fundamentals of geophysics, Cambridge University Press.
    Maruyama, S., M. Santosh, et al. (2007). "Superplume, supercontinent, and post-perovskite: mantle dynamics and anti-plate tectonics on the core-mantle boundary." Gondwana Research 11(1):7-37.
    Masters, G., S. Johnson, et al. (1996). "A Shear-Velocity Model of the Mantle [and Discussion]." Philosophical Transactions:Mathematical, Physical And Engineering Sciences:1385-1411.
    Matzel, E., M. K. Sen, et al. (1996). "Evidence for anisotropy in the deep mantle beneath Alaska." Geophysical Research Letters 23(18):2417-2420.
    McConnell Jr, R. K. (1968). "Viscosity of the mantle from relaxation time spectra of isostatic adjustment." Journal of Geophysical Research 73(22):7089-7105.
    McKenzie, D., J. Jackson, et al. (2005). "Thermal structure of oceanic and continental lithosphere." Earth and Planetary Science Letters 233(3):337-349.
    McNamara, A. (2011). Mantle Cooling Promotes the Stability of Compositional Reservoirs. AGU Fall Meeting Abstracts.
    McNamara, A. K., E. J. Garnero, et al. (2010). "Tracking deep mantle reservoirs with ultra-low velocity zones." Earth and Planetary Science Letters 299(1):1-9.
    McNamara, A. K., S.-I. Karato, et al. (2001). "Localization of dislocation creep in the lower mantle:implications for the origin of seismic anisotropy." Earth and Planetary Science Letters 191(1):85-99.
    McNamara, A. K. and S. Zhong (2004). "The influence of thermochemical convection on the fixity of mantle plumes." Earth and Planetary Science Letters 222(2):485-500.
    McNamara, A. K. and S. Zhong (2004). "Thermochemical structures within a spherical mantle: Superplumes or piles?" Journal of Geophysical Research 109(B7):B07402.
    McNamara, A. K. and S. Zhong (2005). "Thermochemical structures beneath Africa and the Pacific Ocean." Nature 437(7062):1136-1139.
    Moresi, L. N. and V. Solomatov (1995). "Numerical investigation of 2D convection with extremely large viscosity variations." Physics of Fluids 7:2154.
    Mosca, I., L. Cobden, et al. (2012). "Seismic and mineralogical structures of the lower mantle from probabilistic tomography." Journal of Geophysical Research 117(B6):B06304.
    Murakami, M., K. Hirose, et al. (2004). "Post-perovskite phase transition in MgSiO3." Science 304(5672):855-858.
    Nakagawa, T. and P. J. Tackley (2005). "The interaction between the post-perovskite phase change and a thermo-chemical boundary layer near the core-mantle boundary." Earth and Planetary Science Letters 238(1):204-216.
    Nakagawa, T. and P. J. Tackley (2011). "Effects of low-viscosity post-perovskite on thermo-chemical mantle convection in a 3-D spherical shell." Geophysical research letters 38(4):L04309.
    Nakagawa, T, P. J. Tackley, et al. (2009). "Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth's mantle." Geochemistry Geophysics Geosystems 10(3):Q03004.
    Nakagawa, T., P. J. Tackley, et al. (2010). "The influence of MORB and harzburgite composition on thermo-chemical mantle convection in a 3-D spherical shell with self-consistently calculated mineral physics." Earth and Planetary Science Letters 296(3):403-412.
    Nakagawa, T., P. J. Tackley, et al. (2009). "Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth's mantle." Geochemistry Geophysics Geosystems 10(3):Q03004.
    Ni, S. and D. V. Helmberger (2003). "Seismological constraints on the South African superplume; could be the oldest distinct structure on Earth." Earth and Planetary Science Letters 206(1): 119-131.
    Ni, S., E. Tan, et al. (2002). "Sharp sides to the African superplume." Science 296(5574): 1850-1852.
    Ni, S., D. V Helmberger, et al. (2005). "Three-dimensional structure of the African superplume from waveform modelling." Geophysical Journal International 161(2):283-294.
    Oganov, A. R. and S. Ono (2004). "Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D "layer." Nature 430(6998):445-448.
    Ohta, K., K. Hirose, et al. (2008). "Phase transitions in pyrolite and MORB at lowermost mantle conditions:implications for a MORB-rich pile above the core-mantle boundary." Earth and Planetary Science Letters 267(1):107-117.
    Panasyuk, S. V. and B. H. Hager (2009). "Inversion for mantle viscosity profiles constrained by dynamic topography and the geoid, and their estimated errors." Geophysical Journal International 143(3):821-836.
    Parker, R. (1973). "The rapid calculation of potential anomalies." Geophysical Journal of the Royal Astronomical Society 31(4):447-455.
    Peltier, W. and J. Andrews (1976). "Glacial-Isostatic Adjustment—I. The Forward Problem." Geophysical Journal of the Royal Astronomical Society 46(3):605-646.
    Peslier, A. H., A. B. Woodland, et al. (2010). "Olivine water contents in the continental lithosphere and the longevity of cratons." Nature 467(7311):78-81.
    Phillips, B. R. and H. P. Bunge (2005). "Heterogeneity and time dependence in 3D spherical mantle convection models with continental drift." Earth and Planetary Science Letters 233(1): 121-135.
    Piper, J. (2010). "Protopangaea:Palaeomagnetic definition of Earth's oldest (mid-Archaean-Palaeoproterozoic) supercontinent." Journal of Geodynamics 50(3):154-165.
    Press, F., R. Siever, et al. (2003). Understanding earth, WH Freeman.
    Ritsema, J., A. Deuss, et al. (2011). "S40RTS:a degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements." Geophysical Journal International 184(3):1223-1236.
    Ritsema, J., A. K. McNamara, et al. (2007). "Tomographic filtering of geodynamic models: implications for model interpretation and large-scale mantle structure." J. geophys. Res 112: B01303.
    Ritsema, J., H. J. van Heijst, et al. (2004). "Global transition zone tomography." Journal of Geophysical Research 109(B2):B02302.
    Schubert, G., G. Masters, et al. (2004). "Superplumes or plume clusters?" Physics of the Earth and Planetary Interiors 146(1):147-162.
    Schubert, G., D. L. Turcotte, et al. (2001). Mantle Convection in the Earth and Planets, Cambridge University Press.
    Schubert, G., D. L. Turcotte, et al. (2001). Mantle Convection in the Earth and Planets 2 Volume Set, Cambridge University Press.
    Sidorin, I., M. Gurnis, et al. (1999). "Evidence for a ubiquitous seismic discontinuity at the base of the mantle." Science 286(5443):1326-1331.
    Simmons, N. A., A. M. Forte, et al. (2007). "Thermochemical structure and dynamics of the African superplume." Geophysical Research Letters 34(2):L02301.
    Simmons, N. A., A. M. Forte, et al. (2009). "Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity:Implications for the relative importance of thermal versus compositional heterogeneity." Geophysical Journal International 177(3):1284-1304.
    Solomatov, V. (1996). "Can hotter mantle have a larger viscosity?" Geophysical research letters 23(9):937-940.
    Solomatov, V. and C. Reese (2008). "Grain size variations in the Earth's mantle and the evolution of primordial chemical heterogeneities." Journal of Geophysical Research 113(B7):B07408.
    Stacey, F. D. and P. M. Davis (1977). Physics of the Earth, Wiley New York.
    Steinberger, B. and T. H. Torsvik (2012). "A geodynamic model of plumes from the margins of Large Low Shear Velocity Provinces." Geochemistry Geophysics Geosystems 13(null): Q01W09.
    Su, W.-j., R. L. Woodward, et al. (1994). "Degree 12 model of shear velocity heterogeneity in the mantle." Journal of Geophysical Research 99(B4):6945-6980.
    Su, W. and A. M. Dziewonski (1997). "Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle." Physics of the earth and planetary interiors 100(1):135-156.
    Suetsugu, D., T. Isse, et al. (2009). "South Pacific mantle plumes imaged by seismic observation on islands and seafloor." Geochemistry Geophysics Geosystems 10(11):Ql 1014.
    Tackley, P., T. Nakagawa, et al. (2011). Transition Zone Structure and Dynamics in Mantle Convection Calculations with Self-Consistently Calculated Mineralogy. AGU Fall Meeting Abstracts.
    Tackley, P. J. (1998). "Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer:D." The Core-Mantle Boundary Region, Geodyn. Ser 28:231-253.
    Tackley, P. J. (2002). "Strong heterogeneity caused by deep mantle layering." Geochem. Geophys. Geosyst 3(4):1024.
    Tackley, P. J. (2008). "Geodynamics:Layer cake or plum pudding?" Nature Geoscience 1(3): 157-158.
    Tackley, P. J. (2011). "Dynamics and evolution of the deep mantle resulting from thermal, chemical, phase and melting effects." Earth-Science Reviews.
    Tackley, P. J. (2011). "Living dead slabs in 3-D:The dynamics of compositionally-stratified slabs entering a "slab graveyard" above the core-mantle boundary." Physics of the Earth and Planetary Interiors 188(3):150-162.
    Tackley, P. J. and S. D. King (2003). "Testing the tracer ratio method for modeling active compositional fields in mantle convection simulations." Geochemistry Geophysics Geosystems 4(4):8302.
    Tackley, P. J., T. Nakagawa, et al. (2007). "Influence of the post-perovskite transition on thermal and thermo-chemical mantle convection." GEOPHYSICAL MONOGRAPH-AMERICAN GEOPHYSICAL UNION 174:229.
    Tackley, P. J. and S. Xie (2002). "The thermochemical structure and evolution of Earth's mantle: constraints and numerical models." Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences 360(1800):2593-2609.
    Tan, E., W. Leng, et al. (2011). "On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3-D compressible mantle." Geochemistry Geophysics Geosystems 12(7):Q07005.
    Tarduno, J. A., R. A. Duncan, et al. (2003). "The Emperor Seamounts:Southward motion of the Hawaiian hotspot plume in Earth's mantle." Science 301(5636):1064-1069.
    To, A., B. Romanowicz, et al. (2005). "3D effects of sharp boundaries at the borders of the African and Pacific Superplumes:observation and modeling." Earth and Planetary Science Letters 233(1):137-153.
    Tolstikhin, I. and A. W. Hofmann (2005). "Early crust on top of the Earth's core." Physics of the Earth and Planetary Interiors 148(2):109-130.
    Tolstikhin, I., J. Kramers, et al. (2006). "A chemical Earth model with whole mantle convection: the importance of a core-mantle boundary layer (D ") and its early formation." Chemical Geology 226(3):79-99.
    Torsvik, T. H., M. A. Smethurst, et al. (2006). "Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle." Geophysical Journal International 167(3):1447-1460.
    Trannes, R. G. (2010). "Structure, mineralogy and dynamics of the lowermost mantle." Mineralogy and Petrology 99(3):243-261.
    Trampert, J., F. Deschamps, et al. (2004). "Probabilistic tomography maps chemical heterogeneities throughout the lower mantle." Science 306(5697):853-856.
    Turcotte, D. L. and G. Schubert (2002). Geodynamics, Cambridge University Press.
    Van der Hilst, R., M. De Hoop, et al. (2007). "Seismostratigraphy and thermal structure of Earth's core-mantle boundary region." Science 315(5820):1813-1817.
    van der Hilst, R. D., S. Widiyantoro, et al. (1997). "Evidence for deep mantle circulation from global tomography." Nature 386:578-584.
    Van Keken, P., H. Schmeling, et al. (1997). "A comparison of methods for the modeling." Journal of Geophysical Research 102(B10):22,477-422,495.
    van Keken, P. E., E. H. Hauri, et al. (2002). "Mantle mixing:the generation, preservation, and destruction of chemical heterogeneity." Annual review of earth and planetary sciences 30(1): 493-525.
    van Summeren, J., A. van den Berg, et al. (2009). "Upwellings from a deep mantle reservoir filtered at the 660km phase transition in thermo-chemical convection models and implications for intra-plate volcanism." Physics of the Earth and Planetary Interiors 172(3): 210-224.
    Vidale, J. E. and M. A. Hedlin (1998). "Evidence for partial melt at the core-mantle boundary north of Tonga from the strong scattering of seismic waves." Nature 391(6668):682-685.
    Wang, Y. and L. Wen (2004). "Mapping the geometry and geographic distribution of a very low velocity province at the base of the Earth's mantle." Journal of Geophysical Research 109(B10):B10305.
    Wang, Y. and L. Wen (2007). "Geometry and P and S velocity structure of the "African Anomaly"." J. Geophys. Res 112:B05313.
    Weis, D., M. O. Garcia, et al. (2011). "Role of the deep mantle in generating the compositional asymmetry of the Hawaiian mantle plume." Nature Geoscience 4(12):831-838.
    Wen, L. (2001). "Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean." Earth and Planetary Science Letters 194(1):83-95.
    Wen, L. and D. V. Helmberger (1998). "Ultra-low velocity zones near the core-mantle boundary from broadband PKP precursors." Science 279(5357):1701-1703.
    Wen, L., P. Silver, et al. (2001). "Seismic evidence for a thermo-chemical boundary at the base of the Earth's mantle." Earth and Planetary Science Letters 189(3):141-153.
    Williams, Q., J. Revenaugh, et al. (1998). "A correlation between ultra-low basal velocities in the mantle and hot spots." Science 281(5376):546-549.
    Wysession, M. E., T. Lay, et al. (1998). "The D "discontinuity and its implications." The core-mantle boundary region 28:273-297.
    Xie, S. and P. J. Tackley (2004). "Evolution of helium and argon isotopes in a convecting mantle." Physics of the Earth and Planetary Interiors 146(3):417-439.
    Xie, S. and P. J. Tackley (2004). "Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics." Journal of Geophysical Research 109(B11):B11204.
    Yoshida, M. (2010). "Preliminary three-dimensional model of mantle convection with deformable, mobile continental lithosphere." Earth and Planetary Science Letters 295(1):205-218.
    Zhang, N., S. Zhong, et al. (2010). "A model for the evolution of the Earth's mantle structure since the Early Paleozoic." Journal of Geophysical Research 115(B6):B06401.
    Zhang, N., S. Zhong, et al. (2010). "A model for the evolution of the Earth's mantle structure since the Early Paleozoic." Journal of Geophysical Research 115(B6):B06401.
    Zhao, D. (2004). "Global tomographic images of mantle plumes and subducting slabs:insight into deep Earth dynamics." Physics of the Earth and Planetary Interiors 146(1):3-34.
    Zhong, S. (2006). "Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature, and upper mantle temperature." Journal of Geophysical Research 111(B4):B04409.
    Zhong, S. and B. H. Hager (2003). "Entrainment of a dense layer by thermal plumes." Geophysical Journal International 154(3):666-676.
    Zhong, S., D. A. Yuen, et al. (2007). "Numerical methods for mantle convection." Treatise on Geophysics 7:227-252.
    Zhong, S., N. Zhang, et al. (2007). "Supercontinent cycles, true polar wander, and very long-wavelength mantle convection." Earth and Planetary Science Letters 261(3):551-564.
    Zhong, S., N. Zhang, et al. (2007). "Supercontinent cycles, true polar wander, and very long-wavelength mantle convection." Earth and Planetary Science Letters 261(3):551-564.
    Zhong, S., M. T. Zuber, et al. (2000). "Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection." Journal of Geophysical Research 105(B5): 11063-11011,11082.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700