基于量子亏损理论的超冷原子分子碰撞研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文采用量子亏损理论研究了超冷原子-原子、超冷分子-分子之间的碰撞过程以及材料表面对入射超冷原子的量子反射,主要工作包括以下三个方面:
     (1)发展了利用解析量子亏损矩阵计算超冷原子碰撞的理论方法。该理论计算方法不依赖精确的电子相互作用势能曲线,只需要知道碰撞原子对的长程范德瓦尔斯系数、单/三重态散射长度,在不求解多通道耦合方程的情况下,可以给出碰撞原子对的散射性质和相应的双原子分子弱束缚能级。我们计算了6Li-40K碰撞体系Feshbach共振位置,理论计算结果与实验观测值符合得很好。
     (2)利用量子亏损理论研究了超冷极性分子在外电场中的放热反应碰撞。通过引入两组参数Dc3和Dent,给出了分子间相互作用势对入射波函数的反射、透射幅度的表达式。借助于反射波、透射波等概念,我们建立了一个清晰的碰撞动力学物理图像。当短程反应几率等于1时,描述分子从入射通道跃迁到产物通道的幅度等于入射波函数中穿过长程区间的部分。当短程反应几率小于1时,跃迁幅度可以看作由长程和短程势反射的波函数的相干叠加,反应速率随电场变化曲线中的共振结构由跃迁幅度的相干增强和相干减弱形成。
     (3)建立了描述材料表面反射超冷原子的三参数量子反射理论模型。基于量子亏损理论,我们定义了三个不随能量变化的参数,原子与表面在非阻滞区相互作用势的信息都包含在这三个参数中。我们计算了导体表面对钠原子的量子反射。结果表明,在量子反射现象明显的能量范围内,三参数模型可以给出精确的量子反射幅度。另外,我们建立的量子反射理论模型便于拟合实验数据,从中提取原子与表面相互作用势的相关信息。
This dissertation develops theoretical models for ultracold atomic and molecular collisions in external fields based on quantum defect theory. The main works are summarized as follows.
     (1)We present a theoretical model for describing ultracold atomic collision based on the multichannel quantum defect theory. An analytical expression for the quantum-defect ma-trix Y is derived for the truncated1/R6model potential, and the threshold behaviors of the quantum-defect parameters are discussed. The model allows us to predict the Feshbach resonances when the singlet and triplet scattering lengths are known, or fit the scattering lengths when a couple of Feshbach resonances is located experimentally. As an illustrative example, we investigate the6Li-40K scattering. The theoretical results agree quite well with the experimental values.
     (2)We investigate the scattering dynamics governed by the long-range van der Waals plus dipole-dipole interaction potential,-C6/R6-C3/R3, which describes the long-range interaction between two polar molecules in an electric field. In the spirit of quantum defect theory, a set of parameters which are nearly constants in the threshold regime is defined to characterize the scattering process. Using appropriate boundary conditions for the scattering wave functions and relevant parameters, we explore the quantum reflection by and quantum tunneling through the long-range potential. As a sample application, the reactive collision rates of40K87Rb+40K87Rb are calculated.
     (3)We investigate the quantum reflection by the Casimir-Polder potential which scales as-1/r3at short separation and as-1/r4at long separation. Using the available analytical solutions for the-1/r4potential and quantum defect theory, we develop a three-parameter model for quantum reflection. The three parameters characterizing the potential are es-sentially constant near the threshold. The application scope of the model is examined. For potential dominated by the-1/r4behaviour, which is the case in many realistic atom-surface systems, our model gives accurate results over the energy range in which the quantum re-flection is significant. Moreover, this parameterized model allows one to fit the experimental data efficiently.
引文
[1]Maiman T H. Stimulated Optical Radiation in Ruby [J]. Nature, 1960,187:493-494
    [2]Chu S. Nobel Lecture:The manipulation of neutral particles [J]. Rev. Mod. Phys.,1998,70:685-706.
    [3]Cohen-Tannoudji C N. Nobel Lecture:Manipulating atoms with photons [J]. Rev. Mod. Phys., 1998,70:707-719.
    [4]Phillips W D. Nobel Lecture:Laser cooling and trapping of neutral atoms [J]. Rev. Mod. Phys., 1998,70:721-741.
    [5]Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor [J]. Science,1995,269:198-201.
    [6]Davis K B, Mewes M O, Andrews M R, et al. Bose-Einstein Condensation in a Gas of Sodium Atoms [J]. Phys. Rev. Lett.,1995,75:3969-3973.
    [7]Demarco B and Jin D S. Onset of Fermi degeneracy in a trapped atomic gas [J]. Science,1999,285: 1703-1706.
    [8]Jones K M, Tiesinga E, Lett P D, et al. Ultracold photoassociation spectroscopy:Long-range molecules and atomic scattering [J]. Rev. Mod. Phys.,2006,78:483-535.
    [9]Feshbach H. Unified theory of nuclear reactions [J]. Ann. Phys.-New York,1958,5:357-390.
    [10]Feshbach H. A unified theory of nuclear reactions. II [J]. Ann. Phys.-New York,1962,19:287-313.
    [11]Fano U. Effects of Configuration Interaction on Intensities and Phase Shifts [J]. Physical Review, 1961,124:1866-1878.
    [12]Tiesinga E, Verhaar B J, and Stoof H T C. Threshold and resonance phenomena in ultracold ground-state collisions [J]. Phys. Rev. A,1993,47:4114-4122.
    [13]Inouye S, Andrews M R, Stenger J, et al. Observation of Feshbach resonances in a Bose-Einstein condensate [J]. Nature,1998,392:151-154.
    [14]Chin C, Grimm R, Julienne P, et al. Feshbach resonances in ultracold gases [J]. Rev. Mod. Phys., 2010,82:1225-1286.
    [15]Herbig J, Kraemer T, Mark M, et al. Preparation of a pure molecular quantum gas [J]. Science, 2003,301:1510-1513.
    [16]Cubizolles J, Bourdel T, Kokkelmans S J J M, et al. Production of Long-Lived Ultracold Li2 Molecules from a Fermi Gas [J]. Phys. Rev. Lett.,2003,91:240401 (1-4).
    [17]Strecker K E, Partridge G B and Hulet R G. Conversion of an Atomic Fermi Gas to a Long-Lived Molecular Bose Gas [J]. Phys. Rev. Lett.,2003,91:080406 (1-4).
    [18]Greiner M, Regal C A, Jin D S. Emergence of a molecular Bose-Einstein condensate from a Fermi gas [J]. Nature,2003,426:537-540.
    [19]Ni K K, Ospelkaus S, de Miranda M H G, et al. A High Phase-Space-Density Gas of Polar Molecules [J]. Science,2008,322:231-235.
    [20]Danzl J G, Mark M J, Haller E, et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice [J]. Nature Physics,2010,6:265-270.
    [21]Friedrich B and Doyle J M. Why are cold molecules so hot? [J]. Chemphyschem,2009,10:604-623.
    [22]Stuhl B K, Hummon M T, Yeo M, et al. Evaporative cooling of the dipolar hydroxyl radical [J]. Nature,2012,492:396-400.
    [23]Ospelkaus S, Ni K, Wang D, et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules [J]. Science,2010,327:853-857.
    [24]Ni K, Ospelkaus S, Wang D, et al. Dipolar collisions of polar molecules in the quantum regime [J]. Nature,2010,464:1324-1328.
    [25]De Miranda M, Chotia A, Neyenhuis B, et al. Controlling the quantum stereodynamics of ultracold bimolecular reactions [J]. Nature Physics,2011,7:502-507.
    [26]宋鹤山,量子力学(第二版)[M]。大连理工大学出版社,大连,2006。
    [27]Fano U and Rau A R P. Atomic Collisions and Spectra [M]. Orlando:Academic Press,1986.
    [28]Burke J P, Jr. Theoretical Investigation of Cold Alkali Atom [D]. Colorado:University of Colorado, 1999.
    [29]Sadeghpour H R, Bohn J L, Cavagnero M J, et al. Collisions near threshold in atomic and molecular physics [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2000,33:R93-R140.
    [30]Gribakin G F and Flambaum V V. Calculation of the scattering length in atomic collisions using the semiclassical approximation [J]. Phys. Rev. A,1993,48:546-553.
    [31]Seaton M J. Quantum defect theory [J]. Rep. Prog. Phys.,1983,46:167-257.
    [32]Watanabe S and Greene C H. Atomic polarizability in negative-ion photodetachment [J]. Phys. Rev. A,1980,22:158-169.
    [33]Mies F H and Julienne P S. A multichannel quantum defect analysis of two-state couplings in diatomic molecules [J]. The Journal of chemical physics,1984,80:2526-2536.
    [34]Raoult M and Balint-Kurti G G. Application of Generalized Quantum-Defect Theory to Photodis-sociation Processes:Predissociation of Ar-H2 [J]. Phys. Rev. Lett.,1988,61:2538-2541.
    [35]Ferlaino F, Knoop S, and Grimm R. Ultracold Feshbach molecules [G]//Krems R V, Stwalley W C, and Friedrich B. Cold Molecules:Theory, Experimental, Applications. Boca Raton:CRC,2009.
    [36]Cornish S L, Thompson S T, and Wieman C E. Formation of Bright Matter-Wave Solitons during the Collapse of Attractive Bose-Einstein Condensates [J]. Phys. Rev. Lett.,2006,96:170401 (1-4).
    [37]Giorgini S, Pitaevskii L P, and Stringari S. Theory of ultracold atomic Fermi gases [J]. Rev. Mod. Phys.,2008,80:1215-1274.
    [38]Johnson B R. The renormalized Numerov method applied to calculating bound states of the coupled-channel Schroedinger equation [J]. The Journal of Chemical Physics,1978,69:4678-4688.
    [39]Manolopoulos D E. An improved log derivative method for inelastic scattering [J]. The Journal of chemical physics,1986,85:6425-6429.
    [40]Moerdijk A J, Verhaar B J, and Axelsson A. Resonances in ultracold collisions of 6Li,7Li, and 23Na [J]. Phys. Rev. A,1995,51:4852-4861.
    [41]Li Z and Kroms R V. Electric-field-induced Feshbach resonances in ultracold alkali-metal mixtures [J]. Phys. Rev. A,2007,75:032709 (1-8).
    [42]Greene C H, Rau A R P, and Fano U. General form of the quantum-defect theory. Ⅱ [J]. Phys. Rev. A,1982,26:2441-2459.
    [43]Mies F H. A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering [J]. The Journal of chemical physics,1984,80:2514-2525.
    [44]Mies F H and Raoult M. Analysis of threshold effects in ultracold atomic collisions [J]. Phys. Rev. A,2000,62:012708 (1-19).
    [45]Sidky E Y and Ben-Itzhak I. Phase-amplitude method for calculating resonance energies and widths for one-dimensional potentials [J]. Phys. Rev. A,1999,60:3586-3592.
    [46]Jr. Burke J P, Greene C H, and Bohn J L. Multichannel Cold Collisions:Simple Dependences on Energy and Magnetic Field [J]. Phys. Rev. Lett.,1998,81:3355-3358.
    [47]Gao B, Tiesinga E, Williams C J, et al. Multichannel quantum-defect theory for slow atomic collisions [J]. Phys. Rev. A,2005,72:042719 (1-7).
    [48]Hanna T M, Tiesinga E, and Julienne P S. Prediction of Feshbach resonances from three input parameters [J]. Phys. Rev. A,2009,79:040701 (1-4).
    [49]Gao B. Universal Properties in Ultracold Ion-Atom Interactions [J]. Phys. Rev. Lett.,2010,104: 213201 (1-4).
    [50]Idziaszek Z, Simoni A, Calarco T, et al. Multichannel quantum-defect theory for ultracold atom-ion collisions [J]. New J. Phys.,2011,13:083005 (1-42).
    [51]Idziaszek Z and Julienne P S. Universal rate constants for reactive collisions of ultracold molecules [J]. Phys. Rev. Lett.,2010,104:113202 (1-4).
    [52]Croft J F E, Wallis A O G, Hutson J M, et al. Multichannel quantum defect theory for cold molecular collisions [J]. Phys. Rev. A,2011,84:042703 (1-9).
    [53]Wille E, Spiegelhalder F M, Kerner G, et al. Exploring an Ultracold Fermi-Fermi Mixture:Inter-species Feshbach Resonances and Scattering Properties of 6Li and 40K [J]. Phys. Rev. Lett.,2008, 100:053201 (1-4).
    [54]Tiecke T G, Goosen M R, Walraven J T M, et al. Asymptotic-bound-state model for Feshbach resonances [J]. Phys. Rev. A,2010,82:042712 (1-11).
    [55]Xie T, Wang G, Zhang W, et al. Electric-field modulation of the magnetically induced 6Li-40K Feshbach resonance [J]. Phys. Rev. A,2011,84:032712.
    [56]Mies F H, Tiesinga E, and Julienne P S. Manipulation of Feshbach resonances in ultracold atomic collisions using time-dependent magnetic fields [J]. Phys. R.ev. A,2000,61:022721 (1-17).
    [57]Nygaard N, Schneider B I, and Julienne P S. Two-channel R-matrix analysis of magnetic-field-induced Feshbach resonances [J]. Phys. Rev. A,2006,73:042705 (1-10).
    [58]Gao B. Analytic description of atomic interaction at ultracold temperatures. Ⅱ. Scattering around a magnetic Feshbach resonance [J]. Phys. Rev. A,2011,84:022706 (1-12).
    [59]Gao B. Theory of slow-atom collisions [J]. Phys. Rev. A,1996,54:2022-2039.
    [60]Crubellier A and Luc-Koenig E. Threshold effects in the photoassociation of cold atoms:R-6 model in the Milne formalism [J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2006,39: 1417-1446.
    [61]Londono B E, Mahecha J E, Luc-Koenig E, et al. Shape resonances in ground-state diatomic molecules:General trends and the example of RbCs [J]. Phys. Rev. A,2010,82:012510 (1-15).
    [62]Korsch H J and Laurent H. Milne's differential equation and numerical solutions of the Schrodinger equation. I. Bound-state energies for single-and double-minimum potentials [J]. Journal of Physics B:Atomic and Molecular Physics,1981,14:4213-4230.
    [63]Abramowitz M and Stegun I A. Handbook of Mathematical Functions [G]. Washington DC:Na-tional Bureau of Standards,1964.
    [64]Gao B. Analytic description of atomic interaction at ultracold temperatures:The case of a single channel [J]. Phys. Rev. A,2009,80:012702 (1-12).
    [65]Gao B. Zero-energy bound or quasibound states and their implications for diatomic systems with an asymptotic van der Waals interaction [J]. Phys. Rev. A,2000,62:050702 (1-4).
    [66]Tiecke T G, Goosen M R, Ludewig A, et al. Broad Feshbach Resonance in the 6Li-40K Mixture [J]. Phys. Rev. Lett.,2010,104:053202 (1-4).
    [67]Julienne P S and Gao B. Simple Theoretical Models for Resonant Cold Atom Interactions [C]. AIP Conf. Proc.,2006,869:261-268.
    [68]Raab P and Friedrich H. Quantization function for deep potentials with attractive tails [J]. Phys. Rev. A,2008,78:022707 (1-13).
    [69]Koch C P, Masnou-Seeuws F, Kosloff R. Creating Ground State Molecules with Optical Feshbach Resonances in Tight Traps [J]. Phys. Rev. Lett.,2005,94:193001 (1-4).
    [70]Krems R V. Controlling Collisions of Ultracold Atoms with dc Electric Fields [J]. Phys. Rev. Lett., 2006,96:123202(1-4).
    [71]Madison K W and Li Z. Effects of electric fields on heteronuclear Feshbach resonances in ultracold 6Li-87Rb mixtures [J]. Phys. Rev. A,2009,79:042711 (1-10).
    [72]Verhaar B, Kokkelmans S, Marcelis B. Total Control over Ultracold Interactions via Electric and Magnetic Fields [J]. Phys. Rev. Lett.,2008,100:153201 (1-4).
    [73]Tarbutt M R, Hudson J J, Sauer B E, et al. Prospects for measuring the electric dipole moment of the electron using electrically trapped polar molecules [J]. Faraday Discuss.,2009,142:37-56.
    [74]Zelevinsky T, Kotochigova S, and Ye J. Precision Test of Mass-Ratio Variations with Lattice-Confined Ultracold Molecules [J]. Phys. Rov. Lett.,2008,100:043201 (1-4).
    [75]Soderberg K B, Gemelke N, and Chin C. Ultracold molecules:vehicles to scalable quantum infor-mation processing [J]. New J. Phys.,2009,11:055022.
    [76]Micheli A, Brennen G K, and Zoller P. A toolbox for lattice-spin models with polar molecules [J]. Nature Physics,2006,2:341-347.
    [77]Kohler T, Goral K, and Julienne P S. Production of cold molecules via magnetically tunable Fesh-bach resonances [J]. Rev. Mod. Phys.,2006,78:1311-1361.
    [78]Ulmanis J, Deiglmayr J, Repp M, et al. Ultracold Molecules Formed by Photoassociation:Het-eronuclear Dimers, Inelastic Collisions, and Interactions with Ultrashort Laser Pulses [J]. Chem. Rev.,2012,112:4890-4927.
    [79]Ospelkaus S, Ni K K, Quemener G, et al. Controlling the Hyperfine State of Rovibronic Ground-State Polar Molecules [J]. Phys. Rev. Lett.,2010,104:030402 (1-4).
    [80]Krems R V. Cold controlled chemistry [J]. Phys. Chem. Chem. Phys.,2008,10:4079-4092.
    [81]Weck P F and Balakrishnan N. Importance of long-range interactions in chemical reactions at cold and ultracold temperatures [J]. Int. Rev. Phys. Chem.,2006,25:283-311.
    [82]Quemener G and Julienne P S. Ultracold Molecules under Control! [J]. Chem. Rev.,2012,112: 4949-5011.
    [83]Gao B. Quantum Langevin model for exoergic ion-molecule reactions and inelastic processes [J]. Phys. Rev. A,2011,83:062712 (1-4).
    [84]Fernandez-Ramos A, Miller J A, Klippenstein S J, et al. Modeling the Kinetics of Bimolecular Reactions [J]. Chem. Rev.,2006,106:4518-4584.
    [85]Gao B. General form of the quantum-defect theory for -1/γα type of potentials with α>2 [J]. Phys. Rev. A,2008,78:012702 (1-16).
    [86]Gao B. Universal model for exoergic bimolecular reactions and inelastic processes [J]. Phys. Rev. Lett.,2010,105:263203 (1-4).
    [87]Julienne P S, Hanna T M, and Idziaszek Z. Universal ultracold collision rates for polar molecules of two alkali-metal atoms [J]. Phys. Chem. Chem. Phys.,2011,13:19114-19124.
    [88]Gao B. Repulsive 1/r3 interaction [J]. Phys. Rev. A,1999,59:2778-2786.
    [89]Deb B and You L. Low-energy atomic collision with dipole interactions [J]. Phys. Rev. A,2001,64: 022717 (1-13).
    [90]Quemener G and Bohn J L. Strong dependence of ultracold chemical rates on electric dipole mo-ments [J]. Phys. Rev. A,2010,81:022702 (1-9).
    [91]Idziaszek Z, Quemener G, Bohn J L, et al. Simple quantum model of ultracold polar molecule collisions [J]. Phys. Rev. A,2010,82:020703 (1-4).
    [92]Quemener G, Bohn J L, Petrov A, et al. Universalities in ultracold reactions of alkali-metal polar molecules [J]. Phys. Rev. A,2011,84:062703 (1-11).
    [93]Milne W E. The Numerical Determination of Characteristic Numbers [J]. Physical Review,1930, 35:863-867.
    [94]Lee S Y and Light J C. On the quantum momentum method for the exact solution of separale multiple well bound state and scattering problems [J]. Chem. Phys. Lett.,1974,25:435-438.
    [95]Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in Fortran 77 [M]. Cambridge: Cambridge University Press,1992.
    [96]Bethe H A. Theory of the Effective Range in Nuclear Scattering [J]. Physical Review,1949,76: 38-50.
    [97]O'Malley T F, Spruch L, and Rosenberg L. Modification of Effective-Range Theory in the Presence of a Long-Range r-4 Potential [J]. J. Math. Phys.,1961,2:491-498.
    [98]Arnecke F, Friedrich H, and Madronero J. Effective-range theory for quantum reflection amplitudes [J]. Phys. Rev. A,2006,74:062702 (1-8).
    [99]Mesfin E and Friedrich H. Phases of the amplitudes for transmission and near-side quantum reflec-tion in attractive potential tails [J]. Phys. Rev. A,2006,74:032103 (1-16).
    [100]Polder D and Casimir H B G. The Influence of Retardation on the London-van der Waals Forces [J]. Physical Review,1948,73:360-372.
    [101]Shimizu F. Specular reflection of very slow metastable neon atoms from a solid surface [J]. Phys. Rev. Lett.,2001,86:987 (1-4).
    [102]Wieman C E and Cornell E A. Nobel Lecture:Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments [J]. Rev. Mod. Phys.,2002,74:875-893.
    [103]Ketterle W. Nobel lecture:When atoms behave as waves:Bose-Einstein condensation and the atom laser [J]. Rev. Mod. Phys.,2002,74:1131-1151.
    [104]Shin Y, Sanner C, Saba M, et al. Quantum Reflection from a Solid Surface at Normal Incidence [J]. Phys. Rev. Lett.,2004,93:223201 (1-4).
    [105]Pasquini T A, Saba M, Jo G B, et al. Low Velocity Quantum Reflection of Bose-Einstein Conden-sates [J]. Phys. Rev. Lett.,2006,97:093201 (1-4).
    [106]Li M and Gao B. Quantum-defect theory of resonant charge exchange [J]. Phys. Rev. A,2012,86: 012707 (1-8).
    [107]Dufour G, Gerardin A, Guerout R, et al. Quantum reflection of antihydrogen from the Casimir potential above matter slabs [J]. Phys. Rev. A,2013,87:012901 (1-7).
    [108]Mody A, Haggerty M, Doyle J M, et al. No-sticking effect and quantum reflection in ultracold collisions [J]. Phys. Rev. B,2001,64:085418 (1-15).
    [109]Voronin A Y, Froelich P, and Zygelman B. Interaction of ultracold antihydrogen with a conducting wall [J]. Phys. Rev. A,2005,72:062903 (1-11).
    [110]Gallagher T F. Rydberg atoms [J]. Rep. Prog. Phys.,1988,51:143-188.
    [111]Gallagher T F. Rydberg Atoms [G]//Drake G W. Springer Handbook of Atomic, Molecular and Optical Physics. New York:Springer,2006.
    [112]Lifshitz E M. The theory of molecular attraction forces between solid bodies [J]. Sov. Phys.-JETP, 1956,2:73-83.
    [113]Antezza M, Pitaevskii L P, and Stringari S. Effect of the Casimir-Polder force on the collective oscillations of a trapped Bose-Einstein condensate [J]. Phys. Rev. A,2004,70:053619 (1-10).
    [114]Judd T E, Scott R. G, Martin A M, et al.Quantum reflection of ultracold atoms from thin films, graphene and semiconductor heterostructures [J]. New J. Phys.,2011,13:083020 (1-14).
    [115]Marinescu M, Dalgarno A, Babb J F. Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall [J]. Phys. Rev. A,1997,55:1530-1532.
    [116]Fricdrich H, Jacoby G, and Meister C G. Quantum reflection by Casimir-van der Waals potential tails [J]. Phys. Rev. A,2002,65:032902 (1-13).
    [117]Lennard-Jones J E and Devonshire A F. The Interaction of Atoms and Molecules with Solid Surfaces. III. The Condensation and Evaporation of Atoms and Molecules [J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences,1936,156:6-28.
    [118]Friedrich H and Trost J. Working with WKB waves far from the semiclassical limit [J]. Physics Reports,2004,397:359-449.
    [119]Arnecke F, Madronero J, and Friedrich H. Jost functions and singular attractive potentials [J]. Phys. Rev. A,2008,77:022711 (1-8).
    [120]Jurisch A and Friedrich H. Quantum reflection times and space shifts for Casimir-van der Waals potential tails [J]. Phys. Rev. A,2004,70:032711 (1-8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700