金属有机多面体的组装及其功能化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命体系中的一系列生命过程,都是通过一系列识别与催化过程完成的。金属有机多面体(MOPs),是由具有特定配位构型的金属离子与特定结构的配体经由配位自组装形成的结构高度有序的实体。金属有机多面体具有独特的结构,特定的空腔尺寸,在空腔内引入功能化的识别与催化位点,可以通过超分子作用识别客体分子,并且进行具有酶促动力学特征的催化反应。
     1.金属有机多面体对生物小分子的识别
     本文设计合成了富含三十六个酰胺基团的四臂配体,通过与稀土金属离子Ce3+配位自组装得到的变形三棱柱Ce-L1,利用其中含有十二个未参与配位的酰胺基团作为多重的氢键识别位点,通过笼状配合物的立体选择性的协同作用,可以在一系列天然糖类分子中选择性识别乳糖分子。设计合成的四面体配合物Zn-L2、Co-L2,能够选择性识别ATP分子。配合物分子中三苯胺基团的荧光特性,实现了在核糖核苷酸分子中以荧光为信号输出基团选择性识别ATP分子。
     2.金属有机多面体催化性能的研究
     设计合成了两种三臂配体,与稀土金属离子Ce3+配位自组装得到的变形四面体笼状配合物Ce-L3、Ce-L4,可以识别4-硝基苯甲醛分子。将其应用于醛类分子的硅腈化反应,实现了以变形四面体为分子反应器催化小的醛类分子的硅腈化反应。而四面体Ce-L5含有酰胺基团和大的共轭平面,以荧光和核磁为输出信号选择性识别9-蒽乙醛分子。同时作为分子反应器,以大的π-π堆积作用位点,实现了在提供反应环境的同时作为催化剂催化9-蒽乙醛分子的光二聚反应,生成[4,4]的光二聚环加成产物。跟踪9-蒽乙醛分子的硅腈化反应,在高浓度下反应呈现零级反应特征,反应进程可以被抑制剂抑制,表明四面体Ce-L5对9-蒽乙醛的催化过程具有酶促反应动力学特征。
     3.超分子光化学的研究
     吡啶钌的配合物与多酸组装成的超分子体系,光照条件下存在电子转移现象,并且组装的超分子体系光电稳定性和强度明显优于单一的体系,实现了超分子体系对光电信号传递的促进。以荧光素作为光敏剂,三乙胺为电子牺牲剂的光解水制氢体系中,笼状配合物Co-L7与光敏剂荧光素之间存在明显的主客体超分子作用,光解水制氢量明显高于相应基于单核钴的配合物Co-L8的反应体系,表明超分子作用在光解水制氢的过程中起到重要的促进作用,实现了通过超分子作用增强体系的光解水制氢产率。
Biochemical reactions, which are necessary for all life processin living systems, undergo a series of recognition and catalytic process. Metal organic polyhedra (MOPs) are a kind of highly ordered entity which are self-assembled by the metal ions with a specific coordination geometry and the ligands. MOPs have unique structure and the cavity of the particular size. By introducing the catalytic and recognition sites in their cavity, MOPs could recognize guest molecules through supramolecular interaction and catalyze reactions mimicking enzymes.
     1The recognition of biological molecules based on metal-organic polyhedra
     The octa-nuclear bicoronal triangular prism Ce-L1could be self-assembled by the four-arms ligands of thirty-six amide group and Ce3+. It could high selectively recognize lactose among related natural mono-and disaccharides solution through multiple hydrogen bonding sites of twelve amide bond groups and size selection. Tetrahedral complexes of Zn-L2, Co-L2were designed and synthesized to recognize ATP. The tetrahedral complexes worked as fluorescence sensors to selectively recognize ATP among ribonucleotide molecules based on fluorescence characteristics of triphenyl amine groups.
     2Studies on organic reactions catalyzed by metal-organic polyhedra
     The Cerium-based warped tetrahedral structures Ce-L3and Ce-L4self-assembled from two ligands and Ce3+were designed and synthesized. They could recognize4-nitrobenzaldehyde and worked as molecular flasks to catalyze cyanosilylation reactions of aldehyde molecules. The tetrahedron Ce-L5containing amide groups and large conjugate planes could recognize2-(anthracen-9-yl)acetaldehyde accompany with signal output of the fluorescent and NMR. It worked as a molecular flask to catalyze photodimerization reactions of9-anthracene acetaldehyde through π-π interaction and get [4,4] cyclo-dimerization product. The cyanosilylation reactions were tracked by NMR which showed pseudo-zeroth-order characteristics at high concentration, and the reaction process could be inhibited by a inhibitor. It is suggested that the catalytic process worked as enzyme kinetics.
     3Studies on supramolecular photochemistry
     The supramolecular systems containing polypyridyl ruthenium complexes and polyoxometalates have stable electrochemical and optoelectronic signals under photoreation, and the assembled supramolecular systems are morestable and stronger than a single system to achieve supramolecular systems for promotion of electrochemical and optoelectronic signals. In the hydrogen production system where fluorescein worked as a photosensitizer and triethylamine as an electron sacrificial agent, tetrahedral complexes Co-L7exhibited host-guest supramolecular interaction with photosensitizer fluorescein. The evolution of hydrogen production is significantly higher than the reaction system with corresponding cobalt-based mononuclear complexes Co-L8. It is suggested that the supramolecular interactions play an important role in light-driven the hydrogen production system and realized the promoting of hydrogen production through supramolecular interaction.
引文
[1]Pedersen C J. The Discovery of Crown Ethers (Noble Lecture) [J]. Angew. Chem. Int. Ed., 1988,27:1021-1027.
    [2]Lehn J M. Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) [J]. Angew. Chem. Int. Ed., 1988,27:89-112.
    [3]Cram D J. The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture) [J]. Angew. Chem. Int. Ed.,1988,27:1009-1020.
    [4]Steed J W, Turner D R, Wallace K J. Core Concepts in Supramolecular Chemistry and Nanochemistry[M]. John Wiley & Sons:West Sussex, U.K.,2007.
    [5]Steed J W, Atwood J L. Supramolecular Chemistry[M]. John Wiley & Sons:West Sussex, U.K.,2000.
    [6]Lehn J M. Supramolecular Chemistry:Concepts and Perspectives [M]. VCH:Weinheim, Germany,1995.
    [7]Sauvage J P, Dietrich-Buchecker C E. Molecular Catenanes, Rotaxanes, and Knots:A Journey Through the World of Molecular Topology [M].Wiley-VCH:Weinheim, Germany,1999.
    [8]Stang P J. From Solvolysis to Self-Assembly [J]. J. Org. Chem.,2009,74:2-20.
    [9]Northrop B H, Chercka D, Stang P J. Carbon-rich supramolecular metallacycles and metallacages [J]. Tetrahedron,2008,64:11495-11503.
    [10]Seidel S R, Stang P J. High-Symmetry Coordination Cages via Self-Assembly [J]. Acc. Chem. Res.,2002,35:972-983.
    [11]Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals [J]. Chem. Rev.,2000,100:853-908.
    [12]Stang P J. Molecular Architecture:Coordination as the Motif in the Rational Design and Assembly of Discrete Supramolecular Species-Self-Assembly of Metallacyclic Polygons and Polyhedra [J]. Chem.-Eur. J.1998,4:19-27.
    [13]Olenyuk B, Fechtenkotter A, Stang P J. Molecular architecture of cyclic nanostructures: use of coordination chemistry in the building of supermolecules with predefined geometric shapes [J]. J. Chem. Soc., Dalton Trans.,1998,1707-1728.
    [14]Stang P J, Olenyuk B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra [J]. Acc. Chem. Res.,1997,30:502-518.
    [15]Caulder D L, Raymond K N. The rational design of high symmetry coordination clusters [J]. J. Chem. Soc., Dalton Trans.,1999,1185-1200.
    [16]Caulder D L, Raymond K N. Supermolecules by Design [J]. Acc. Chem. Res.,1999, 32:975-982.
    [17]Caulder D L, Bruckner C, Powers R E, et al. Design, Formation and Properties of Tetrahedral M4L4 and M4L6 Supramolecular Clusters1 [J]. J. Am. Chem. Soc.2001, 123:8923-8938.
    [18]Fujita M, Tominaga M, Hori A, et al. Coordination Assemblies from a Pd(II)-Cornered Square Complex [J]. Acc. Chem. Res.,2005,38:369-378.
    [19]Fujita M, Umemoto K, Yoshizawa M, et al. Molecular paneling via coordination [J]. Chem. Commun.,2001,509-518.
    [20]Fujita M. Metal-directed self-assembly of two-and three-dimensional synthetic receptors [J]. Chem. Soc. Rev.,1998,27:417-425.
    [21]Oliveri C G, Ulmann P A, Wiester M J. Hetero ligated Supramolecular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction [J]. Acc. Chem. Res.,2008,41:1618-1629.
    [22]Gianneschi N C, Masar M S, Mirkin C A. Development of a Coordination Chemistry-Based Approach for Functional Supramolecular Structures [J]. Acc. Chem. Res.,2005,38:825-837.
    [23]Holliday B J, Mirkin C A. Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry [J]. Angew. Chem. Int. Ed.,2001,40:2022-2043.
    [24]Cotton F A, Lin C, Murillo C A. Supramolecular Chemistry and Self-assembly Special Feature:The use of dimetal building blocks in convergent syntheses of large arrays [J]. Proc. Natl. Acad. Sci. U. S. A.,2002,99:4810-4813.
    [25]Cotton F A, Lin C, Murillo C A. Supramolecular Arrays Based on Dimetal Building Units [J]. Acc. Chem. Res.,2001,34:759-771.
    [26]Yoshizawa M, Fujita M. Development of Unique Chemical Phenomena within Nanometer-Sized, Self-Assembled Coordination Hosts [J]. Bull. Chem. Soc. Jpn.2010,83: 609-618.
    [27]Yoshizawa M, Klosterman J K, Fujita M. Functional Molecular Flasks:New Properties and Reactions within Discrete, Self-Assembled Hosts [J]. Angew. Chem. Int. Ed.,2009, 48:3418-3438.
    [28]Maurizot V, Yoshizawa M, Kawano M, et al. Control of molecular interactions by the hollow of coordination cages [J]. Dalton Trans.2006,2750-2756.
    [29]Pluth M D, Bergman R G, Raymond K N. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host [J]. Acc. Chem. Res.2009,42:1650-1659.
    [30]Fiedler D, Leung D H, Bergman R G, et al. Selective molecular recognition, C-H bond activation, and catalysis in nanoscale reaction vessels [J]. Acc. Chem. Res.2005,38: 349-358.
    [31]Davis A V, Yeh R M, Raymond K N. Supramolecular assembly dynamics [J]. Proc. Natl. Acad. Sci. U. S. A.2002,99:4793-4796.
    [32]Snurr R Q, Hupp J T, Nguyen S T. Prospects for nanoporous metal-organic materials in advanced separations processes [J]. AIChE J.2004,50:1090-1095.
    [33]Nguyen S T, Gin D L, Hupp J T, et al. Supramolecular chemistry:functional structures on the mesoscale [J]. Proc. Natl. Acad. Sci. U. S. A.2001,98:11849-11850.
    [34]Dinolfo P H, Hupp J T. Supramolecular Coordination Chemistry and Functional Microporous Molecular Materials [J]. Chem. Mater.2001,13:3113-3125.
    [35]Fujita M, Oguro D, Miyazawa M, et al. Self-assembly of ten molecules into a nanometer-sized organic host frameworks [J]. Nature 1995,378:469-471.
    [36]Yu S Y, Kusukawa T, Biradha K, et al. Hydrophobic assembling of a coordination nanobowl into a dimeric capsule which can accommodate up to six large organic molecules [J]. J. Am. Chem. Soc.2000,122:2665-2666.
    [37]Fujita N, Biradha K, Fujita M, et al. A porphyrin prism:structural switching triggered by guest inclusion [J]. Angew. Chem. Int. Ed.2001,40:1718-1721.
    [38]Bar A K, Chakrabarty R, Mostafa G, et al. Self-assembly of a nanoscopic Pt12Fe12 heterometallic open molecular box containing six porphyrin walls [J]. Angew. Chem. Int. Ed.2008,47:8455-8459.
    [39]Saalfrank R W, Stark A, Peters K, et al. The First "Adamantoid" Alkaline Earth Metal Chelate Complex:Synthesis, Structure, and Reactivity [J]. Angew. Chem. Int. Ed. Engl. 1988,27:851-853.
    [40]Beissel T, Powers R E, Parac T N, et al. Dynamic Isomerization of a Supramolecular Tetrahedral M4L6 Cluster [J]. J. Am. Chem. Soc.1999,121:4200-4206.
    [41]Johnson D W, Raymond K N. The Self-Assembly of a [Ga4L6]12-Tetrahedral Cluster Thermodynamically Driven by Host-Guest Interactions [J]. Inorg. Chem.2001,40: 5157-5161.
    [42]Biros S M, Yeh R M, Raymond K N. Design and Formation of a Large Tetrahedral Cluster Using 1,1'-Binaphthyl Ligands [J]. Angew. Chem. Int. Ed.2008,47:6062-6064.
    [43]Ward M D. Polynuclear coordination cages [J]. Chem. Commun.2009,4487-4499.
    [44]Tidmarsh I S, Taylor B F, Hardie M J, et al. Further investigations into tetrahedral M4L6 cage complexes containing guest anions:new structures and NMR spectroscopic studies [J]. New J. Chem.2009,33:366-375.
    [45]Paul R L, Argent S P, Jeffery J C, et al. Structures and anion-binding properties of M4L6 tetrahedral cage complexes with large central cavities [J]. Dalton Trans.2004,3453-3458.
    [46]Hall B R, Manck L E, Tidmarsh I S, et al. Structures, host-guest chemistry and mechanism of stepwise self-assembly of M4L6 tetrahedral cage complexes [J]. Dalton Trans.2011,40:12132-12145.
    [47]Clegg J K, Lindoy L F, Moubaraki B, et al. Triangles and tetrahedra:metal directed self-assembly of metallo-supramolecular structures incorporating bis-β-diketonato ligands [J]. Dalton Trans.2004,2417-2423.
    [48]Clegg J K, Li F, Jolliffe K, et al. An expanded neutral M4L6 cage that encapsulates four tetrahydrofuran molecules [J]. Chem. Commun.2011,47:6042-6044.
    [49]Mal P, Schultz D, Beyeh K, et al. An unlockable-relockable iron cage by subcomponent self-assembly [J]. Angew. Chem. Int. Ed.2008,47:8297-8301.
    [50]Meng W, Clegg J K, Thoburn J D, et al. Controlling the Transmission of Stereochemical Information through Space in Terphenyl-Edged Fe4L6 Cages [J]. J. Am. Chem. Soc.2011, 133:13652-13660.
    [51]Hristova Y R, Smulders M M J, Clegg J K, et al. Selective anion binding by a "Chameleon" capsule with a dynamically reconfigurable exterior [J]. Chem. Sci.2011,2: 638-641.
    [52]Granzhan A, Riis-Johannessen T, Scopelliti R, et al. Combining metallasupramolecular chemistry with dynamic covalent chemistry:synthesis of large molecular cages [J]. Angew. Chem. Int. Ed.2010,49:5515-5518.
    [53]Granzhan A, Schouwey C, Riis-Johannessen T, et al. Connection of metallamacrocycles via dynamic covalent chemistry:A versatile method for the synthesis of molecular cages [J]. J. Am. Chem. Soc.2011,133:7106-7115.
    [54]Leininger S, Fan J, Schmitz M, et al. Archimedean solids:transition metal mediated rational self-assembly of supramolecular-truncated tetrahedra [J]. Proc. Natl. Acad. Sci. U. S. A.2000,97:1380-1384.
    [55]Zheng Y R, Zhao Z, Kim H, et al. Coordination-driven self-assembly of truncated tetrahedra capable of encapsulating 1,3,5-triphenylbenzene [J]. Inorg. Chem.2010,49: 10238-10240.
    [56]Roche S, Haslam C, Adams H, et al. Self-assembly of a supramolecular cube [J]. Chem. Commun. (Cambridge, U. K.) 1998,1681-1682.
    [57]Suzuki K, Tominaga M, Kawano M, et al. Self-assembly of an M6L12 coordination cube [J]. Chem. Commun. (Cambridge, U. K.) 2009,1638-1640.
    [58]Johannessen S C, Brisbois R G, Fischer J P, et al. A Nano-Scale Barrel and Cube: Transition Metal-Mediated Self-Assembly of CpCoCb-Derived Ligand Scaffolds [J]. J. Am. Chem. Soc.2001,123:3818-3819.
    [59]Muller I M, Spillmann S, Franck H, et al. Rational Design of the First Closed Coordination Capsule with Octahedral Outer Shape [J]. Chem.—Eur. J.2004,10: 2207-2213.
    [60]Li J R, Timmons D J, Zhou H C. Interconversion between Molecular Polyhedra and Metal-Organic Frameworks [J]. J. Am. Chem. Soc.2009,131:6368-6369.
    [61]Hiraoka S, Harano K, Shiro M, et al. Isostructural coordination capsules for a series of 10 different d5-d10 transition-metal ions [J]. Angew. Chem. Int. Ed.2006,45:6488-6491.
    [62]Olenyuk B, Levin M D, Whiteford J A, et al. Self-Assembly of Nanoscopic Dodecahedra from 50 Predesigned Components [J]. J. Am. Chem. Soc.1999,121:10434-10435.
    [63]Levin M D, Stang P J. Insights into the Mechanism of Coordination-Directed Self-Assembly [J]. J. Am. Chem. Soc.2000,122:7428-7429.
    [64]Mirtschin S, Slabon-Turski A, Scopelliti R, et al. A Coordination Cage with an Adaptable Cavity Size [J]. J. Am. Chem. Soc.2010,132:14004-14005.
    [65]Tominaga M, Suzuki K, Kawano M, et al. Finite, Spherical Coordination Networks that Self-Organize from 36 Small Components [J]. Angew. Chem., Int. Ed.2004,43, 5621-5625.
    [66]Fujita D, Takahashi A, Sato S, et al. Self-Assembly of Pt(II) Spherical Complexes via Temporary Labilization of the Metal-Ligand Association in 2,2,2-Trifluoroethanol [J]. J. Am. Chem. Soc.,2011,133:13317-13319.
    [67]Moulton B, Lu J, Mondal A, et al. Nanoballs:nanoscale faceted polyhedra with large windows and cavities [J]. Chem. Commun. (Cambridge, U. K.) 2001,863-864.
    [68]Aoyama Y, Tanaka Y,Toi H,etal. Polar host-guest interaction. Binding of nonionic polar compounds with a resorcinol-aldehyde cyclooligomer as a lipophilic polar host [J]. J. Am. Chem. Soc.,1988,110:634-635.
    [69]James T D, Sandanayake K R A S, Shinkai S. Chiral discrimination of monosaccharides using a fluoreseent moleeular senor [J]. Nature,1995,374:345-347.
    [70]James T D, Shinkai S, Iguchi R, et al. Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine [J]. J. Am. Chem. Soc., 1995,117:8982-8987.
    [71]Phllips M D, James T D. Boronic Acid Based Modular Fluorescent Sensors for Glucose [J]. J. Fluoresc,2004,14:549-559.
    [72]Zhao J Z, Davidson M G,Mahon M F, et al.An Enantioselesctive Fluorescent Sensor for Sugar Acid [J]. J. Am. Chem. Soc.,2004,126:16179-16186.
    [73]Klein E, Ferrand Y, Barwell N P, et al. Solvent Effects in Carbohydrate Binding by Synthetic Receptors:Implications for the Role of Water in Natural Carbohydrate Recognition [J]. Angew. Chem. Int. Ed.,2008,47:2693-2696.
    [74]Ferrand Y, Crump M P, Davis A P. A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition [J]. Science,2007,318:619-622.
    [75]He C, Lin Z H, He Z, et al. Metal-Tunable Nanocages as Artificial Chemosensors [J]. Angew. Chem. Int. Ed.,2008,47:877-881.
    [76]Liu Y, Wu X, He C, et al. Self-assembly of cerium-based metal-organic tetrahedrons for size-selectively luminescent sensing natural saccharides [J]. Chem. Commun.,2009, 7554-7556.
    [77]Hosseini M W, Blacker A J, Lehn J M. Multiple Molecular Recognition and Catalysis.A Multifunctional Anion Receptor Bearing an Anion Binding Site,an Intercalating Group,and a Catalytic Site for Nucleotide Binding and Hydrolysis [J]. J. Am. Chem. Soc., 1990,112:3896-3904.
    [78]Xu Z, Singh N J, Lim J, et al. Unique Sandwieh Stacking of Pyrene-Adenin-Pyrene For Selective and Ratiometric Fluorescent Sensing of ATP at Physiological pH [J].J. Am. Chem. Soc.,2009,131:15528-15533.
    [79]Neelakandan P P, Hariharan M, Ramaiah D.Synthesis of a Novel Cyclic Donor-Acceptor Conjugate for Selective Recognition of ATP [J].Org. Lett.,2005, 26:5765-5768.
    [80]Amendola V, Bergamaschi G, Buttafava A, et al. [J] J. Am. Chem. Soc.,2010,132:147.
    [81]Wu H, He C, Lin Z, et al. Metallohelical Triangles for Selective Detection of Adenosine Triphosphate in Aqueous Media [J]. Inorg. Chem.,2009,48:408-410.
    [82]Liu Y, Wu X, He C, et al. A truncated Octahedral Nanocage for Fluorescent Detection of Nucleoside [J]. Dalton Trans.,2008,5866-5868.
    [83]Kim T K, Lee D N, Kim H J. Highly Selective Fluorescent Sensor for Homoeysteine and Cysteine[J].Tetra.Lett.,2008,49:4879-4881.
    [84]Li H L, Fan J L, Wang J Y, et al. A Fluorescent Chemodosimeter Specific for Cysteine: Effective Discrimination of Cysteine from Homocysteine[J].Chem.Comm.,2009,39: 5904-5906.
    [85]Tashiro S, Tominaga M, Kawano M, et al. Sequence-Selective Recognition of Peptides within the Single Binding Pocket of a Self-Assembled Coordination Cage [J]. J. Am. Chem. Soc.,2005,127:4546-4547.
    [86]Tashiro S, Tominaga M, Yamaguchi Y, et al. Folding a De Novo Designed Peptide into an a-Helix through Hydrophobic Binding by a Bowl-Shaped Host [J]. Angew. Chem. Int. Ed.,2006,45:241-244.
    [87]He C, Wang J, Wu P Y, et al.Fluorescent Differentiation and Quantificational Detection of Free Tryptophan in Serum within Confined Metal-Organic Tetrahedron [J]. Chem. Commun.,2012,48:11880-11882.
    [88]Inokuma Y, Kawano M, Fujita M. Crystalline Molecular Flasks [J]. Nature Chemistry, 2011,3:349-358.
    [89]Yoshizawa M, Klosterman J K, Fujita M. Functional Molecular Flasks:New Properties and Reactions within Discrete, Self-Assembled Hosts [J]. Angew. Chem. Int. Ed.,2009, 48:3418-3438.
    [90]Takezawa H., Murase T., Fujita M. Temporary and Permanent Trapping of the Metastable Twisted Conformer of an Overcrowded Chromic Alkene via Encapsulation [J]. J. Am. Chem. Soc.,2012,134:17420-17423.
    [91]Inokuma Y, Yoshioka S, Fujita M. A Molecular Capsule Network:Guest Encapsulation and Control of Diels-Alder Reactivity [J]. Angew. Chem. Int. Ed.,2010,49:8912-8914.
    [92]Mal P, Breiner B, Rissanen K, et al. White Phosphorus Is Air-Stable Within a Self-Assembled Tetrahedral Capsule [J]. Science,2009,324:1697-1699.
    [93]Yoshizawa M, Tamura M, Fujita M. Diels-Alder in Aqueous Molecular Hosts:Unusual Regioselectivity and Efficient Catalysis [J]. Science 2006,312,251-254.
    [94]Parac T N, Caulder D L, Raymond K N. Selective Encapsulation of Aqueous Cationic Guests into a Supramolecular Tetrahedral [M4L6]12- Anionic Host [J] J. Am. Chem. Soc.1998,120,8003-8004.
    [95]Fiedler D, Bergman R G, Raymond K N. Supramolecular Catalysis of a Unimolecular Transformation:Aza-Cope Rearrangement within a Self-Assembled Host [J]. Angew. Chem. Int. Ed.2004,43,6748-6751.
    [96]Pluth M D, Bergman R G,Raymond K N. Acid Catalysis in Basic Solution:A Supramolecular Host Promotes Orthoformate Hydrolysis [J]. Science 2007,316,85-88.
    [97]Wu X, He C, Wu X, et al. An L-proline functionalized metallo-organic triangle as size-selective homogeneous catalyst for asymmetry catalyzing aldol reactions [J]. Chem. Commun.,2011,47:8415-8417.
    [98]Fujita M, Oguro D, Miyzawa M, et al. Self-assembly of 10 Molecules into Nanometre-sized Organic Host Frameworks [J]. Nature,1995,378:469-471.
    [99]Ramamurthy, V, Venkatesan, K. Photochemical Reactions of Organic Crystals [J]. Chem. Rev.,1987,87:433-481.
    [100]Cohen M D, Schmidt G M. Topochemistry.1. Survey [J]. J. Chem. Soc.,1964, 1996-2000.
    [101]Yoshizawa M, Takeyama Y, Kusukawa T, et al. Cavity-directed, Highly Stereoselective [2+2] Photodimerization of Olefins within Self-assembled Coordination Cages [J]. Angew. Chem. Int. Ed.2002,41:1347-1349.
    [102]Takaoka K, Kawano M, Ozeki T, et al. Crystallographic Observation of an Olefin Photodimerization Reaction that Takes Place via Thermal Molecular Tumbling within a Self-assembled Host [J]. Chem. Commun.2006,1625-1627.
    [103]Kawano M, Kobayashi Y, Ozeki T, et al. Direct Crystallographic Observation of a Coordinatively Unsaturated Transition-metal Complex in Situ Generated within a Self-assembled Cage [J]. J. Am. Chem. Soc.2006,128:6558-6559.
    [104]Gordon R B, Bertram M, Graedel T E. Metal Stocks and Sustainability [J]. Proc. Natl. Acad. Sci.USA 2006,103:1209-1214.
    [105]Fukuzumi S. Development of Bioinspired Artificial Photosynthetic Systems [J]. Phys. Chem. Chem. Phys.2008,10:2283-2297.
    [106]Aratani N, Kim D, Osuka A. Discrete Cyclic Porphyrin Arrays as Artificial Light-Harvesting Antenna [J]. Acc. Chem. Res.2009,42:1922-1934.
    [107]O. S. Wenger. Long-range Electron Transfer in Artificial Systems with d6 and d8 Metal Photosensitizers [J]. Coord. Chem. Rev.2009,253:1439-1457.
    [108]Flamigni L, Collin J P, Sauvage J P. Iridium Terpyridine Complexes as Functional Assembling Units in Arrays for the Conversion of Light Energy [J]. Acc. Chem. Res. 2008,41:857-871.
    [109]Wasielewski M R. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems [J]. Acc. Chem. Res.2009, 42:1910-1921.
    [110]Tard C, Pickett C J. Structural and Functional Analogues of the Active Sites of the [Fe]-, [NiFe]-, and [FeFe]-Hydrogenases [J]. Chem. Rev.2009,109:2245-2274.
    [111]Canaguier S, Artero V, Fontecave M. Modelling NiFe Hydrogenases:Nickel-based Electrocatalysts for Hydrogenproduction [J]. Dalton Trans,2008,315-325.
    [112]Oudart Y, Artero V, Pecaut J, et al. Dinuclear Nickel-Ruthenium Complexes as Functional Bio-Inspired Models of [NiFe] Hydrogenases [J]. J. Inorg. Chem.2007,2613-2626.
    [113]Canaguier S, Vaccaro L, Artero V, et al. Cyclopentadienyl Ruthenium-Mickel Catalysts for Biomimetic Hydrogen Evolution:Electrocatalytic Properties and Mechanistic DFT Studies [J]. Chem. Eur. J.2009,15:9350-9365.
    [114]Oudart Y, Artero V, Norel L, et al. Synthesis, Crystal Structure, Magnetic Properties and Reactivity of a Ni-Ru Model of NiFe Hydrogenases with a Pentacoordinated Triplet (S=1) NiⅡ Center [J]. J. Organomet. Chem.2009,694:2866-2869.
    [115]Canaguier S, Fontecave M, Artero V. Cp*-Ruthenium-Nickel-Based H2-Evolving Electrocatalysts as Bio-inspired Models of NiFe Hydrogenases [J]. Eur. J. Inorg. Chem. 2011,1094-1099.
    [116]Barton B E, Whaley C M, Rauchfuss T B, et al. Nickel-Iron Dithiolato Hydrides Relevant to the [NiFe]-Hydrogenase Active Site [J]. J. Am. Chem. Soc.2009,131: 6942-6943.
    [117]Canaguier S, Field M, Oudart Y, et al. A Structural and Functional Mimic of the Active Site of NiFe Hydrogenases [J]. Chem. Commun.2010,46:5876-5878.
    [118]Barton B E, Rauchfuss T B. Hydride-Containing Models for the Active Site of the Nickel-Iron Hydrogenases [J]. J. Am. Chem. Soc.2010,132:14877-14885.
    [119]Brimblecombe R, Swiegers G F, Dismukes G C, et al. Sustained Water Oxidation Photocatalysis by a Bioinspired Manganese Cluster [J]. Angew. Chem. Int. Ed.2008, 47:7335-7338.
    [120]Duan L, Xu Y, Zhang P, et al. Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System [J]. Inorg. Chem.2010,49:209-215.
    [121]Xu Y, Fischer A, Duan L, et al. Chemical and Light-Driven Oxidation of Water Catalyzed by an Efficient Dinuclear Ruthenium Complex [J]. Angew. Chem. Int. Ed. 2010,49,8934-8937.
    [122]Geletii Y V, Botar B, Koegerler P, et al. An All-Inorganic, Stable, and Highly Active Tetraruthenium Homogeneous Catalyst for Water Oxidation [J]. Angew. Chem. Int. Ed. 2008,47,3896-3899.
    [123]Du P W, Schneider J, Luo G G, et al. Correction to Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts [J]. Inorg. Chem.2009,48,8646-8646.
    [123]Du P W, Schneider J, Luo G G, et al. Visible Light-Driven Hydrogen Production from Aqueous Protons Catalyzed by Molecular Cobaloxime Catalysts [J]. Inorg. Chem.2009, 48,4952-4962.
    [124]Kirch M, Lehn J M, Sauvage J P. Hydrogen Generation by Visible Light Irradiation of Aqueous Solutions of Metal Complexes. An approach to the Photochemical Conversion and Storage of Solar Energy [J]. Helv. Chim. Acta.1979,62:1345-1384.
    [125]Chan S F, Chou M, Creutz C, et al. Mechanism of the Formation of Dihydrogen from the Photoinduced Reactions of Poly(pyridine)ruthenium(II) and Poly(pyridine)rhodium(III) complexes [J]. J. Am.Chem. Soc.1981,103,369-379.
    [126]Probst B, Rodenberg A, Guttentag M, et al. A Highly Stable Rhenium-Cobalt System for Photocatalytic H2 Production:Unraveling the Performance-Limiting Steps [J]. Inorg. Chem.2010,49,6453-6460.
    [127]Hawecker J, Lehn J M, Ziessel R. New J. Chem.1983,7,271-277.
    [128]Fihri A, Artero V, Razavet M, et al. Cobaloxime-Based Photocatalytic Devices for Hydrogen Production [J]. Angew. Chem.Int. Ed.2008,47,564-567.
    [129]McNamara W R, Han Z, Alperin P J, et al. A Cobalt-Dithiolene Complex for the Photocatalytic and Electrocatalytic Reduction of Protons [J]. J. Am. Chem. Soc.2011,133, 15368-15371.
    [130]Lazarides T, McCormick T, Du P W, et al. Making Hydrogen from Water Using a Homogeneous System Without Noble Metals [J]. J. Am. Chem. Soc.2009,131, 9192-9194.
    [131]Zhang P, Wang M, Dong J, et al. Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BFx-Bridged Oxime Ligands [J]. J. Phys. Chem. C,2010,114,15868-15874.
    [132]Baffert C, Artero V, Fontecave M. Cobaloximes as Functional Models for Hydrogenases.2. Proton Electroreduction Catalyzed by Difluoroborylbis(dimethylglyo-ximato)cobalt(II) Complexes in Organic Media [J]. Inorg. Chem.2007,46,1817-1824.
    [133]Yuan Y X, Chen Y, Wang Y C, et al. Redox Responsive Luminescent Switch Based on a Ruthenium(II) Complex [Ru(bpy)2(PAIDH)]2+[J]. Inorg. Chem. Comm.2008,11, 1048-1050.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700