电网侧扰动引起的共振型低频与超低频振荡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统低频振荡主要是机电模式的振荡,其振荡频率多在0.2~2.5Hz之间。随着电力系统的互联规模的扩大,系统中还出现了频率低于0.2Hz的超低频振荡模式。这两种振荡都会严重降低系统的安全水平,甚至直接导致系统解列。本文通过分析电网侧扰动引起的机组强迫共振的原因,提出了共振抑制策略;并分析了电网侧扰动引起锅炉出力超低频振荡的原因。论文选题具有理论意义和实际应用价值。
     低频振荡常常发生在阻尼大于零的情况下,因此强迫阻尼共振往往是低频振荡发生的原因。介绍了振动力学中的单自由度弹簧系统及其强迫振动过程,阐述了与单自由度弹簧系统强迫振荡同原理的单机无穷大系统的强迫振荡过程。重点阐述分析了电网侧扰动引起汽轮发电机组机械功率共振的原因:当电网侧发生功率扰动时,实际的功频控制方式使机械功率阻尼降低,当扰动频率接近共振频率时,引发机械功率共振。
     现场运行证明,若汽轮发电机组发生低频振荡,可尝试改变调速系统控制方式以抑制振荡。只有通过对每种控制方式的阻尼特性和频率特性进行分析,才能在改变系统控制方式以抑制低频振荡时,做到有的放矢。因此,分析了汽轮机组调速系统在串级PI、单级PI1和单级PI2控制方式下的阻尼特性、频率特性和带宽;提出了控制方式的调整策略,以避开共振频率点。仿真表明,发生共振时,通过调整调速系统的控制方式,能有效地降低转子振幅。该方法依托调速系统的现有功能进行低频振荡抑制,便捷有效且能在线调整。
     发现了一种产生超低频振荡模式的物理原因。通过对火电单元机组的协调控制系统的原理分析,发现电网侧扰动可引起锅炉出力波动;分析了炉跟机和直接能量平衡两种机炉协调控制方式的动态特性,发现都存在0.1Hz左右的超低频共振点。仿真表明,若电网侧的超低频扰动与共振频率相同或接近,将引起锅炉汽轮机组输出功率的共振,功率的振荡幅值被放大。该发现对抑制电力系统超低频振荡方法研究具有现实意义。
Power system low frequency oscillation mode is mainly mechanical and electrical oscillation, and the oscillation frequency between 0.2 ~ 2.5Hz. With the interconnected expansion of power system, it also appear ultra-low frequency oscillation mode in the frequency below 0.2Hz. The two oscillations would seriously reduce the level of system security, or even lead a direct result of system splitting. By analyzing the grid side disturbance to force unit resonance theory, we found the method to restrain the resonance; and analysis the reason why the grid side disturbance can cause the boiler output oscillation. The thesis topic has the Theoretical significance and practical application value
     Low-frequency oscillations are often occurred in the case of damping greater than zero, so forced damped resonance often lead low-frequency oscillations. Firstly, the paper described the single degree of freedom vibration spring system and its forced vibration process in mechanics of vibration, and expounded the forced oscillation of single-machine infinite system which As profound as the mentioned theory. Secondly, it focuses on analyze the reasons of the mechanical power resonance of turbine units caused by disturbances in the grid side : When the grid-side power disturbance occurs, the actual power frequency control mode reduce the damping of mechanical power, when the disturbance frequency is close to the resonance frequency, it cause mechanical power resonance .
     Practical operation proved that if low-frequency oscillation occurs on turbines, that we can try to change the control mode of speed control system to suppress oscillations. Literature analysis shows that if the low-frequency power disturbance on grid side cause the mechanical power resonance, the rotor angle amplitude will be substantial increase. So, by analysis for the damping and frequency characteristics of the turbine control system in Serial PI、single stage PI1 and PI2 control mode, the adjustment strategy has been proposed, to avoid the resonance frequency. Simulation shows the amplitude of the rotor could be reduced effectively by turbine control mode adjustment when resonance occurs. This method inhibit low frequency oscillation based on the existing function of turbine regulating system, it is effective and can adjust on-line, and has the practical significance on system stable operation..
     This paper find a physical reason of what creates low frequency oscillation pattern. When we analysis Analyze the dynamic characteristics of the two kind of turbine and boiler Coordinated control system based on boiler follow and based on direct energy balance. The 0.1Hz Ultra-low frequency resonance point is in the system. Simulation results show that, if the ultra-low frequency perturbations of grid side close to or with the same resonant frequency, it will cause the resonance of boiler steam turbine output power, and the oscillation of the power is amplitude magnified. The discovery of suppressing power system’s ultra-low frequency oscillation method has practical significance.
引文
[1]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响.中国电机工程学报,2005,25(11):6-11
    [2]朱方,汤涌,张东霞,等.我国交流互联电网动态稳定性问题的研究及解决策略.电网技术, 2004, 28(15):1-5
    [3]余耀南.动态电力系统.北京:水利电力出版社,1985,65-90
    [4] D.N.Kosterev, C.Taylor. WA, Mittelstadt. Model Validation for the August10. 1996 WSCC System Outage. IEEE Transaction on Power Systems. 1999, 14(3): 967-979
    [5] D.N.Losterev,W.A.Mittelstadt,M.Viles et al. Model Validation and Analysis of WSCC System Oscillations Following Alberta Separation on August 4. 2000. Final Report By Bonneville Power Administration and BC Hydro.2001
    [6]韩慧云,黄梅.电力系统低频振荡与PSS分析.华北电力技术,2005,7: 1-4
    [7]樊飞,郭佳,李志国等.互联电网低频振荡抑制措施研究.吉林电力,2002, 6: 22-25
    [8] Guoping Liu,Zbeng Xu,Ying Huang,et al.Analysis of Inter-area Oscillations in the South China Interconnected Power System.Electric Power Sytems Research . 2004, 70:38-45
    [9]毛晓明,吴小辰.南方交直流并联电网运行问题分析.电网技术,2004,28(2):6-13
    [10]肖晋宇,谢小荣,胡志祥等.电力系统低频振荡在线辨识的改进Prony算法.清华大学学报(自然科学版),2004,44(7):883-887
    [11] IEEE Power Engineering Society Systems Oscillations Working Group. Inter- Area Oscillations in Power Systems.IEEE Publication 95 TP 101, 1994,5-12
    [12]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析.北京:清华大学出版社,2002,260-271
    [13] DeMello F P, Concept of synchronous machine stability as affected by excitation control . IEEE Trans on PAS,1969,88 (4):316-329.
    [14]王敏.电力系统低频振荡的原因与对策.广东水利水电职业技术学院学报, 2004, 2(1):25-27
    [15]叶梅轩.抑制电力系统低频振荡综述.工程技术,2009,28
    [16]苗忠友,汤涌,李丹等.局部振荡引起区间大功率振荡的机理.中国电机工程学报,2007,27(10):73-77
    [17]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究.中国电机工程学报, 1997,17(6):391-394
    [18]檀斌,薛禹胜.多机系统混沌现象的研究.电力系统自动化,2001,25(2):3-8
    [19]刘晓鹏,吕世荣,郭强等.小干扰稳定性部分特征值分析的多重变换法.电力系统自动化,1998,22(9):38-42
    [20]武志刚,张尧,郑风霜等.电力系统特征值与状态变量对应关系分析.电力系统自动化,2001,25(5):23-26
    [21]谷寒雨,陈陈.一种新的大型电力系统低频振荡机电模式计算方法.中国电机工程学报,2000,20(9):50-54
    [22] THAPRA J, VITTAL V, KLIEMANN W, et al. Application of the Normal Form of Vector Fields to Predict Inter-area Separation in Power Systems. IEEE Trans on Power Systems, 1997,12(2):844-850
    [23]李颖晖,张保全.运用非线性系统理论确定电力系统暂态稳定域的一种新方法.中国电机工程学报,2000,20(1):41-44
    [24]徐东杰,贺仁睦,胡国强等.正规形方法在互联网低频振荡分析中的应用.中国电机工程学报,2004,24(3):18-23
    [25] CARR J. Application of Center ManifoldTheory. NewYork:Springer-Verfag, Inc, 1981
    [26]李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法.电力系统自动化,2007,31(1):14-19
    [27] PIERRE J W. TRUDNOWSKI D J , DONNELLY M K. Initial Results in Electro mechanical Mode Identification from Ambient Data. IEEE Trans on Power Systems, 1997, 12(3):1245-1251
    [28]刘溟.互联电网低频振荡分析及其对策的探讨.华中电力,2002,15(4):14-17
    [29]常勇,徐政. SVC广域辅助控制阻尼区域间低频振荡.电工技术学报,2006,21 (12): 40-46
    [30]张俊芳,蔡仕程,康明才等.统一潮流控制器抑制低频振荡的研究.南京理工大学学报,2007,31(4):23-26
    [31]刘红超,李兴源.基于PRONY辨识的交直流并联输电系统直流阻尼控制的研究.中国电机工程学报, 2002, 22(7) :54-57
    [32]韩英铎.电力系统最优分散协调控制.北京:清华大学出版社,1997
    [33]中国电力科学研究院.安保线功率振荡问题研究.北京:中国电力科学研究院, 1999
    [34]李丹,苏为民,张晶等.“9.1”内蒙古西部电网振荡的仿真研究.电网技术, 2006, 30(6): 41-47.
    [35]胡杨宇,李冬梅,付红军.华中电网一起功率波动事件振荡机理研究.华中电力, 2010,23(5):1-3
    [36]汤涌.电力系统强迫功率振荡的基础理论.电网技术, 2006, 30(10):29-33
    [37]汤涌.电力系统强迫功率振荡分析.电网技术, 1995, 19(12):6-10
    [38]王铁强,贺仁睦,王卫国等.电力系统低频振荡机理的研究.中国电机工程学报, 2002,22(2):21-25
    [39]韩志勇,贺仁睦,徐衍会.基于能量角度的共振机理电力系统低频振荡分析.电网技术, 2007, 31(8):13-16
    [40]徐衍会,贺仁睦,韩志勇.电力系统共振机理低频振荡扰动源分析.中国电机工程学报, 2007, 27(17):83-87
    [41]韩志勇,徐衍会,李志强等.汽轮机调速系统引起电力系统共振机理低频振荡扰动分析.陕西电力,2009:1-5
    [42]韩志勇,贺仁睦,徐衍会.汽轮机压力脉动引发共振机理低频振荡的研究.中国电机工程学报,2008,28(1):47-51
    [43]韩志勇,徐衍会,辛建波,等.水轮机组与电网耦合对电网动态稳定的影响.电工技术学报,2009, 24(9):166-170
    [44]韩志勇,贺仁睦,徐衍会.汽轮机压力脉动引发电力系统低频振荡的共振机理分析.中国电机工程学报,2008,28(1):47-51
    [45]余一平,闵勇,陈磊等.基于能量函数的强迫功率振荡扰动源定位.电力系统自动化, 2010, 34(5):1-6
    [46]竺炜,周有庆,谭喜意等.电网侧扰动引起共振型低频振荡的机制分析.中国电机工程学报,2009,29(25):37-42
    [47]竺炜,谭喜意,唐颖杰等.汽轮发电机组一次调频性能的分析.电力系统自动化, 2008,32(24):52-55
    [48]刘延柱,陈文良,陈立群.振动力学.北京:高等教育出版, 1998
    [49]徐基豫,于达仁,郭钰峰等.汽轮机调节原理.哈尔滨, 2001
    [50]文贤,钟晶亮,钱进.电网低频振荡时汽轮机控制策略研究.中国电机工程学报, 2009,29(26):107-111
    [51]王玉山,雷为民,李胜.京津唐电网一次调频投入现状及存在问题分析.华北电力技术,2006,3:1~10
    [52]王爽心,葛晓霞.汽轮机数字电液控制系统.北京:中国电力出版社,2004
    [53]范轶,唐井峰,于达仁等.关于汽轮机蒸汽功率测量的多传感器信息融合方法的研究.汽轮机技术,2003,45(3):157-159
    [54]张家琛,向春梅,马芳梅等.引进型300MW汽机数字电液控制系统同态特性研究.湖北电力技术,1994(4):34-38
    [55]邓集祥,纪晶,邓斌.基于复合模式的电力系统超低频振荡产生机理.电工技术学报,2007,22(8):84-89
    [56]王青,闵勇,张毅威.超低频区间振荡现象机理分析.继电器,2006,34(12): 63-68
    [57]余晓丹,韩瀛,贾宏杰.电力系统扩展小扰动稳定域及其研究.中国电机工程学报,2006,26(21):22-28
    [58]李新炜,蒋周士,史可琴等.火电厂动力系统与电力系统超低频振荡的相关性.电力自动化设备,2009,29(8):75-78
    [59]孙奎明,时海刚.热工自动化.北京:中国电力出版社,161-202
    [60]朱北恒.火电厂热工自动化系统试验.北京:中国电力出版社, 262-280
    [61]邓庆松,周世平. 300MW火电机组调试技术.北京:中国电力出版社, 373-422
    [62] de Mello F P. Boiler models for system performance studies. IEEE Transaction on Power System, 1991,6(1):66-74.
    [63]翁一武,于达仁,徐基豫.锅炉跟随控制的构成—兼直接能量平衡控制的动态特性.动力工程,2001,21(1):1050-1053

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700