中压电缆电网运行方式及故障模型仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市电网不断发展,电力电缆越来越多地应用于中压配电网络,由于空间和美观的需要,不少城市的配电网已经出现全部由电缆出线组成的电缆网。配电网中电缆数量的不断增加,网络的容性电流不断增大,有的网络容性电流甚至超过几百安培。近年来国内各省逐步推行“大经济圈”战略——各大城市强强联合,打造区域更富竞争力的城市群,这便使得原本就不断增长的城市配网电流“手拉手”后面临成倍增长,这将使得原有的运行方式受到很大挑战。
     目前大多数针对中压配电网线路故障的研究还只是停留在以架空线为主,电缆线路为辅的思维模式,一些针对架空线提出的理论模型并不适用于电缆,这就使得对于电缆线路可能产生的过电压和故障分析产生难以避免的偏差。因此,以电缆网这一极具代表性中压配电网络为对象,研究适用于它的故障模型是很有意义的。
     电力系统中的电缆线路属于具有分布参数的电路元件。分布参数电路的电磁暂态过程属于电磁波传播过程,简称波过程。暂态过程中形成的过电压以波的形式从线路传播到变压器、发电机或者输电线路的末端,也可以从一条线路传播到相连的另一个线路。电缆线路中的每种过电压也可以用波过程解释。对中压电缆网中几种典型过电压进行理论分析,可以为选择适当的运行方式和仿真实验提供理论基础。
     对现有架空线间歇性接地电弧理论基础上做出了改进,构建了适用于中压电缆网的间歇性电弧模型;使用受控制开关导通与关断单相接地电弧及可变电阻模拟电弧电阻,使其能更好地体现电弧的动态特性。研究了电缆绝缘破坏到电缆发生燃烧的过程。在理论研究的基础上,并根据电缆间歇性电弧模型建立了考虑热量积累效应的电弧烧毁模型;使用热量比较结果控制电弧接地开关的关断以实现故障类型的转化。这一模型更好地契合了中压电缆网实际运行中电弧故障的情况。
     结合对中压电缆网过电压的理论分析,使用PSCAD软件进行了仿真,并结合不同运行方式下过电压仿真结果进行了对比,指出中性点经小电阻接地方式对于瞬时性单相接地故障引起的过电压限制效果最好,且最有利于保护系统。中性点经消弧线圈接地方式对于各种过电压都能起到较好的限制作用,但不利于保护系统动作。
With the city power grid development, more and more power cables used in medium voltage distribution network. Due to space and aesthetic needs, many of the city's distribution networks have all cables outlet. The increasing number of cable in distribution network, the capacitive current of the network is increasing. Some capacitive current of the network even more than a few hundred amperes. In recent years, many provinces progressively implement the strategy of economic circle. Major cities are in combination to create the region more competitive urban agglomerations. This makes the already growing distribution network current doubling after "hand in hand and the original operation mode will face a serious challenge.
     Most for medium voltage distribution network failures which remain in the mode of thinking mainly of overhead lines, cable lines, supplemented by. The proposed theoretical model for overhead lines do not apply to cable. This makes the cable's over-voltage and failure analysis difficult to avoid deviation. Therefore, it is great significance for the study a fault model applied to cable networks which is a highly representative object in medium voltage distribution network.
     Cable lines in the power system are distributed parameters of the circuit elements. The electromagnetic transient process of distributed parameter circuit belongs to the electromagnetic wave propagation process, referred to as the wave process. The formation of over-voltage in the transient process from propagates form the line to the end of the transformer, generator or transmission line and also spread from one line to another line connected in the form of waves. Each of the over-voltage cable lines can also be explained with wave process. Several typical voltage theoretical analysis for medium voltage cable network can provide a theoretical basis for the selection of the appropriate operating mode and simulation.
     Make improvements to intermittent arc ground theory which on the basis of the existing overhead lines and build the intermittent arc model suitable for medium voltage cable network; using a controlled switch turn-on and turn-off single-phase ground arc, and using variable resistor simulated arc resistance, to enable them to better reflect the dynamic characteristics of the arc. Make a study to cable insulation damage to combustion process. On the basis of theoretical studies, based on the intermittent arc model of cable to establish the arc burned model to consider the effect of heat accumulation. Using heat compared results to controlled the turn-on and turn-off of the arc grounding switch in order to achieve the transformation of the type of fault. This model fit the medium-pressure arc fault in the actual operation of the cable network more better.
     Combination of front theoretical analysis of medium voltage cable network over-voltage, applicant of PSCAD software simulation and combine with a different operating mode voltage simulation results compared. Pointed out that the neutral point grounding with via low resistance caused by the transient single-phase ground fault over-voltage limit best. And the most conducive to the protection system. Neutral via arc suppression coil grounding method for a variety of over-voltage can play a better role in limit, but not conducive to the protection system action.
引文
[1]何慧雯.电缆出线变电站运行特性分析[D].华中科技大学硕士学位论文,2007.
    [2]胡其秀.电力电缆线路手册:设计、施工安装、运行维护[M].北京:中国水利水电出版社,2004.
    [3]包海龙.上海电力隧道建设的初步设想[J].上海电力,2003,16(3):219-223.
    [4]李霞娟,张丽.上海地区超高压电缆线路运行维护经验[J].华东电力,1994(2):41-42.
    [5]段建元.工厂配电线路及变电所设计计算[M].北京:机械工业出版社,1982.
    [6]王敏.10kV单相电力电缆屏蔽层的感应电压和环流[J].高电压技术,2002,28(5):30-32.
    [7]杨守信,杨力.110kV长庆电缆护套绝缘过电压保护分析计算[J].高电压技术,2004,30(4):22-24.
    [8]王荆.电力系统过电压识别方法及混合过电压分解方法研究[D].重庆大学博士学位论文,2011.
    [9]郭良峰.基于遗传算法的电力系统过电压分层模糊聚类识别[D].重庆大学硕士学位论文,2009.
    [10]孙才新,司马文霞,赵杰,等.特高压输电系统的过电压问题[J].电力自动化设备,2005,25(9):5-9.
    [11]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [12]王梦云,薛辰东.1995-1999年全国变压器类设备事故统计与分析[J].电力设备,2001,2(1):11-19.
    [13]薛磊.地下通信电缆的防雷[J].雷电和静电,VO1.1,No.1,1985.
    [14]DL/T401-2002.《高压电缆选用导则》[S].
    [15]杨保初,刘晓波,戴玉松.高电压技术[M].重庆:重庆大学出版社,2002.
    [16]林志超.中压电网系统中性点接地方式的选择与应用[J].高电压技术,2004,30(4):60-62.
    [17]要焕年,曹梅月.电力系统谐振接地[M].北京:中国电力出版社,2002.
    [18]刘明岩.配电网中性点接地方式的选择[J].电网技术,2004,28(16):86-89.
    [19]Andrei R G,Halley B R.Voltage transformer ferroresonance from an energy transfer standpoint[J].IEEE transactions on Power Deliver.1989,4 (3):1773-1778.
    [20]周浩,余于红,张利庭等.10kV配电网铁磁谐振消弧措施的仿真比较研究[J].电网技术,2005,29(25):24-34.
    [21]陈绍英,葛栋,常挥等.配电网超低频振荡的仿真计算研究[J].高电压技术,2004,30(5):18-20.
    [22]高亚栋,杜斌,赵峰等.中性点经小电阻接地配电网中弧光接地过电压的研究[J].高压电器,2004,40(5):345-348.
    [23]Araujo A E A, Soudack A C, Marti J R.Ferroresonance in power systems:chaotic behabiour[J]. IEE Proceedings-Generation Transmisson and Distribution,1993,140 (3):237-240.
    [24]束洪春.配电网络故障选线[M].北京:机械工业出版社,2008.
    [25]伍国兴.10kV配电网中性点灵活接地系统控制器的研制[D].华北电力大学(北京)硕士学位论文,2004.
    [26]弋东方,钟大文.电力工程电气设计手册[M].北京:中国电力出版社,1989.
    [27]崔江静,梁芝培,孙廷玺.电力电缆故障测试技术及应用的概述[J].高电压技术,2001,6:40-43.
    [28]徐丙垠,李胜祥,陈宗军.电力电缆故障探测技术[M}.北京:机械工业出版社,1999.
    [29]K.K.Kuan, Real-time expert system for fault location on high voltage underground distribution cables[J].IEE Proc-C,1992,39(03):918-924.
    [30]葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)-理论与实现技术[J].电力系统自动化,2002,3,26(03):34-40.
    [31]J.P.Steiner, W.L.Weeks, H.W.Ng. An automated fault locating system[J]. IEEE Trans On Power Delivery,1992,7(02):967-978.
    [32]王润卿,吕庆荣.电力电缆的安装、运行与故障测寻[M].北京:化学工业出版社.2001.
    [33]李明.基于小波变换的电缆故障测距研究[D].河北科技大学硕士学位论文,2009.
    [34]刘明生.电力电缆故障的测寻[M].北京:冶金工业出版社.1985年.
    [35]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学山版社,2007.
    [36]Sluis. L著.王一宇,周于邦译.电力系统暂态[M].北京:中国电力出版社,2003.
    [37]马晓红.架空—长电缆线路的过电压计算与分析[D].上海交通大学硕十学位论文,2005.
    [38]张炳达.注册电气工程师执业资格考试复习教程[M].天津:天津大学出版社,2010.
    [39]W.Petersen.Arcing Grounds(Intermittent Ground Faults).E.T.Z..1917,38:553-564.
    [40]J.F.Perter, J.Slepian.Voltages Induced by Arcing Ground. AIEE Trans,1923.42:478.
    [41]王秉钧.太原供电局城北变电站事故分析报告.1997.
    [42]弧光接地过电压的快速识别与抑制研究[D].重庆大学硕士学位论文,2010.
    [43]谢广润.电力系统过电压[M].北京:水利水电出版社,1985.
    [44]李小平.交联聚乙烯电力电缆的过电压保护及在城网农网改造中应用的研究[D].重庆大学工程硕士学位论文,2001.
    [45]GB50217—94,《电力工程电缆设计规范》[S],1994.
    [46]郑肇骥,王焜明.高压电缆线路[M].北京:水利电力出版社,1983.
    [47]金辉,李聪华.城市轨道交通供电系统的中压电缆不知及接地方式[J].电力设备,2005,4(6):58-60.
    [48]胡亚娟,王富荣.输电线路单相接地故障电弧模型仿真研究[J].电气开关,2008,46(2)25-28.
    [49]李姝.小电阻接地系统单相间歇性电弧接地研究[D].上海交通大学工程专业硕士学位 论文,2010.
    [50]L.C.Pinto, L.C.Zanetta Jr. Medium voltage SF6 circuit-breaker arc model application[J]. Electric power system research53.2000,67-71.
    [51]Wu Xixiu, Li ZhenBiao, Tian Yun, et al. Investigate on the Simulation of Black-box Arc Model[C].2011 1st International Conference on Electric Power Equipment-Switching Technology, Xi'an, China,629-636.
    [52]Peter Zeller, Thomas J. Schoepf. Advanced Arc Modle for Computation of Low Current Arc Characteristics [J].IEEE,2010.
    [53]胡平.可用于分析矿井电网单相电弧性接地过电压的近似电弧模型[J].煤炭学报,1992,17(2):80-88.
    [54]Lubomir Marcinak. Model of the arc earth-fault for medium voltage networks[J]. Central European Journal of Engineering,2011,1 (2):168-173.
    [55]Schotzau, H.J., Kneubuhl, F.K..A New Approach to High-power Arc Dynamics[J]. ETEP,1994, Vol.4,No.2,89-99.
    [56]Kizilcay M., La Seta P..Digital simulation of fault arcs in medium-voltage distribution networks[C]. Proceedings 15th Power Systems Computation Conference,22-26 August 2005, Liege, Belgium.
    [58]Hiroyasu Ohnishi, Humihiro Urano, Seiki Hasegaw, et al. Measurement of Arc Resistance and Dielectric Breakdown Voltage at Intermittent Grounding of 6.6 kV Distribution CVT Cable[J].IEEE Transactions on Power Delivery,1988,3(1):363-367.
    [59]国家电网公司人力资源部.配电电缆[M].北京:中国电力出版社,2010.
    [60]赵健康,樊友兵,王晓兵等.高压电力电缆金属护套下的热阻特性分析[J].高电压技术,2008,34(11):2483-2487.
    [61]李应宏,雷成华,刘刚.基于材料导热系数的单芯高压电缆导体温度动态分析[J].华东电力,2011,39(8):1299-1303.
    [62]张尧,周鑫,牛海清等.单芯电缆热时间常数的理论计算与试验研究[J].高电压技术,2009,35(11):2801-2806.
    [63]江日洪.交联聚乙烯电力电缆线路[M].北京:中国电力出版社,2009.
    [64]杨世铭,陶文铨.传热学[M],北京:高等教育出版社,2006.
    [65]张先泰,李天友,蔡金锭.基于暂态信号的中压配电网绝缘监测技术[J].供用电,2010,27(6):54-57.
    [66]严廷纯,倪成波,周鲁川等.基于瞬时性故障行波测距的电力电缆绝缘监测技术[J].电气应用,2012,31(3):24-27.
    [67]要焕年,曹梅月.电缆网络的中性点接地方式问题[J].电网技术,2003,27(2):84-89.
    [68]王继.电力系统中性点接地方式研究[Z].江苏省电力系统供电科技情报网,1998.
    [69]曹承宗.城网lOkV电网中性点接地方式若干问题的探讨[J].电器技术,1995,(3)
    [70]戴克铭,唐德光.苏州工业园区20kV配电网规划设计技术原则[J].供用电,1996,13(4): 7-9.
    [71]张海.6-35kV电网中性点灵活接地及其控制的研究[D].华北电力大学硕士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700