一种新型超分辨重建技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高分辨成像技术一直是航天、遥感、目标识别等领域的研究热点。随着光学成像全面进入光电数字成像时代,大多数光电成像系统的空间分辨率受限于探测器,于是,“如何提高探测器分辨率”必然成为高分辨光电成像系统中的核心问题。
     本论文主要是针对这类探测器受限的光电成像系统,研究新型超分辨成像理论和技术,来同时减少探测器的采样机理与像元感光区孔径效应对系统空间分辨率的影响,更好的实现光电系统中线性不变性与非线性不变性之间特性匹配。在这里,我们提出一种基于异型像元探测器的焦平面编码方法,它融合了光学成像、光电学和光电信号处理等学科的相关基础理论,可以同时提高探测器的采样频率和截止频率,从而有效地提高探测器的空间分辨率、提升光电系统的整体分辨率。我们相信,该课题将为我国超高分辨率光电成像系统的研究做出前瞻性的探索,也为我国研制具有自主知识产权的高分辨成像探测器提供一定的理论储备。
     论文研究内容及成果主要包括如下几个方面:
     1.通过大量的调研和分析,将现有超分辨重建技术归纳总结为以下两类:基于过采样原理的用于面阵探测器的微扫描技术和用于线阵探测器的亚像元技术;还有基于CDMA原理的频谱编码技术。
     2.利用光学、电学、信号处理等相关理论的分析,讨论了影响光电成像系统空间分辨率的因素——光学系统的截止频率、探测器采样频率和探测器感光区的截止频率以及它们之间的相互制约关系,进而分析验证现有超分辨重建技术的有效性及局限性。这对新型超分辨重建技术的探索有着重要的理论指导意义。
     3.针对现有超分辨重建技术的局限性,探索新型超分辨重建方法。由于现有超分辨重建技术主要问题是当不改变探测器感光区时,探测器的最大分辨率为一个像元感光区尺寸的物方成像,系统分辨率仍受限于探测器,所以新型超分辨重建技术应该同时减少探测器的采样机理与像元感光区孔径效应对系统空间分辨率的影响。
     结合现有超分辨重建技术和采用小像元探测器各自的优缺点,提出一种基于异型像元探测器的焦平面编码方法。具体实施方案如下:将现有的探测器矩形像元逐一“变形”,去除同一位置1/4象限,用剩余的3/4像元来获取等效于“去除那部分小像元”的高频信息;然后利用视场拼接来获取系统所需要的高采样频率;最后利用算法计算出这些编码后的图像灰度矩阵信息,重建最终的高分辨图像。该方法已经申请国际发明专利。
     4.结合理论和实验两方面,验证了基于异型像元探测器的焦平面编码技术的有效性。
     理论上我们利用傅里叶光学中的线性空间不变性,建立该异型像元探测器感光区的点扩散函数,证明该方法可以将探测器的截止高频提升2倍,从分辨率角度,它可以等效于其1/4尺寸的小像元;试验上我们选取填充因子100%的46μm×46μm中波红外探测器,利用焦距6000mm、口径600mm的红外平行光管和焦距为50mm的中波红外镜头成像,得到的物方靶标分辨率为3.1mm。
High resolved imaging technologies and even super-resolved ones are always the hot topics in the electronic-optical domain. As optical imaging system transits to Electro-Optical imaging one, a new question appears that the resolution is mainly limited by detector. It is obvious that the prior is to enhance detector resolution for the high-resolved or even super-resolved imaging system. Furthermore, the main influencing factor limiting detector resolution is the spectral aliasing by the undersampling phenomenon, so super-resolution reconstruction is usually used to improve the imaging quality.
     In terms of the problem that how to enhance the detector resolution and make the system resolution not being affected by it, we take a lot of researches on the E-O imaging performance analyses and classical super-resolution reconstruction methods. Then we attempt to use some unconventional imaging theories and technologies to break some limits existing in recent methods. During the period, we get some meaningful theoretical-and-experimental results, as the followings:
     1. Three types of super-resolution reconstruction methods are summarized that microscanning for focal plane arrays, sub-pixel technology for linear arrays and spectral coding without movement elements.
     2. In theory, super-resolution reconstruction is proved available from both views of MTF modeling and sensitivity. Three main influencing factors of E-O imaging system are analyzed that diffractive cutoff, detector cutoff depending on the size and shape of active area, and Nyquist frequency which is the highest frequency reconstructed without aliasing. Through computing the relation among them, we make sure that the resolution is related to the size of active area with original detectors by super-resolution reconstruction. What’s more, Overall system-resolution is limited by detector for the low-filterring effect of active area.
     3. Considering it depends on the size and shape of active area as well as the sampling process, spatial resolution is enhanced further unless the cutoffs between optical system and detector match better after obtaining sufficient sampling frequency. Focal-plane coding method is proposed to realize this idea. With two detector-arrays of special-shaped pixel where each pixel is deducted a quarter, multiple mis-registered frames are got to solve the grayscale matrix and reconstruct super-resolution image in the post-detector processing. We present the theoretical assessment that if a small plot of active area per pixel is deducted and the frequency-response distribution of the complement will equal to that of the deducted part without consideration of the amplitude.
     4. We prove the idea available from both theoretical and experimental views. We set up point spread function of the special-shaped active area and the equations imply the method should increase detector cutoff frequency two times. Furthermore, we also take a MWIR experiment. We choose initially two 46μm×46μm linear arrays which are 100% full factor and cut down a quarter each pixel. The result demonstrates the bar-contrast interval is discriminated in objective space up to 3.1mm after optical system composed of a 6000-mm f/10 collimator and a 50-mm IR lens.
引文
[1]郁道银,谈恒英等.工程光学[M].第2版.北京:机械工业出版社, 2006.195-196.
    [2]古德曼.傅立叶光学导论[M].第3版.秦克诚等译.北京:电子工业出版社, 2006. 20-23.
    [3] Geisler W S and Hamilton D B. Sampling-theory analysis of spatial vision[J]. J. Opt. Soc. Am. A, 1986, 3(1): 62-70.
    [4] Vollmerhausen R, Driggers R G and O’kane B L. Influence of sampling on target recognition and identification[J]. Opt. Eng., 1999, 38(5):763-772.
    [5] Driggers R G, Vollmerhausen R and Edwards T. The target identification performance of infrared imager models as a function of blur and sampling[J]. SPIE, 1999, 3701: 26-34.
    [6]吴翔,倪旭翔,陆祖康.光电图像传感器中的光学低通滤波器[J].光电子.激光, 2001, 12(11): 1123-1125.
    [7]赵廷玉,王蓉,刘玉玲等.光学低通滤波器的特性分析[J].光学仪器, 2006, 28(1): 14-19.
    [8]李云川,林斌,曹向群等.光学低通滤波器的光学传递函数分析[J].光子学报, 2006,35(11): 1693-1696.
    [9] Alber G M and Marshall A G. Effect of sampling rate on fourier transform spectra: oversampling is overrated[J]. Applied Spectroscopy, 1990, 44(7): 1111-1116.
    [10] Gillette J C, Stadtmiller T M and Hardie R C. Aliasing reduction in staring infrared imagers utilizing subpixel techniques[J]. Opt. Eng., 1995, 34(11): 3130-3137.
    [11] Hadar O and Boreman G D. Analysis of oversampling requirements in infrared scene projectors[J]. SPIE, 1997, 3122: 286-294.
    [12] TSAI R Y, HUANG T S. Multiple-frame image restoration and registration[C]. In: Greenwich, eds. Advances in Computer Vision and Image Processing. CY: JAI Press Inc., 1984. 317-339.
    [13] Driggers R, Krapels K and Young S. The Meaning of Super-Resolution [J]. Proc. SPIE, 2005, 5784: 103-105.
    [14] KOMATSUT, AIZAWA K, IGARASHI T, et al. Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis[J]. Proc. Inst. Elec. Eng., 1993, 140(1): 19-25.
    [15]谭兵.多帧图像空间分辨率增强技术研究[D]:[博士学位论文].合肥:中国人民解放军信息工程大学测绘学院,2004.
    [16] Vollmerhausen R H, Driggers R. Analysis of Sampled Imaging Systems[M]. Bellingham, Wa. : SPIE Press, 2000. 4-5.
    [17] Lewis K. Hybrid Computational Imaging Techniques[J]. Proc. SPIE, 2009, 7468: 031-038.
    [18] Mait J N, Athale R, Gracht J. Evolutionary paths in imaging and recent trends[J]. OPTICS EXPRESS, 2003. 11(18): 2093-2101.
    [19] Friedenberg A. Microscan in infrared staring systems[J]. Opt. Eng., 1997, 36(6): 1745-1749.
    [20] Blommel F P, Dennis P N and Bradley D J. The effects of microscan operation on staring infrared sensor imagery[J]. SPIE, 1991, 1540: 653-664.
    [21] Awamoto A, Ito Y, Ishizaki H and Yoshida Y. Resolution improvement for HgCdTe IRCCD[J]. SPIE, 1992, 1685: 213-220.
    [22] Fortin J, Chevrette P and Plante R. Evaluation of the microscanning process[J]. SPIE, 1994, 2269: 271-279.
    [23] Fortin J and Chevrette P. Realization of a fast microscanning device for infrared focal plane arrays[J]. SPIE, 1996, 2743:185-196.
    [24] Sanders J, Wan W, Harris V, et al. Compact airbone staring FPA sensor with microscanning[J]. SPIE, 1996, 2743: 158-165.
    [25] Wiltse J M and Miller J L. Imagery improvements in staring infrared imagers by employing subpixel microscan[J]. Optical Engineering, 2005, 44(5): 056401_1-056401_9.
    [26] Miller J L and Wiltse J M. Benefits of microscan for staring infrared images[J]. SPIE, 2004, 5407: 127-138.
    [27] Kim H S, Kim C W. Compact mid-wavelength infrared zoom camera with 20:1 zoom range and automatic athermalization[J]. OPTICAL ENGINEERING, 2002, 41(7): 1661-1667.
    [28] Zhang H T, Zhang Y, Zhao D Z. Comparison of microscan model and optical prefiltering model for aliasing artifacts reduction in discrete imaging systems[J]. SPIE, 1998, 3553: 222-230.
    [29]张海涛,赵达尊.微扫描减少光电成像系统频谱混淆的数学原理及实现[J].光学学报,1999,19(9):1263-1268.
    [30]左月萍,张建奇.几种工作模式的微扫描成像系统的理论建模和仿真[J].红外与毫米波学报,2003,22(2):145-148.
    [31]拜丽萍,李庆辉,王炳建等.基于序列图像处理技术的高分辨率红外图像重建方法[J].红外技术,2002, 24(6):58-61.
    [32]首山雄,陈进勇.微扫描多幀平滑FPN提高CMOS图像传感器信噪比[J].浙江大学学报,2002, 36(6): 621-623.
    [33] Wen D S, Liu X P, Wang H, et al. Novel subpixel imaging system with linear CCD sensors[J]. SPIE, 2001, 4563: 116-122.
    [34] Gueguen F, Bettes A, Toulemont Y, et al. SPOT series camera improvement for the HRG, very high resolution instrument of SPOT 5[J]. SPIE, 1999, 3737:301-312.
    [35]谭兵,徐青,耿则勋等.超分辨率图像重建技术发展现状[J].信息工程大学学报,2004,4(4):93-97.
    [36]刘新平,高瞻,邓年茂等.面阵CCD作探测器的“亚象元”成象方法及实验[J].科学通报, 1999, 44(15): 1603-1605.
    [37]刘新平,高英俊,鲁昭等.遥感器小型化技术研究[J].遥感技术与应用, 1999, 14(3): 30-33.
    [38]刘新平,王虎,汶德胜.亚象元线阵CCD焦平面的光学拼接[J].光子学报,2002, 31(6):781-784.
    [39]周峰,王世涛,王怀义.关于亚像元成像技术几个问题的探讨[J].航天返回与遥感,2002,23(4): 26-33.
    [40]周峰,吴崇德.提高航天传输型CCD相机地面像元分辨率方法研究[J].航天返回与遥感,2002, 23(3): 23-42.
    [41]周春平,田越,季统凯等.一种提高CCD成像卫星空间分辨率的方法研究[J].遥感学报,2002, 6(3): 179-182.
    [42]钱霖,叶燕.一种提高CCD像元分辨率方法的初步探讨[J].光学技术,2002, 28(4): 374-375.
    [43]钱霖.两帧图像的“亚象元”技术提高探测图像的空间分辨率[J].激光杂志,2004, 25(6): 54-56.
    [44]刘扬阳,金伟其,苏秉华等.超分辨力图像处理技术进展及在遥感中的应用[J].红外与激光工程, 2005, 34(1): 70-73.
    [45] Tanida J, Kinmagai T, Yamada K, Miyatake S, et al. Thin observation module by bound optics(TOMOBO): concept and experimental verification[J]. Appl. Opt. 2001, 40(11): 1806-1813.
    [46] Nitta K, Shogenji R, Myiatake S, et al. Image reconstruction for thin observation module by bound optics by using iterative backprojection method[J]. Applied Optics, 2006, 45: 2893-2900.
    [47] Choi K and Schulz Z J. Signal-processing approaches for image-resolution restoration for TOMBO imagery[J]. APPLIED OPTICS, 2008, 47(10):B104-B116.
    [48] Tholl H D, Krogmann D and Giesenberg O. New infrared seeker Technology[J]. SPIE, 1998, 3436: 484-493.
    [49] Krogmann D, Tholl H D. Infrared Micro-Optics Technologies[C]. In: Andresen B F, eds. Infrared Technology and Applications XXX. Bellingham: WA, 2004. 121-132.
    [50] Dowski E R, Cathey W T. Extended depth of field through wave-front coding[J].Applied Optics, 1995, 34(11): 1859-1866.
    [51] Bradburn S, Cathey W T and Dowski E R. Realizations of focus invariance in optical-digital systems with wave-front coding[J]. Applied Optics, 1997, 36(35): 9157-9166.
    [52]杨皓明,张新,方志良等.含三次位相元件照相物镜的设计[J].光学精密工程,2007,15(7):1027-1031.
    [53]雷广智,张新,张建萍等.波前编码系统设计[J].光学精密工程,2008,16(7):1171-1176.
    [54] Zalevsky Z, Mendlovic D and Marom E. Special sensor masking for exceeding system geometrical resolving power[J]. Opt. Eng., 2000, 39(7): 1936-1942.
    [55] Solomon J, Zalevsky Z and Mendlovic D. Superresolution by use of code division multiplexing[J]. Applied Optics, 2003, 42(8): 1451-1462.
    [56] Solomon J, Zalevsky Z and Mendlovic D. Geometric superresolution by code division multiplexing[J]. APPLIED OPTICS, 2005, 44(1): 32-40.
    [57] Borkowski A, Zalevsky Z and Javidi B. Geometrical superresolved imaging using nonperiodic spatial masking[J]. J. Opt. Soc. Am. A, 2009, 26(3):589-601.
    [58]古德曼.傅立叶光学导论[M].第3版.秦克诚等译.北京:电子工业出版社, 2006.145-150.
    [59]郁道银,谈恒英等.工程光学[M].第2版.北京:机械工业出版社, 2006.195-196.
    [60]郁道银,谈恒英等.工程光学[M].第2版.北京:机械工业出版社, 2006. 198.
    [61] Luca L D, Cardone G and Carlomagno. Theoretical and experimental analysis of the modulation response of a sampled IR imaging system[J]. SPIE, 1990, 1313: 259-268.
    [62] Feltz J C. Development of the modulation transfer function and constrast transfer function for discrete systems, particularly charge-coupled devices[J]. Opt. Eng., 1990, 29(8): 893-904.
    [63] Luca L D and Cardone G. Modulation transfer function cascade model for a sampled IR imaging system[J]. Applied Optics, 1991, 30(13): 1659-1664.
    [64] Chambon M, Primot J and Girard M. Modulation transfer function assessment for sampled imaging system: application of the generalized line spread function to a widespread infrared camera[J]. SPIE, 1995, 2470: 325-334.
    [65] Hadar O, Dogariu A and Boreman G D. Angular dependence of sampling MTF[J]. SPIE, 1997, 3110: 536-547.
    [66] Huck F O, Halyo N and Park S K. Aliasing and blurring in 2-D sampled imagery[J]. APPLIED OPTICS, 1980, 19(13): 2174-2181.
    [67] Park S K, Schowengerdt R. Image sampling, reconstruction, and the effect of sample-scene phasing[J]. APPLIED OPTICS, 1982, 21(17): 3142-3151.
    [68] Park S K, Schowengerdt R and Kaczynski M A. Modulation-transfer-function analysis for sampled image systems[J]. APPLIED OPTICS, 1984, 23(15): 2572-2582.
    [69] Hock K M. Effect of oversampling in pixel arrays[J]. OPTICAL ENGINEERING, 1995, 34(5):1281-1288.
    [70] Wang X R, Zhang J Q, Feng ZH X, et al. Relationship between microscanned image quality and fill factor of detectors[J]. Applied Optics, 2005, 44(21): 4470-4474.
    [71] Cabanski W, Breiter R, Mauk K H, et al. Miniaturized high performance starring thermal imaging system[J]. SPIE, 2000, 4028: 208-219.
    [72]徐超,金伟其,李雅琼.光学微扫描器技术及其实现方式[J].红外技术,2006, 28(6): 341-342.
    [73] McManamon P F, Watson E A , Dorschner T A, et al. Nonmechanical beam steering for active and passive sensors[J]. SPIE, 1993, 1969: 2-10.
    [74] Barnard K J, Watson E A and McManamon P F. Nonmechanical microscanning using optical spaced-fed phased arrays[J]. SPIE, 1994, 2224: 168-179.
    [75] Zhang Y, Zhang B M, Bai L F, et al. Micro-scan based on liquid crystal optical characteristics[J]. SPIE, 2003, 5286:260-264.
    [76]孙东岩,张云.线阵CCD遥感侦察系统中CCD焦平面的光学拼接[J].光子学报, 1993, 22(2): 161-165.
    [77] Gueguen F, Bettes A, Toulemount Y, et al. SPOT series camera improvement for the HRG, very high resolution instrument of SPOT-V[J]. SPIE, 1999, 3737: 301-312.
    [78]周峰,王世涛,王怀义.关于亚像元成像技术几个问题的探讨[J].航天返回与遥感,2002, 23(4): 26-33.
    [79]满峰,汶德胜,乔卫东等. TDICCD亚像元图像融合的实时实现系统[J].弹箭与制导学报, 2006, 26(2): 1247-1249.
    [80]徐正平,翟林培,葛文奇等.亚像元的CCD几何超分辨方法[J].光学精密工程, 2008, 16(12): 2447-2448.
    [81] Lewis K. Hybrid Computational Imaging Techniques[J]. Proc. SPIE, 2009, 7468: 031-038.
    [82] Mait J N, Athale R, Gracht J. Evolutionary paths in imaging and recent trends[J]. OPTICS EXPRESS, 2003. 11(18): 2093-2101.
    [83] Gerald C. Holst. Electro-Optical Imaging System Performance [M]. 3rd ed. Bellingham Washington: SPIE Press, 2005: 343-346.
    [84] Young S S, Sims R, Kraples K, et al. Applications of super-resolution and deblurring to practical sensors[C]. In: Holst G C, eds. Proc. SPIE : Infrared imaging systems: design, analysis, modeling and testing XIX, 2008. 69411E_1-69411E_11.
    [85] Borkowski A, Zalevsky Z and Javidi B. Geometrical superresolved imaging using nonperiodic spatial masking[J]. J. Opt. Soc. Am. A, 2009, 26(3):589-601.
    [86] Margaret Farley-Born and Emil Wolf. Principles of Optics[M]. Seventh Edition, London: Cambridge University Press. 1999: 458.
    [87] VOLLMERHAUSEN R H, DRIGGERS R G. Analysis of Sampled Imaging systems[M]. Bellingham, Washington: SPIE Process, 2000: 34-36.
    [88] HADAR O, BOREMAN G D. Oversampling requirements for pixilated-imager systems[J]. Optical Engineering, 1999, 38(5): 782-785.
    [89] Barnard K J and Boreman G D. Modulation transfer function of hexagonal staring focal plane arrays[J]. Optical engineering, 1915, 30(12): 1915-1919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700