基于广义稀疏表示的图像超分辨重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日常生活与生产实践中,图像是应用最广泛的信息载体之一。然而,在实际成像过程中,受光学模糊、运动模糊、欠采样和噪声等退化因素的影响,人们往往很难获得期望的高分辨率图像或图像序列,这给后续的图像处理、分析与理解带来诸多困难,影响人们正确认识客观世界及其规律。如何提高所获图像的空间分辨率,改善图像质量,是图像处理领域极具挑战性的课题。图像超分辨重建技术是解决上述问题较经济而有效的手段之一。利用图像超分辨重建技术,不仅能获得高于现有成像系统空间分辨率的高质量图像,而且能充分利用大量已有的低分辨图像资源。该技术在模式识别、计算机视觉、视频监控、遥感成像以及生活娱乐等方面具有广泛的应用前景,受到国内外学者的广泛关注。
     针对超分辨重建面临的挑战性问题,本文利用广义稀疏表示思想,从邻域样本的选择、映射关系的估计、正则化先验的设计以及自相似冗余信息的学习等方面,对基于实例学习和基于重构的图像超分辨重建方法进行了深入研究,主要研究成果为:
     (1)提出了一种基于高斯混合模型聚类和部分监督邻域嵌入的实例学习图像超分辨方法。在学习阶段,使用高斯混合模型聚类方法构造类别预测器,用于估计训练集中低分辨图像块的类别信息;在合成阶段,结合类别信息,使用部分监督邻域选择方案调整输入图像块与训练集样本之间的距离,一定程度上克服了传统邻域嵌入超分辨算法在邻域选择方面存在的不足。
     (2)针对邻域嵌入超分辨算法低分辨图像块与高分辨图像块在邻域关系不能保持不一致问题,提出了一种基于对偶约束的联合学习超分辨重建方法。首先,通过对偶约束方法将低分辨图像块与对应高分辨图像块构成成组块对,通过联合学习构造低分辨图像块与高分辨图像块的联合特征子空间;然后,在联合特征子空间中进行邻域的选择和低分辨与高分辨图像块之间的映射关系的估计。最后,结合全局约束和一致性先验,进一步提高初始化估计超分辨重建图像的质量。
     (3)为提高已有邻域嵌入算法的重建效率,同时解决邻域选择方法存在的不足,提出了一种基于方向梯度直方图(Histograms of Oriented Gradients,HOG)特征聚类的稀疏邻域嵌入的实例学习超分辨方法。为提高重建效率,引入HOG特征描述低分辨图像块的局部几何结构,通过k-means聚类技术将大规模训练集划分成多个结构相似的子类;针对已有邻域嵌入超分辨算法在邻域选择方面存在的不足,提出了一种结合鲁棒性SL0稀疏表示与k/K最近邻策略的稀疏邻域选择算法,能同时实现邻域的选择与重构权值的计算,有效提高了图像超分辨重建的质量。
     (4)考虑到实例学习方法和重构方法在超分辨重建方面的互补性,提出了一种基于多尺度字典学习和自适应正则化相结合的图像超分辨方法。为实现基于实例的重建方法,直接从输入的低分辨图像中提取不同尺度的图像块,通过联合学习多个尺度字典,以构建稀疏幻像正则项;为实现基于重构的方法,使用可控核回归技术构造局部先验正则项,以获取图像的局部结构信息;使用非局部均值滤波技术构造非局部先验正则项,以获取图像中相似性冗余性信息。将全局重构约束项、局部与非局部正则项和稀疏幻像正则项相组合,构成一个统一的超分辨重建框架优化求解。在不需要外部训练图像的情况下,提出的方法在保持清晰的图像边缘和恢复丰富的高频细节两方面均能取得较好的效果。
     (5)本质上,基于实例学习方法的重建质量很大程度上依赖于训练图像。鉴于此,提出了一种多尺度自相似冗余学习的图像超分辨方法。该方法首先利用低分辨图像不同尺度的自相似冗余结构构造训练图像块对,然后,使用邻域嵌入算法和逐层重建策略,逐步将输入的低分辨图像放大到所需要的高分辨图像。最后,利用非局部均值滤波技术获取图像中相同尺度的自相似冗余信息,通过构造非局部正则项,以进一步提高超分辨重建的质量。
     综上所述,本文以信号处理、模式识别为理论基础,以统计学习方法为主要技术手段,提出了五种新的图像超分辨重建方法,有效克服了现有方法存在的不足,在重建清晰的图像边缘和恢复丰富的纹理方面取得了较好的效果,为解决图像超分辨重建问题提供了新的途径。
In everyday life and actual production, images have become one of most widely usedinformation carrier. However, in the practical imaging process, due to the limitations of thedegraded factors such as optical blurring, motion blurring, down-sampling, and noising, it isnot always easy to capture an image or image sequences at a desired high-resolution (HR)level, which causes many difficulities for image processing, analysis, and understanding,leading to an obstacle in correctly understanding the laws of the objective world. Therefore, itis challenging to increase the spatial resolution of an image and to improve its quality. Withimage super-resolution (SR) technique, it is possible to obtain an HR image with the existingimaging systems and to make full use of a lot of low-resolution (LR) image resource.Accordingly, the SR technique has its wide application in many fields pattern recognition,computer vision, video surveillance, remote imaging, entertainment, and so on, and hasattracted broad attention from the academic world at home and abroad.
     For the challenging problems of SR reconstruction, this thesis makes a deep research onexample-and reconstruction-based SR methods, in which the philosophy of generalizedsparse representation is adopted to achieve neighbor selection, mapping relationshipestimation, regularization prior design, and redundancies of self-similarity learning. Themajor contributions are the following:
     (1) An example-based SR method is proposed based upon Gaussian mixture model(GMM) clustering and partially supervised neighbor embedding (PSNE). In the training phase,a class predictor is constructed by using the GMM clustering to estimate the class informationof each LR image patch in the training dataset; in the synthesis phase, a partially supervisedneighbor selection scheme is developed to adjust the distances between the test example andthose in the training database. Based on this scheme, the proposed method can reduce theproblem of neighbor selection in the original neighbor embedding (NE) algorithm to a certaindegree.
     (2) To target the problem that the neighborhood relationship between LR image patchesand the corresponding HR image patches in NE-based methods cannot be perfectly preserved,an example-based SR method is presented by using joint learning via couple constraint. First,the grouping patch pairs (GPP) is established with the combination of the LR and thecorresponding HR image patches, and then a joint learning is applied to train two projectionmatrices simultaneously and to map the original LR and HR feature spaces onto a unifiedfeature subspace; then the k-nearest neighbor (k-NN) selection of the input LR image patchesis performed in the unified feature subspace to estimate the reconstruction weights forsynthesizing the initial HR images. Finally, the global reconstruction constraint andconsistency prior are applied to further enhance the quality of the initial SR estimate.
     (3) To improve the reconstruction efficiency of the existing NE algorithms and toovercome the limitation of neighbor selection method, an example-based SR method that is based on clustering on histograms of oriented gradients (HOG) of LR image patches andsparse neighbor embedding (SpNE) algorithm is proposed. To achieve a high efficiency ofreconstruction, the HOG feature is introduced to represent the local geometrical structure ofLR image patches and to divide the training database in large scale into a set of subsets withsimilar structure; to overcome the limitation of neighbor selection scheme used in theprevious NE-based methods, a sparse neighbor selection (SpNS) scheme is developed byintegrating the robust SL0algorithm and the k/K-nearest neighbor criterion. With theproposed scheme, the neighbor selection and calculation of reconstruction weights cansimultaneously be achieved, leading to better SR recovery.
     (4) Considering the complementarity of example-and reconstruction-based SR methods,a novel SR method that combines multi-scale dictionary learning and adaptive regularizationis proposed. To achieve an example-based SR method, a multi-scale dictionary is jointlylearnt from image patches at different scales from the LR input. To obtain areconstruction-based SR method, the steering kernel regression (SKR) is applied to formulatea local regularization to capture the local structure information and the non-local means(NLM) filter is adopted to construct non-local regularization term to capture the similarityredundancy at the same scale. The reconstruction term, the local and non-local priorregularization terms, and sparse hallucination regularization term are integrated into a unifiedSR framework for optimization. Without the help of any external training image, the proposedmethod can obtain a better SR recovery, leading to sharper edges as well as richer highfrequency details.
     (5) Essentially, the reconstruction quality of example-based methods heavily depends onthe supporting training images. In view of this, an image SR method is proposed by exploitingthe redundancies of self-similarity at different scales. First, the proposed method directlyexploits the redundancies of self-similarity at different scales in the input LR image itself toconstruct training image patch pairs and the NE-based algorithm is adopted to graduallymagnify the LR input to the desired size. Finally, the NLM filter is introduced to obtain theredundancy of similarity at the same scale and a non-local regularization term is formulated tofurther improve the quality of SR recovery.
     In summary, on the basis of the fundamental theory of signal processing and patternrecognition, this thesis takes statistical learning as the main investigative means and proposesfive novel SR methods. The proposed methods can effectively overcome the limitations of theexisting methods and achieve better SR recovery on producing sharper edges and richerdetails, providing a new approach to SR reconstruction.
引文
[1]冈萨雷斯.数字图像处理(第二版).北京:电子工业出版社,2003.
    [2]章毓晋.图像工程(上册)—图像处理(第2版).北京:清华大学出版社,2006.
    [3]卓力,王素玉,李晓光.图像/视频的超分辨率复原.北京:人民邮电出版社,2011.
    [4]百度百科.数字图像处理.[Online]. Available:http://baike.baidu.com/view/286846.htm.
    [5]百度空间.超分辨率图像重建技术.[Online]. Available:http://hi.baidu.com/gaoxw/blog/item/48dbafb1fc1f735009230270.html.
    [6] Harris. J. Diffraction and resolving power. J.O.S.A,.54(7):931-936,1964.
    [7] Goodman.J. Introduction to fourier optics. New York: Mc Graw-Hill,1968.
    [8] Huang T S and Tsai R Y. Multi-frame image restoration and registration. Adv. Comput.Vis. Image Process.,1984,1:317-339.
    [9] Park S., Park M., and M. Kang. Super-resolution image reconstruction: A technicaloverview. IEEE Signal Process. Mag.,20(3):21-36,2003.
    [10] Ouwerkerk J. Image super-resolution survey. Image and Vision Comput.,24(10):1039-1052,2006.
    [11] Thevenaz P., Blu T., and Unser M. Image Interpolation and Resampling. AcademicPress, USA,2000.
    [12] Hou H. and Andrews H. Cubic spline for image interpolation and digital filtering.IEEE Trans. Signal Process.,26(6):508-517,1978.
    [13] Dodgson N. Quadratic interpolation for image resampling. IEEE Trans. ImageProcess.,6(9):1322-1326,1997.
    [14] Lee. C., Eden. M, and Unseer. M. High-quality image resizing using oblique projectoperators. IEEE Trans. Image Process.,7(5):679-692,1998.
    [15]赵前进,胡敏,檀结庆.基于局部梯度特征的自适应多结点样条图像插值,计算机研究与发展,43(10):1927-1938,2001.
    [16]石友学,罗钟铉.利用几何特征和小波变换实现图像的缩放匹配.计算机辅助设计与图形学学报,17(4):825-828,2005.
    [17] Allebach J. and Wong P. Edge-directed interpolation. Proc. IEEE Conf. ImageProcessing,1996.
    [18] Li X. and Orchard M. New edge-directed interpolation. IEEE Trans. Image Process.,10(10):1521-1527,2001.
    [19] Zhang L. and Wu X. An edge-guided image interpolation algorithm via directionalfiltering and data fusion. IEEE Trans. Image Process.,15(8):2226-2238,2006.
    [20] Knutsson H. and Westin C. Normalized and differential convolution: methods forinterpolation and filtering of incomplete and uncertain data. Proc. Computer Vision andPattern Recognition,1993:515-523.
    [21] Pham T., L. Vliet J, and Schutte K. Robust fusion of irregularly sampled data usingadaptive normalized convolution. EURASIPJ. Appl. Signal Process., article ID83268,2006.
    [22] Tomasi C. and Manduchi R. Bilateral filtering for gray and color images. Proc. IEEEInt. Conf. Compute Vision,1998:836-846.
    [23] Elad M. On the origin of the bilateral filter and ways to improve it. IEEE Trans.Image Process.,11:(10):1141-1150,2002.
    [24] Takeda H., Farsiu S., and Milanfar P. Kernel regression for image processing andreconstruction. IEEE Trans. Image Process.,16(2):349-366,2007.
    [25] Kim S P, Bose N K, and Valenauela H M. Recursive reconstruction of high resolutionimage from noisy undersampled multiframes. IEEE Trans. Acoust, Speech, SignalProcessing,38:1013-1027,1990.
    [26] Kim S P and Su W I. Recursive high-resolution reconstruction of blurred multiframeimages. IEEE Trans. Image Process.,1993,2:534-539
    [27] Rhee S. and Kang M. Discrete cosine transform based regularized high-resolutionimage reconstruction algorithm. Opt.Eng,38(8):1345-1356,1999.
    [28] Clark J., Palmer M., and Lawrence P. A transformation method for the reconstructionof functions from nonuniformly spaced samples. IEEE Trans. Acoust.,Speech, SignalProcessing, ASSP-33:1151-1165,1985.
    [29] Kim S. and Bose N. Reconstruction of2-D bandlimited discrete signals fromnonuniform samples. Proc. Inst Elec.Eng.,137:197-204,1990.
    [30] Hong M., Kang M. and Katsaggelos A. A regularized multichannel restorationapproach for globally optimal high resolution video sequence. Proc. SPIE VCIP,1997,3024:1306-1317.
    [31] Hong M., Kang M. and Katsaggelos A. An iterative weighted regularized algorithmfor improving the resolution of video sequences. Proc. Int. Conf. Image Processing,1997:474-477.
    [32] Bose N., Lertrattanapanich S., and Koo J. Advances in superresolution using L-curve.Proc. Int. Symp. Circuits and Systems,2001,2:433-436.
    [33] Tom B. and Katsaggelos A. Reconstruction of a high-resolution image bysimultaneous registration, restoration, and interpolation of low-resolution images. Proc.IEEE Int. Conf. Image Processing,1995,2:539-542.
    [34] Schulz R. and Stevenson R. Extraction of high-resolution frames video sequences.IEEE Trans. Image Processing,5(6):996-1011,1996.
    [35] Hardie R., Barnard K., and Armstrong E. Joint MAP registration and high-resolutionimage estimation using a sequence of undersampled images. IEEE Trans. ImageProcess.,6, pp.1621-1633, Dec.1997.
    [36] Cheeseman P., Kanefky B., Kraft R., Stutz J., and Hanson R. Super-resolved surfacereconstruction from multiple images. NASA Ames Research Center, Moffett Field, CA,Tech. Rep. FIA-94-12,1994.
    [37] Farsiu S., Robinson M., Elad M., and Milanfar P. Fast and robust multi-frame superresolution. IEEE Trans. Image Process.,13(10):1327-1344,2004.
    [38] Li X., Gao X., Hu Y., Tao D., and Ning B. A multi-frame image super-resolutionmethod. Signal Processing,90(2):405-414,2010.
    [39] Tom B. and Katsaggelos A. Reconstruction of a high-resolution image bysimultaneous registration, restoration, and interpolation of low-resolution images.Proc. IEEE Int. Conf. Image Processing,1995,2:539-542.
    [40] Schulz R. and Stevenson R. Extraction of high-resolution frames video sequences.IEEE Trans. Image Process.,5(6):996-1011,1996.
    [41] Stark H. and Oskoui P. High-resolution image recovery from image plane arrays,using convex projections. J. Opt. Soc. Amer. A: Opt. Image Sci., Vis.,6(11):1715-1726,1989.
    [42] Tekalp A., Ozkan M., and Sezan M. High-resolution image reconstruction fromlower-resolution image sequences and space-varying image restoration. Proc. IEEE Int.Conf. Acoustics, Speech and Signal Processing,1992:169-172.
    [43] Patti A., Sezan., and Tekalp A. High-resolution image reconstruction from alow-resolution image sequence in the presence of time-varying motion blur. Proc.IEEE Int. Conf. Image Processing,1994:343-347
    [44] Irani M. and Peleg S. Improving resolution by image registration. CVGIP: GraphicalModels and Image Process.,53:231-239,1991.
    [45] Elad M. and Fever A. Restoration of a single superresolution image from severalblurred, noisy, and undersampled measured images. IEEE Trans. Image Process.,6(12):1646-1658,1997.
    [46] Elad M. and Fever A. Superresolution restoration of an image sequence: adaptivefiltering approach. IEEE Trans. Image Process.,8(3):387-395,1999.
    [47] Elad M. and Fever A. Super-resolution reconstruction of image sequences. IEEETrans. Pattern Anal. Machine Intelli.,21(9):817-834,1999.
    [48]张地,彭宏.联合运动估计与基于模式的超分辨率图像重构.电子学报:36(1):180-183,2008.
    [49]乔建苹,刘琚.基于支持向量机的盲超分辨图像复原算法.电子学报,:36(10):1927-1933,2007.
    [50]邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法.软件学报,18(10):2434-2444,2007.
    [51] Marquina A. and Osher S. Image super-resolution by TV-regularization and Bregmaniteration. J. Sci. Comput.,37:367-382,2008.
    [52] Dai S., Han M., Xu W., and Gong Y. Soft edge smoothness prior for alpha channelsuper resolution. Proc. Computer Vision and Pattern Recognition,2007.
    [53] Sun J., Sun J., Xu Z., and Shum H. Image superresolution using gradient profile prior.Proc. Computer Vision and Pattern Recognition,2008.
    [54] Fattal R. Image upsampling via imposed edge statistics. ACM Transactions onGraphics,26(3):95:1-95:8,2007.
    [55] Morse B. and Schwartzwald D. Image magnification using level-set reconstruction.Proc. Computer Vision and Pattern Recognition,2001.
    [56] Z. Lin and H. Shum. Fundamental limits of reconstruction-based superresolutionalgorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell.,26(1):83-97,2004.
    [57] Z. Lin, J. He, X. Tang, and C.-K. Tang. Limits of learning-based superresolutionalgorithms. Proc. IEEE International Conference on Computer Vision.,2007.
    [58] Tai Y., Tong W., and Tang C. Perceptually-inspired and edge-directed color imagesuper-resolution. Proc. Computer Vision and Pattern Recognition,2006.
    [59] Protter M., Elad M., Takeda H., and Milanfar P. Generalizing the nonlocal-means tosuper-resolution reconstruction. IEEE Trans. Image Process.,16(1):36-51,2009.
    [60] Protter M. and Elad M. Super resolution with probabilistic motion estimation. IEEETrans. Image Process.,18(8):1899-1904,2009.
    [61] Buades A., Coll B., and Morel J. A non-local algorithm for image denoising. Proc.IEEE Conf. Comput. Vis. Pattern Recognit.,2005:60-65.
    [62] Buades A., Coll B., and Morel J. A review of image denoising algorithms, with a newone. SIAM MMS,4(2):490-530,2005.
    [63] Takeda H., Milanfar P., Protter M., and Elad M. Super-resolution without explicitsubpixel motion estimation. IEEE Trans. Image Process.,18(9):1958-1975,2009
    [64] Zhang H., Yang J., Zhang Y., and Huang T. Non-local kernel regression for imageand video restoration. Proc. European Conference on Computer Vision,2010:566-579.
    [65] Gao X., Wang Q., Li X., Tao D., Zhang K. Zernike-moment-based image superresolution. IEEE Trans. Image Process.,20(10):2738-2747,2011.
    [66] Freeman W., Pasztor E., and Carmichael O. Learning low-level vision. InternationalJournal of Computer Vision,40(1):25-47,2000.
    [67] Freeman W., Jones T., and Pasztor E. Example-based super-resolution. IEEEComputer Graphics and Applications,22(2):56-65,2002.
    [68] Sun J., Zheng N., Tao H., and Shum H. Image hallucination with primal sketch priors.Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2003:729-736.
    [69] Wang Q., Tang X., and Shum H. Patch based blind image super resolution. Proc.IEEE International Conference on Computer Vision,2005:709-716.
    [70] Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding.Proc. IEEE Conf. Comput. Vis. Pattern Recognit,2004:275-282.
    [71] Roweis S. and Saul L. Nonlinear dimensionality reduction by locally linearembedding. Science,290(5500):2323-2326,2000.
    [72] Fan W., Yeung D. Image hallucination using neighbor embedding over visualprimitive manifolds. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2007:1-7.
    [73] Yang J., Wright J., Huang T S, and Ma Y. Image super-resolution as sparserepresentation of raw image patches. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2008:1-8.
    [74] Yang J., Wright J., Huang T S, and Ma Y. Image super-resolution via sparserepresentation. IEEE. Trans. Image Process.,19(11):2861-2873,2010.
    [75]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用.电子学报,34(6):180-183,2006,
    [76]浦剑,张军平.基于词典学习和稀疏表示的超分辨率方法.模式识别与人工智能,23(3):335-340,2010.
    [77] Xiong Z., Sun X., and Wu F. Image hallucination with feature enhancement. Proc.IEEE Conf. Comput. Vis. Pattern Recognit.,2009:2074-2081.
    [78] Zeyde R., Elad M., and Protter M. On single image scale-up usingsparse-representations. Curves&Surfaces, Avignon-France,2010:24-30.
    [79] Ni K. and Nguyen T. Image superresolution using support vector regression. IEEE.Trans. Image Process.,16(6):1596-1610,2007.
    [80] Kim K I and Kwon Y. Single-image super-resolution using sparse regression andnatural image prior. IEEE Trans. Pattern Anal. Mach. Intell.,2010,32(6):1127-1133.
    [81] Yang C., Huang J., Yang M. Exploiting Self-similarities for Single FrameSuper-Resolution. Proc. ACCV (3),2010:497-510.
    [82] Yang S.,Liu Z., Jiao L. Multitask dictionary learning and sparse representation basedsingle-image super-resolution reconstruction. Neurocomputing,doi:10.1016/j.neucom.2011.04.014,2011.
    [83] Yang S., Liu Z., Wang M., Sun F., Jiao L. Multitask Learning and SparseRepresentation Based Super-Resolution Reconstruction of Synthetic Aperture RadarImages, Proc. IEEE Workshop on Multi-Platform/Multi-Sensor Remote Sensing andMapping (M2RSM),2011.
    [84] Sun J., Chen Q., Yan S., Cheong. Selective Image Super-Resolution. CoRR,2010.
    [85] Jiji. C and Chaudhuri. S. Single-Frame Image Super-resolution through ContourletLearning. Proc. EURASIP J. Adv. Sig.,2006.
    [86] Jiji.C., Joshi.M., and Chaudhuri.S. Single-frame image super-resolution usinglearned wavelet coefficients. International Journal of Imaging Systems and Technology,(14):3:105-112,2004.
    [87] Baker S and Kanade T. Limits on super-resolution and how to break them. IEEETrans. Pattern Anal. Mach. Intell.,24(9):1167-1183,2002.
    [88] Su C., Zhuang Y., Huang L., et al. Steerable pyramid based face hallucination.Pattern Recognition,38(6):813-824,2004.
    [89] Wang X., Tang X. Hullucination face by eigentransformation. IEEE Transactions onSystems, Man, and Cybernetics-Part C: Application and Reviews,35(2):425-434,2005.
    [90] Chakrabarti A., Rajagopalan A.,Chellappa R. Super-resolution of face images usingkernel PCA-based Prior. IEEE Transactions on Multimedia,9(4):888-892,2007.
    [91] Liu C., Shum H., and Freeman W. Face hallucination: Theory and practice.International Journal of Computer Vision,75(1):115-134,2007.
    [92] Liu C., Shum H., and Zhang. C. A two-step approach to hallucinating faces: globalparametric model and local nonparametric model. Proc. IEEE Conf. Comput. Vis.Pattern Recognit.,2001.
    [93] Jia K. and Gong S. Generalized face super-resolution. IEEE Trans. Image Process.,17(6):873-886,2008.
    [94] Lin Z., and Shum H. Fundamental limits of reconstruction-based superresolutionalgorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell.,26(1):83-97,2004.
    [95] Tai Y., Liu S., Brown M., and Lin S., Super resolution using edge prior and singleimage detail synthesis. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2010.
    [96] Glasner D., Bagon S., and Irani M. Super-resolution from a single image. Proc. IEEEInternational Conference on Computer Vision.,2009.
    [97] Sun J., Zhu J., and Tappen M. Context-constrained hallucination for imagesuper-resolution. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2010:275-282.
    [98] Dong W., Shi G., Zhang L., and X. Wu. Super-resolution with nonlocal regularizedsparse representation. Proc SPIE VCIP,2010.
    [99] Dong W., Zhang L., Shi G., and Wu X. Image deblurring and super-resolution byadaptive sparse domain selection and adaptive regularization. IEEE Trans. ImageProcess.,20(7):1838-1857,2011.
    [100] Dong W., Zhang L., and Shi G. Centralized sparse representation for imagerestoration. Proc. IEEE Int. Conf. Comput. Vis.,2011.
    [101]路文.基于视觉感知的影像质量评价方法研究.西安电子科技大学,博士学位论文,2009.
    [102] Wang. Z and Bovik. Alan. Modern Image Quality Assessment. New York: Morganand Claypool Publishing Company,2006.
    [103]蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展.电子与信息学报,32(1):219-226,2010.
    [104] Wang Z., Bovik A., Sheikh H., and Simoncelli E. Image quality assessment: Fromerror visibility to structural similarity. IEEE Trans. Image Process.,13(4):600-612,2004.
    [105] Sheikh H. and Bovik A. Image information and visual quality. IEEE Trans. ImageProcess.,15(2):430-444,2006
    [106] Zhang L., Zhang L., Mou X. and Zhang D. FSIM: A Feature Similarity Index forImage Quality Assessment. IEEE Trans. Image Processing,20(8):2378-2386,2011.
    [107]李航,路羊,崔慧娟,唐昆.基于频域的结构相似度的图像质量评价方法.清华大学学报(自然科学版),2009,49(4):559-562.
    [108]叶盛楠,苏开娜,肖创柏,段娟.基于结构信息提取的图像质量评价.电子学报,36(5):856-861,2008.
    [109]马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则.计算机辅助设计与图形学学报,16(7):978-983,2004.
    [110]李航,路羊,崔慧娟,唐昆.基于频域的结构相似度的图像质量评价方法.清华大学学报(自然科学版),49(4):559-562,2009.
    [111] Li Q., and Wang Z. Reduced-Reference image quality assessment using divisivenormalization-based image representation. IEEE Journal of Selected Topics in SignalProcessing,3(2):202-211,2009.
    [112]马奇,张立明.快速注意力选择计算及其在图像质量评价中的应用.计算机辅助设计与图形学学报,21(7):973-983,2009.
    [113] Gao X., Lu W., Li X., Tao D.. Image Quality Assessment based on MutilscaleGeometric Analysis. IEEE Trans. Image Process.,18(7):1608-1622,2009.
    [114] Wang Z. and Simoncelli E. Reduced-reference image quality assessment using awavelet-domain natural image statistic model. Proc. Human Vision and ElectronicImaging X.,2005,5666(1):149-159.
    [115] Lu W., Zeng K., Tao D., Yuan Y., and Gao X. No-reference image qualityassessment in contourlet domain. Neurocomputing,73(1):784-794,2010.
    [116] Wang Z., Sheikh H., and Bovik A. No-reference perceptual quality assessment ofJPEG compressed images. Proc. IEEE Int. Conf. Image Process.,2002,1:477-480.
    [117] Sheikh H., Bovik A., and Cormack L. No-reference quality assessment using naturalscene statistics: JPEG2000. IEEE Trans. Image Process,.14(11):1918-1927,2005.
    [118] Saad M., Bovik A., and Charrier C. A DCT statistics-based blind image quality index.IEEE Signal Processing Letter,17(6):583-586,2010.
    [119] Moorthy A. and Bovik A. A two-step framework for constructing blind image qualityindices. IEEE Signal Processing Letter,17(5):513-516.2010.
    [1] Park S., Park M., and Kang M. Super-resolution image reconstruction, a technicaloverview. IEEE Signal Process. Mag.,20(5):21-36,2003.
    [2] Ouwerkerk J. Image super-resolution survey. Image Vis. Comput.,24(10):1039-1052,2006.
    [3] Dodgson N. Quadratic interpolation for image resampling. IEEE Trans. Image Process.,6(9):1322-1326,1997.
    [4] Li X. and Orchard M. New edge-directed interpolation. IEEE Trans. Image Process.,10(10):1521-1527,2001.
    [5] Huang T. and Tsai R. Multi-frame image restoration and registration. Adv. Comput. Vis.Image Process.,1:317-339,1984.
    [6] Kim S. and Su W. Recursive high-resolution reconstruction of blurred multiframe images.IEEE Trans. Image Process.,2(4):534-539,1993.
    [7] Farsiu S., Robinson D., Elad M., and Milanfar P. Fast and robust multiframesuperresolution. IEEE Trans. Image Process.,13(10):1327-1344,2004.
    [8] Li X., Gao X., Hu Y., Tao D., and Ning B. A multi-frame image super-resolution method.Signal Process.,90(2):405-414,2010.
    [9] Elad M. and Feuer A. Restoration of a single superresolution image from several blurred,noisy, and undersampled measured images. IEEE Trans. Image Process.,6(12):1646-1658,1997.
    [10]Schultz R. and Stevenson R. Extraction of high-resolution frames from video sequences.IEEE Trans. Image Process.,5(6):996-1011,1996.
    [11]Hardie R., Barnard., and Armstrong E. Joint MAP registration and high-resolution imageestimation using a sequence of undersampled images. IEEE Trans. Image Process.,6(12):1621-1633,1997.
    [12]Elad M. and Feuer A. Super resolution restoration of an image sequence: adaptivefiltering approach. IEEE Trans. Image Process.,8(3):387-395,1999.
    [13]Nguyen N., Milanfar P., and Golub G. Efficient generalized cross-validation withapplications to parametric image restoration and resolution enhancement. IEEE Trans.Image Process.,10(9):1299-1308,2001.
    [14]Segall C., Katsaggelos A., Molina R., and Mateos J. Bayesian resolution enhancement ofcompressed video. IEEE Trans. Image Process.,13(7):898-910,2004.
    [15]Protter M., Elad M., Takeda H., and Milanfar P. Generalizing the nonlocal-means tosuper-resolution reconstruction. IEEE Trans. Image Process.,18(1):36-51,2009.
    [16]Baker S. and Kanade T. Limits on super-resolution and how to break them. IEEE Trans.Pattern Anal. Mach. Intell.,24(9):1167-1183,2002.
    [17]Freeman W., Pasztor E., and Carmichael O. Learning lowlevel vision. Int. J. Comput. Vis.,40(1):25–47,2000.
    [18]Freeman W., Jones T., and Pasztor E. Example-based superresolution. IEEE Comput.Graph. Appl.,22(2):56-65,2002.
    [19]H. Chang, Yeung D.-Y., and Xiong Y., Super-resolution through neighbor embedding.Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition,2004,275-282.
    [20]Chan T. and Zhang J. An improved super-resolution with manifold learning andhistogram matching. Proc. IAPR Int. Conf. Biometric,2006:756-762.
    [21]Chan T. M., Zhang J., Pu J., and Huang H. Neighbor embedding based super-resolutionalgorithm through edge detection and feature selection. Pattern Recognition Lett.,30(5):494-502,2009.
    [22]Li X., Lam K., Qiu G., Shen L., and Wang S. Example-based image super-resolution withclass-specific predictors. J. Vis. Commun. Image R.,20:312-322,2009.
    [23] Datsenko D. and Elad M. Example-based single document image super-resolution: Aglobal MAP approach with outlier rejection. Multidim Syst. Sign. Process.,18:(2-3):103-121,2007.
    [24] Mu Y., Tao D., Li X., and Murtagh F. Biologically inspired tensor features. CognitiveComputation (Springer),1(4):327-341,2009.
    [25] Song D. and Tao D. Biologically inspired feature manifold for scene classification. IEEETrans. Image Process.,19(1):174-184,2010.
    [26]Bouman C. Cluster: An unsupervised algorithm for modeling Gaussian mixtures. PurdueUniversity. West Lafayette,2005,[Online]. Available:http://engineering.purdue.edu/~bouman/.
    [27]Zeng H. and Cheung Y. A new feature selection method for Gaussian mixture clustering.Pattern Recognition,42(2):243-250,2009.
    [28]Geng B. and Tao D. et al. Ensemble manifold regularization. Proc. IEEE Comput. Soc.Conf. Comput. Vis. Pattern Recogn. Workshops,2009:2396-2402.
    [29]Roweis S. and Saul L. Nonlinear dimensionality reduction by locally linear embedding.Science,290(5500):2323-2326,2000.
    [30]Song M., Tao D., Chen C., Li X., and Chen C. Colour to grey: Visual cue preservation.IEEE Trans. Pattern Anal. Mach. Intell.,32(9):1537-1552,2010.
    [31]Li X., S. Lin, Yan. S, and Xu D. Discriminant locally linear embedding with high-ordertensor data. IEEE Trans. Syst., Man, Cybern., B,38(2):342-352,2008.
    [32]Zhou T., Tao D., and Wu X. Manifold elastic net: A unified framework for sparsedimension reduction. Data Mining Knowl. Discov.,2010, DOI:10.1007/s10618-010-0182-x.
    [33]Redner.E. and Walker H. Mixture densities, maximum likelihood and the EM algorithm.SIAM Review,26(2):195-239,1984.
    [1] Ouwerkerk J. Image super-resolution survey. Image Vis. Comput.,24(10):1039-1052,2006.
    [2] Park S., Park M., and Kang M. Super-resolution image reconstruction, a technical overview. IEEESignal Process. Mag.,20(5):21-36,2003.
    [3] Huang T. and Tsai R. Multi-frame image restoration and registration. Adv. Comput. Vis. Image Process.,1:317-339,1984.
    [4] Freeman W., Pasztor E., and Carmichael O. Learning low-level vision. International Journal ofComputer Vision,40(1):25-47,2000.
    [5] Freeman W., T. R. Jones, and E. C. Pasztor. Example-based super-resolution. IEEE Computer Graphicsand Applications,22(2):56-65,2002.
    [6] Sun J., Zheng N., Tao H., and Shum H. Image hallucination with primal sketch priors. Proc. IEEEConf. Comput. Vis. Pattern Recognit.,2003:729-736.
    [7] Baker S and Kanade T. Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal.Mach. Intell.,24(9):1167-1183,2002.
    [8] Xiong Z., Sun X., and Wu F. Image hallucination with feature enhancement. Proc. IEEE Conf. Comput.Vis. Pattern Recognit.,2009:2074-2081.
    [9] Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding. Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2004:275-282.
    [10]Roweis S. and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323-2326,2000.
    [11]Chan T. and Zhang J. An improved super-resolution with manifold learning and histogram matching.Proc. IAPR Int. Conf. Biometric,2006:756-762.
    [12]Chan T. M., Zhang J., Pu J., and Huang H. Neighbor embedding based super-resolution algorithmthrough edge detection and feature selection. Pattern Recognition Lett.,30(5):494-502,2009.
    [13]Fan W., Yeung D. Image hallucination using neighbor embedding over visual primitive manifolds. Proc.IEEE Conf. Comput. Vis. Pattern Recognit.2007:1-7.
    [14]Li B., Chang H., Shan S., and Chen X. Locality preserving constraints for super resolution withneighbor embedding. Proc. IEEE Int. Conf. Image Processing,2009:1189-1192.
    [15]Zhang K., Gao X., Li X., and Tao D. Partially supervised neighbor embedding for example-basedimage super-resolution. IEEE Journal of Selected Topic in Signal Processing,5(2):230-239,2011.
    [16]Yang J, Wright J, Huang T S, and Ma Y. Image super-resolution as sparse representation of raw imagepatches. in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.(CVPR),2008,1-8.
    [17]Yang J, Wright J, Huang T S, and Ma Y. Image super-resolution via sparse representation. IEEE. Trans.Image Process.,19(11):2861-2873,2010.
    [18]Zeyde R., Elad M., and Protter M. On single image scale-up using sparse-representations. Curves&Surfaces, Avignon-France,2010:24-30.
    [19]Tang Y., Yan P., Yuan Y., and X. Li. Single-image super resolution via local learning. InternationalJournal of Machine Learning and Cybernetics (Springer),2(1):15-23,2011.
    [20]Glasner D., Bagon S., and Irani M. Super-resolution from a single image. Proc. IEEE Int. Conf.Comput. Vis.,2009:49-356.
    [21]Su K., Tian Q., Que Q., Sebe N., and Ma J. Neighborhood issue in single-frame image super-resolution.Proc. IEEE Int. Conf. Multimedia and Expo,2005:1122-1125.
    [22]Li B., Chang H., Shan S., and Chen X. Low-resolution face recognition via coupled local preservingmappings. IEEE Signal Processing Letters,17(1):20-23,2010.
    [23]Wang Z., Bovik A., Sheikh H., and Simoncelli E. Image quality assessment: from error visibility tostructural similarity. IEEE. Trans. Image Process.,13(4):600-612,2004.
    [24]Gao X., Lu W., Tao D., and Li X. Image quality assessment based on multiscale geometric analysis.IEEE Trans. Image Process.,18(7):1409-1423,2009.
    [25]Zhou T., Tao D., and Wu X. Manifold elastic net: a unified framework for sparse dimension reduction.Data Mining and Knowledge Discovery,22(3):340-371,2011.
    [26]Bian W. and Tao D. Biased discriminant euclidean embedding for content based image retrieval. IEEE.Trans. Image Process.,19(2):545-554,2010.
    [27]Bian W. and Tao D. Max-min distance analysis by using sequential SDP relaxation for dimensionreduction. IEEE Trans. Pattern Anal. Mach. Intell.,33(5):1037-1050,2011.
    [28]Si S., Tao D., and Geng B. Bregman divergence based regularization for transfer subspace learning.IEEE Trans. Knowl. Data Eng.,22(7):929-942,2010.
    [29]X Li., Lin S., Yan. S, and Xu D. Discriminant locally linear embedding with high-order tensor data.IEEE Trans. Syst., Man, Cybern., B,38(2):342-352,2008.
    [30]S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory,28(2):129-137,1982.
    [31]Zhang T., Tao D., Li X., and Yang J. Patch alignment for dimensionality reduction. IEEE Transactionson Knowledge and Data Engineering,21(9):1299-1313,2009.
    [32]M. Irani and S. Peleg. Motion analysis for image enhancement: resolution, occlusion and transparency.Journal of Visual Communication and Image Representation,4(4):324-335,1993.
    [1] Park S., Park M., and Kang M. Super-resolution image reconstruction: A technicaloverview. IEEE Signal Process. Mag.,20(3):21-36,2003.
    [2] Li X. and Orchard M. New edge-directed interpolation. IEEE Trans. Image Process.,10(10):1521-1527,2001.
    [3] Dodgson N. Quadratic interpolation for image resampling. IEEE Trans. Image Process.,6(9):1322-1326,1997.
    [4] Zhang L. and Wu X. An edge-guided image interpolation algorithm via directionalfiltering and data fusion. IEEE Trans. Image Process.,15(8):2226-2238,2006.
    [5] Huang T. and Tsai R. Multi-frame image restoration and registration. Adv. Comput. Vis.Image Process.,1(2):317-339,1984.
    [6] Li X., Gao X., Hu Y., Tao D., and Ning B. A multi-frame image super-resolution method.Signal Processing,90(2):405-414,2010.
    [7] Protter M., Elad M., Takeda H., and Milanfar P. Generalizing the nonlocal-means tosuper-resolution reconstruction. IEEE Trans. Image Process.,18(1):36-51,2009.
    [8] Zhang H., Yang J., Zhang Y., and Huang T, Non-local kernel regression for image andvideo restoration. Proc. European Conference on Computer Vision,2010:566-579.
    [9] Baker S. and Kanade T. Limits on super-resolution and how to break them. IEEE Trans.Pattern Anal. Mach. Intell.,24(9):1167–1183,2002.
    [10]Freeman W., Jones T., and Pasztor E. Example-based super-resolution. IEEE Comput.Graph. Appl.,22(2):56–65,2002.
    [11]Chang H., Yeung D., and Xiong Y. Super-resolution through neighbor embedding. Proc.IEEE Conf. Comput. Vis. Pattern Recognit.,2004:275-282.
    [12]Chan T.-M., and Zhang J. An improved super-resolution with manifold learning andhistogram matching. Proc. IAPR Internat. Conf. on Biometrics,2006:756-762.
    [13]Fan W. and Yeung D. Image hallucination using neighbor embedding over visualprimitive manifolds. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2007:1-7.
    [14]Chan T., Zhang J., Pu J., and Huang H. Neighbor embedding based super-resolutionalgorithm through edge detection and feature selection. Pattern Recognition Letters.,30:494-502,2009.
    [15]Zhang K., Gao X., Li X., and Tao D. Partially supervised neighbor embedding forexample-based image super-resolution. IEEE J. Sel. Topics. Signal Process.,5(2):230-239,2011.
    [16]Yang J., Wright J., Huang T., and Ma Y. Image super-resolution as sparse representationof raw image patches. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2008: pp.1-8.
    [17]Yang J., Wright J., Huang T., and Ma Y. Image super-resolution via sparse representation.IEEE. Trans. Image Process.,19(11):2861-2873,2010.
    [18]Marquina A. and Osher S. Image super-resolution by TV-regularization and Bregmaniteration. J. Sci. Comput.,37:367-382,2008.
    [19]Dong W., Zhang L., Shi G., and Wu X. Image deblurring and super-resolution byadaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process.,20(7):1838-1857,2011.
    [20]Dong W., Zhang L., and Shi G. Centralized sparse representation for image restoration.Proc. IEEE Int. Conf. Comput. Vis.,2011.
    [21]Kim K. and Kwon Y. Single-image super-resolution using sparse regression and naturalimage prior. IEEE Trans. Pattern Anal. Mach. Intell.,32(6):1127-1133,2010.
    [22]Ni K. and Nguyen T. Image superresolution using support vector regression. IEEE. Trans.Image Process.,16(6):1596-1610,2007.
    [23]Song M., Tao D., Chen C., Li X., and Chen C. Colour to grey: Visual cue preservation.IEEE Trans. Pattern Anal. Mach. Intell.,32(9):1537-1552,2010.
    [24]Roweis S. and Saul L. Nonlinear dimensionality reduction by locally linear embedding.Science,290(5500):2323-2326,2000.
    [25]Wright J., A. Yang Y., Ganesh A., Sastry S., and Ma Y. Robust face recognition via sparserepresentation. IEEE Trans. Pattern Anal. Mach. Intell.,31(2):210-227,2009.
    [26]Baraniuk R. Compressive sensing. IEEE Signal Process. Mag.,24(4):118-124,2007.
    [27]Mohimani H., Babaie-Zadeh M., and Jutten C. A fast approach for overcomplete sparsedecomposition based on smoothed L0norm. IEEE Trans. on Signal Proc.,57(1):289-301,2009.
    [28]Eftekhari A., Babaie-Zadeh M., Jutten C., and Moghaddam H. Robust-SL0for stablesparse representation in noisy settings. Proc. IEEE Int. Conf. Acoustics, Speech, andSignal Processing,2009:3433-3436.
    [29]Eftekhari A., Moghaddam H., and Babaie-Zadeh M. k/K-nearest neighborhood criterionfor improving locally linear embedding. Proc. CGIV,2009:392-397.
    [30]Dalal N. and Triggs B. Histograms of oriented gradients for human detection. Proc. IEEEConf. Comput. Vis. Pattern Recognit,2005:886-893.
    [31]Irani M. and Peleg S. Improving resolution by image registration. CVGIP: Graph.Models Image Process.,53(3):231-239,1991.
    [32]Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the RoyalStatistical Society, Series B,58(1):267-288,1996.
    [33]Lee H., Battle A., Raina R., and Ng A. Efficient sparse coding algorithms. Proc. Adv.Neural Inf. Process. Syst.,2007:801-808.
    [34]Mallat S. and Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans.Signal Process.,41(12):3397-3415,1993.
    [35]Gorodnitsky I. and Rao B. Sparse signal reconstruction from limited data using FOCUSS:a re-weighted norm minimization algorithm. IEEE Trans. Signal Process.,45(3):600-616,1997.
    [36]P. Getreuer.(2009). Variational imaging methods for denoising, deconvolution, inpainting,and segmentation.[Online]. Available: http://www.math.ucla.edu/~getreuer/tvreg.html.
    [37]Lloyd S. Least squares quantization in PCM. IEEE Trans. Inf. Theory,28(2):129-137,1982.
    [38]Dong W., Li X., Zhang L., and Shi G. Sparsity-based image denoising via dictionarylearning and structural clustering. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2011:457-464.
    [39]Zhang L., Zhang L., Mou X., and Zhang D. FSIM: A feature similarity index for imagequality assessment. IEEE. Trans. Image Process.,20(8):2378-2386,2011.
    [40]Rudin L., Osher S., and Fatemi E. Nonlinear total variation based noise removalalgorithms. Physica D,60:259-268,1992.
    [41]Wang Z., A. Bovik C., Sheikh H., and Simoncelli E. Image quality assessment: from errorvisibility to structural similarity. IEEE. Trans. Image Process.,13(4):600-612,2004.
    [42]Gao X., Lu W., Tao D., and Li X. Image quality assessment based on multiscalegeometric analysis. IEEE Trans. Image Process.,18(7):1409-1423,2009.
    [43]Gao X., Li J., Tao D., and Li X. Fuzziness measurement of fuzzy sets and its applicationin cluster validity analysis. International Journal of Fuzzy System (IJFS),9(4):188-197,2007.
    [44]Buades A., Coll B., and Morel J. A non-local algorithm for image denoising. Proc. IEEEConf. Comput. Vis. Pattern Recognit.,2005:60-65.
    [45]Wu X., Zhang X., and Wang J. Model-guided adaptive recovery of compressive sensingProc. Data Compression Conference,2009:123-132.
    [1] Thevenaz P., Blu T., and Unser M. Image Interpolation and Resampling. Academic Press, USA,2000.
    [2] Zhang L. and Wu X. An edge-guided image interpolation algorithm via directional filtering and datafusion. IEEE. Trans. Image Process.,15(8):2226-2238,2006.
    [3] Ben-Ezra M. Lin Z., and Wilburn B. Penrose pixels: Super-resolution in the detector layout domain.Proc. IEEE International Conference on Computer Vision,2007:1-8.
    [4] Irani M. and Peleg S. Motion analysis for image enhancement: resolution, occlusion, and transparency.JVCIR,4:324-335,1993.
    [5] Lin Z. and Shum H. Fundamental limits of reconstruction-based superresolution algorithms under localtranslation. IEEE Trans. Pattern Anal. Mach. Intell.,26(1):83-97,2004.
    [6] Marquina A. and Osher S. Image super-resolution by TV-regularization and Bregman iteration. J. Sci.Comput.,37:367-382,2008.
    [7] Fattal R. Image upsampling via imposed edge statistics. ACM Transactions on Graphics,26(3):95-102,2007.
    [8] Tai Y., Liu S., Brown M., and Lin S., Super resolution using edge prior and single image detailsynthesis. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2010.
    [9] Sun J., Sun J., Xu Z., and Shum H. Image superresolution using gradient profile prior. Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2008.
    [10]Zhang H., Yang J., Zhang Y., and Huang T. S. Non-local kernel regression for image and videorestoration. Proc. European Conference on Computer Vision,2010:566-579.
    [11]Freeman W., Jones T., and Pasztor E. Example-based super-resolution. IEEE Computer Graphics andApplications,22(2):56-65,2002.
    [12]Freeman W., Pasztor E., and Carmichael O.. Learning low-level vision. Learning low-level vision.International Journal of Computer Vision,40(1):25-47,2000.
    [13]Chang H., Yeung D., and Xiong Y. Super-resolution through neigbor embedding. Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2004.
    [14]Fan W. and Yeung D. Image hallucination using neighbor embedding over visual primitive manifolds.Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2007.
    [15]Lin Z., He J., Tang X., and Tang C. Limits of learning-based superresolution algorithms. Proc. IEEEInternational Conference on Computer Vision,2007.
    [16]Xiong Z., Sun X., and Wu F.. Image hallucination with feature enhancement. Proc. IEEE Conf. Comput.Vis. Pattern Recognit.,2009.
    [17]Yang J., Wright J., Ma Y., and Huang T. Image super-resolution as sparse representation of raw imagepatches. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2008.
    [18]Yang J., Wright J., Huang T., and Ma Y. Image super-resolution via sparse representation. IEEE. Trans.Image Process.,19(11):2861-2873,2010.
    [19]R. Zeyde, M. Elad, and M. Protter. On single image scale-up using sparse-representations. Curves&Surfaces, Avignon-France,2010.
    [20]Dong W., Zhang L., Shi G., and Wu X. Image deblurring and super-resolution by adaptive sparsedomain selection and adaptive regularization. IEEE. Trans. Image Process.,20(7):1838-1857,2011.
    [21]Ni K. and Nguyen T. Image superresolution using support vector regression. IEEE. Trans. ImageProcess.,16(6):1596-1610,2007.
    [22]Kim K. and Kwon Y. Single-image super-resolution using sparse regression and natural image prior.IEEE Trans. Pattern Anal. Mach. Intell.,32(6):1127-1133,2010.
    [23]Glasner D., Bagon S., and Irani M. Super-resolution from a single image. Proc. IEEE InternationalConference on Computer Vision,2009.
    [24]Tai Y., Liu S., Brown M., and Lin S. Super resolution using edge prior and single image detailsynthesis. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2010.
    [25]Sun J., Zhu J., and Tappen M. Context-Constrained Hallucination for Image Super-Resolution. Proc.IEEE Conf. Comput. Vis. Pattern Recognit.,2010.
    [26]He H., Siu W. Single image super-resolution using Gaussian Process Regression. Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2011.
    [27]Aharon M., Elad M., and Bruckstein A. K-svd: an algorithm for designing overcomplete dictionariesfor sparse representation. IEEE Trans. Signal Process.,54(11):4311-4322,2006.
    [28]Mairal J., Sapiro G. and Elad M. Learning multiscale sparse representations for image and videorestoration. SIAM Multiscale Modeling and Simulation,7(1):214-241,2008.
    [29]H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and reconstruction.IEEE. Trans. Image Process.,16(2):349-366,2007.
    [30]Buades A., Coll B., and Morel J. A review of image denoising algorithms, with a new one. SIAM MMS,4(2):490-530,2005.
    [31]Wang Z., Bovik A., Sheikh H., and Simoncelli E. Quality assessment: from error measurement tostructural similarity. IEEE. Trans. Image Process.,13(4):600-612,2004.
    [1] Buades A., Coll B., and Morel J. A non-local algorithm for image denoising. Proc. IEEE Conf.Comput. Vis. Pattern Recognit.,2005:60-65.
    [2] Dong W., Zhang L., Shi G., and Wu X. Image deblurring and super-resolution by adaptive sparsedomain selection and adaptive regularization. IEEE Trans. Image Process.,20(7):1838-1857,2011.
    [3] Mairal J., Bach F., Ponce J., Sapiro G., and Zisserman A. Non-local sparse models for imagerestoration. Proc. Int. Conf. Computer Vision,2009:2272-2279.
    [4] Wong A. and Orchard J. A nonlocal-means approach to exemplar-based inpainting. Proc. IEEE Int.Conf. Image Processing,2008:2600-2603.
    [5] Protter M., Elad M., Takeda H., and Milanfar P. Generalizing the nonlocal-means tosuper-resolution reconstruction. IEEE Trans. Image Process.,16(1):36-51,2009.
    [6] Protter M. and Elad M. Super resolution with probabilistic motion estimation. IEEE Trans. ImageProcess.,18(8):1899-1904,2009.
    [7] Zhang H., Yang J., Zhang Y., and Huang T. Non-local kernel regression for image and videorestoration. Proc. European Conference on Computer Vision,2010:566-579.
    [8] Dong W., Shi G., Zhang L., and X. Wu. Super-resolution with nonlocal regularized sparserepresentation, Proc SPIE VCIP,2010.
    [9] Dong W., Zhang L., and Shi G. Centralized sparse representation for image restoration. Proc. IEEEInt. Conf. Comput. Vis.,2011.
    [10] Glasner D., Bagon S., and Irani M. Super-resolution from a single image. Proc. IEEEInternational Conference on Computer Vision.,2009.
    [11] Yang C., Huang J., Yang M. Exploiting Self-similarities for single frame super-Resolution. Proc.ACCV (3),2010:497-510.
    [12] Gao X., Wang Q., Li X., Tao D., and Zhang K. Zernike-moment-based image super resolution.IEEE Trans. Image Process.,20(10):2738-2747,2011.
    [13] H. Takeda, S. Farsiu, and P. Milanfar. Kernel regression for image processing and reconstruction.IEEE. Trans. Image Process.,16(2):349-366,2007.
    [14] Yang J, Wright J, Huang T S, and Ma Y. Image super-resolution as sparse representation of rawimage patches. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,2008:1-8.
    [15] Yang J, Wright J, Huang T S, and Ma Y. Image super-resolution via sparse representation. IEEE.Trans. Image Process.,19(11):2861-2873,2010.
    [16] Zeyde R., Elad M., and Protter M. On single image scale-up using sparse-representations. Curves&Surfaces,2010:24-30.
    [17] Kim K. and Kwon Y. Single-image super-resolution using sparse regression and natural imageprior. IEEE Trans. Pattern Anal. Mach. Intell.,32(6):1127-1133,2010.
    [18] Marquina A. and Osher S. Image super-resolution by TV-regularization and Bregman iteration. J.Sci. Comput.,37:367-382,2008.
    [19] Zhang L., Zhang L., Mou X. and Zhang D. FSIM: A Feature Similarity Index for Image QualityAssessment, IEEE Trans. Image Processing,20(8):2378-2386,2011.
    [20] X. Gao, W. Lu, D. Tao, and X. Li. Image quality assessment based on multiscale geometricanalysis. IEEE Trans. Image Process.,18(7):1409-1423,2009.
    [21] Wang Z., Bovik A., Sheikh H., and Simoncelli. Image quality assessment: from error visibility tostructural similarity. IEEE Trans. Image Processing,13(4):600-612,2004.
    [22] Chang H, Yeung D-Y, and Xiong Y. Super-resolution through neighbor embedding. Proc. IEEEConf. Comput. Vis. Pattern Recognit,2004:275-282.
    [23] Roweis S. and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323-2326,2000.
    [24] S. Lloyd. Least squares quantization in PCM. IEEE Trans. Inf. Theory,28(2):129-137,1982.
    [25] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal StatisticalSociety, Series B,58(1):267-288,1996.
    [26] Lee H., Battle A., Raina R., and Ng A. Efficient sparse coding algorithms. Proc. Advances inNeural Information Processing Systems,2007,19:801-808,.
    [27] Aharon M., Elad M., and Bruckstein A. K-svd: an algorithm for designing overcompletedictionaries for sparse representation. IEEE Trans. Signal Process.,54(11):4311-4322,2006.
    [28] Bentley J. Multidimensional binary search trees used for associative searching. Communicationsof the ACM,18(9):509-517,1975.
    [29] Chan T. M., Zhang J., Pu J., and Huang H. Neighbor embedding based super-resolution algorithmthrough edge detection and feature selection. Pattern Recognition Lett.,30(5):494-502,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700