图像超分辨率算法与硬件实现研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先介绍图像超分辨处理的研究目的和意义,图像超分辨率算法的研究现状,在此基础上着重研究了适应于不同应用场合的单帧图像超分辨图像算法及多帧图像超分辨率算法的数学原理,验证方法,评价手段及软硬件实现方法。
     尽管单帧图像插值算法在原理上分析是一个典型的病态问题,但在源图像信噪比高、放大比例在一定范围的情况下仍可满足实际应用的需求,尤其是在实时应用条件下或图像处理芯片设计中仍被广泛采用。文章回顾了传统的线性插值方法,包括理想插值、最近邻插值、双线性插值、四点双三次插值、六点双三次插值的数学表示方法及各自的频率特性。针对线性插值函数中低次插值方法获得的超分辨图像效果不理想、高次插值方法复杂度高、以及基于统计理论的单帧图像超分辨率算法不便于硬件实现这些特点,提出了一种算法复杂度低于双三次插值算法,而处理效果优于双三次插值算法的自适应牛顿插值算法,对其进行验证。
     多帧图像超分辨率算法利用序列图像之间包含相似但不完全相同的互补图像信息重构高分辨率图像,通常包含频域超分辨率重构及空域超分辨率图像重构。空域重建算法将插值、迭代、滤波和重采样放在一起处理,可以采用更广泛的观测模型。为此,本文提出了一种空域多帧图像超分辨率处理算法——基于Delaunay三角剖分的多帧图像超分辨率算法。该算法在空间不规则采样点的Delaunay三角剖分的基础上,对各顶点进行梯度估计,将每一个三角块区域采用双变量多项式进行拟合,获得一个连续且连续可微的曲面,然后对拟合曲面重采样,可获得任意比例的高分辨率图像。
     为了能有效的验证多帧图像超分辨率算法的有效性,设计了一种可由理想高分辨率图像产生低分辨率图像序列的相机运动模型,这样可以获得低分辨图像序列在高分辨网格上的配准参数,不必考虑影响低分辨率图像配准的各种因素,使多帧图像超分辨率算法的验证更具针对性。通过以上方法产生了几组不同的低分辨率图像序列,进行了如下对比实验:具有相同帧数但分辨率不同的低分辨率源图像序列的超分辨率重构;具有相同分辨率但采用不同帧数的低分辨率序列图像的超分辨重构。实验结果表明,低分辨率源序列图像的质量对超分辨率结果将产生关键性的影响;参与运算的序列图像的帧数越多,超分辨处理所得的高分辨图像视觉效果越好,但随着帧数的增加,视觉效果改善并不明显。
     图像质量评价作为图像处理系统及图像处理算法的性能预测的重要手段,分为主观评价方法及客观评价方法。主观评价方法可操作性差,常在实验室采用。基于误差统计的图像质量客观评价传统方法如PSNR和MSE目前被广泛应用于各种因素引起的退化图像的质量评价,某些情况下,其判断结果基本与图像主观视觉效果一致。但在某些特定条件下,这类基于误差统计的评价方法对图像质量的评价完全失效。为此研究了一种基于图像结构的质量评价方法,并对PSNR判断失效的几个实验结果采用基于图像结构的图像质量方法进行验证,获得了与图像主观质量一致的评价结果。
     图像超分辨率的非实时处理已不能满足实际应用的需求,超分辨率处理的专用芯片应用也日益广泛。限于目前的研究基础,本文没有对多帧图像超分辨率的硬件实现进行深入研究。对于单帧图像超分辨算法的硬件实现,以LCD定标器为研究背景,在分析平板显示技术的研究现状和发展趋势的基础上,设计了LCD定标器缩放引擎的系统结构,分析了LCD定标器的时序约束关系,并提出了双线性插值算法及自适应牛顿插值算法的硬件实现结构。然后对两种结构分别用Verilog HDL进行描述,在相关软件下进行仿真。
     为了降低了ASIC设计的风险,通常需要对设计的系统进行FPGA验证。确定适合于LCD定标器验证的合适的数据源,提出了相应的数据格式转换方案,设计了用于LCD定标器验证的评估板,然后对综合好的目标代码下载至评估板的FPGA中,验证整个系统的功能。
In this paper, the motive, significance and status of the research on image super-resolution processing are introduced at first, upon which, several single-frame and multi-frame image super-resolution algorithms, adapting for different applications, are proposed. Then fundamental theories in mathematics, verification methods and evaluation criterion of the algorithms are developed in turn. Finally, implementations of the algorithms in software and hardware are designed.
     Although the single-frame image super-resolution processing is a typical ill-posed problem in principle, it still meets the requirements of the applications, in which the source image has high signal-noise ratio and small scaling up ratio. Especially it is widely adopted in real-time image enlargement and the ASIC (Application Specific Integrated Circuit) design for image processing. In this thesis, some traditional linear interpolation algorithms and their frequency characteristics are reviewed, including ideal interpolation, nearest interpolation, bilinear interpolation, four-point and six-point bicubic interpolations. Much research has pointed out that the lower order interpolations achieve unpleasant visual effects, the higher order interpolations have higher complexity, and the algorithms based on statistics and set theories are unfit for implementation by hardware. To avoid the shortcomings of these methods, an adaptive interpolation algorithm based on Newton polynomial, with lower complexity and more pleasant visual effects than those of the bicubic interpolation, is proposed and verified.
     By multi-frame image super-resolution algorithms, the similar but incompletely uniform information contained in sequential images is used to restore a high resolution image. These algorithms are usually classified into the processing in frequency and spatial domain respectively. Since spatial domain restoration simultaneously involves interpolation, iteration, filtering and re-sampling etc., it can be described by more comprehensive imaging model. Therefore, a multi-frame image super-resolution algorithm based on Delaunay triangulation in spatial domain is proposed. Spatial irregular samplings points are triangulated by Delaunay method, then the gradient values on these vertexes are computed, and each triangular area is fitted into a continuous and continuously differentiable curved surface. High resolution image with discretional enlarged ratio is achieved by re-sampling the curved surface.
     To verifiy the validity of multi-frame image super-resolution algorithms, a camera motion model is designed. According to the model, a group of low resolution images are generated from ideal high resolution images. Thus the registration parameters of low resolution images are obtained on high resolution grid, neglecting other influencing factors on image registration. So the verification is more precise. The following contrast experiments have been conducted by several groups of low resolution images generated by the above method. Firstly, two groups of low resolution images are restored with the same frame number and different resolutions. Secondly, two other groups with the same resolution and different frame numbers are restored. The experimental results show that the quality of the source low resolution sequential images has decisive effect on restoration of high resolution images, and on the other hand, more source images are involved, more pleasant visual effect can be achieved in high resolution image restoration. However, exceeding certain frame number, the visual effect is improved slightly.
     Image quality assessment is an important means to evaluate the performance of image processing systems and algorithms. It involves image quality subjective assessment and objective assessment. The objective assessment is usually adopted in lab for its defective practicability. At present the classical objective assessment parameters, such as PSNR (Peak Signal-Noise Ratio) and MSE (Mean Square Error) based on error statistics, are widely adopted to assess the quality of degenerated images. In some cases, the evaluation results are coincident with results of the subjective assessment. However, objective assessment is ineffective in many applications. Therefore, a novel objective assessment method based on image structure information is proposed. Several images are assessed by PSNR and useless results are gained, but the assessment results by the method based on image structure information is in accordance with the subjective assessment as expected.
     The non-real-time processing of super-resolution images can not meet the requirements of actual applications, and the needs of ASICs for super-resolution image processing is increasing. Due to the limited research foundation, the hardware implementation of multi-frame image super-resolution has not been further researched, while for hardware implementation of single-frame image super-resolution, the following research has been done based on LCD Scaler. Firstly, by analyzing the research in quo and development trend of panel display technology, system architecture of LCD Scaler is designed. Then timing constrains of the Scaler are deduced, and the hardware structure of implementing the bilinear interpolation and the adaptive Newton interpolation algorithms is devised. The two algorithms are both implemented in Verilog HDL, and functional simulations are performed.
     In order to reduce the risk and cost of ASIC design, FPGA verification is usually adopted. The appropriate data as the system input are selected, and the corresponding scheme for data format conversion is proposed. Then the object code is downloaded into FPGA on the evaluation board. Finally, the whole system function is verified by FPGA.
引文
[1] Elad M, Hel-Or Y. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. On Image Processing, 2001, 10(8):1187-1193
    [2] Dowlut N, Manikas A. A polynomial rooting approach to super-resolution array design. IEEE Trans. Signal Processing, 2000, 48(6):1559-1569
    [3] Lehmann T M, Gonner C, Spitzer K. Addendum:B-Spline interpolation in medical image processing. IEEE Trans. Medical Imaging, 2001, 20(7):660-665
    [4] Farsiu S, Robinson M D, Elad M, etc. Fast and robust multiframe super resolution. IEEE Trans. Image Processing. 2004, 13(10):1327-1343
    [5] Lee T Y, Lin C H. Feature-guided shape-based image interpolation. IEEE Trans. Medical Imaging, 2002, 21(12):1479-1489
    [6] Hwang J W, Lee H S. Adaptive image interpolation based on local gradient features. IEEE Signal Processing Letters, 2004, 11(3):359-362
    [7] Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine, 2003, 20(3):21-38
    [8] Patti A J, Altunbasak Y. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Processing, 2001, 10(1):179-186
    [9] Miwa T, Arai I. Super-resolution imaging for point reflectors near transmitting and receiving array. IEEE Trans. Antennas and Propagation, 2004, 52(1):220-229
    [10] Ji J X, Pan H, Liang Z P. Further analysis of interpolation effects in mutual information-based image registration. IEEE Trans. Medical Imaging, 2003, 22(9): 1131-1139
    [11] Gunturk B K, Altunbasak Y, Mersereau R M. Super-resolution reconstrunction of compression video using trnasform-domain statics. IEEE Trans. Image Processing, 2004, 13(1):33-43
    [12] Xiao J P, Zou X C, Liu Z L, et al. Adaptive interpolation algorithm for real-timeimage resizing. In: International Conference on Innovative Computing, Information and Control. Beijing, China. 2006, II:221-224
    [13] 肖建平, 邹雪城, 刘政林等. 基于LCD定标器的文本型图像缩放算法研究. 华中科技大学学报, 2005, 33(5):46-48
    [14] Shechtman E, Caspi Y, Irani M. Space-time super-resolution. IEEE Trans. Pattern Analysis and Machine Intelligence, 2005, 27(4):531-545
    [15] 王程. SAR 图像相干斑抑制和光学图像序列超分辨率技术研究: [博士学位论文].长沙: 国防科技大学图书馆, 2002
    [16] Robinson D, Milanfar P. Statiscal performance analysis of super-resolution. IEEE Tran. Image Processing, 2006, 15(6):1413-1428
    [17] Jorge P, Ferreira S G. Interpolation and the discrete Papoulis-Gerchberg algorithm. IEEE Trans. Signal Processing, 1994, 42(10): 2596-2606
    [18] Thevenaz P, Blu T, Unser M. Interpolation revisited. IEEE Trans. Medical Imaging, 2000, 19(7): 739-758
    [19] Cheung K F, Marks R J. II,III-posed sampling theorems. IEEE Trans. Circuits and Sysytems. 1985, 32(5): 481-484
    [20] Kenneth R, Castleman 著,数字图像处理. 第一版. 朱志刚等译. 北京:电子工业出版社, 1998. 1-12
    [21] Huang C L, Chen K C. Direction moving averaging interpolation for texture mapping. Graphical Models and Image Processing, 1996, 58(4):301-313
    [22] Unser M, Aldroubi A, Eden M. Enlargement or reduction of digital images with minimum loss of information. IEEE Transaction on Image Processing, 1995,4(3): 192-195
    [23] Schultz R R, Stevenson R L. A bayesian approach to image expansion for improved definition. IEEE Transaction on Image Processing, 1994, 3(3):233-242
    [24] Jensen K, Anastassiou D. Subpixel edge localization and the interpolation of still images. IEEE Transaction on Image Processing, 1995, 4(3):285-295
    [25] Kim C H, Seong S M, Lee J A, et al. Winscale: an image-scaling algorithm using an area pixel model. IEEE Transaction on Circuit and System for Video Technology, 2003, 13(6):549-553
    [26] Tsai R Y, Huang T S. Multiframe image restoration and registration. Advances in Computer Vision and Image Processing. Greenwich CT: JAI Press, 1984. 317-339
    [27] Ur H, Gross D. Improved resolution from subpixel shifted picture. CVGIP: Graph, Models Image Processing, 1992,54(2): 181-186
    [28] Kim S P, Su W Y. Recursive reconstruction of high-resolution image from noisy undersampled multiframes. IEEE Trans. ASSP, 1990, 38(6):1013-1027
    [29] Kim S P, Su W Y. Recursive high-resolution reconstruction of blurred multiframe images. IEEE Trans. Image Processing, 1993, 2(4):534-539
    [30] Ur H, Gross D. Improved resolution from sub-pixel shifted picture. CVGIP: Graphical Models and Image Processing, 1992, 54(2): 181-186
    [31] Komatsu T, Jgarashi T, Aizawa K. Very high resolution imaging scheme with multiple different aperture cameras. Signal Processing Image Communication, 1995, 5:511-526
    [32] Shah N R, Zakhor A. Resolution enhancement of color video sequences. IEEE Trans. IP, 1999, 8(6):879-885
    [33] Mann S, Picard R W. Virtual bellows: construction high quality stills from video. In: Proc IEEE Int Conf Image Processing. Austin, TX. 1994:363-367
    [34] Tom B C, Katsaggelos A K. Resolution enhancement of video sequences using motion compression. In: Proc IEEE Int Conf Image Processing. Lausannne, Switzerland. 1996, I:713-716
    [35] Tom B C, Katsaggelos A K. Resolution enhancement of monochrome and color video using motion compensation. IEEE Trans IP, 2001, 10(2):278-287
    [36] Ozkan M K, Tekalp A M, Sezan M I. POCS-based restoration of Space-varying Blurred Images. IEEE Trans. IP, 1994, 3(4):450-454
    [37] Hardie R C, Bamard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Trans. IP, 1997,6(12):1621-1633
    [38] Borman S, Stevenson R L. Simultaneous multi-frame MAP super-resolution video enhancement using spatial-temporal priors. In: Proc IEEE Int Conf Image Processing. 1999:469-473
    [39] Tom B C, Katsaggelos A K. Reconstruction of a high-resolution images by simultaneous registration, restoration, and interpolation of low-resolution images. In: Proc IEEE Int Conf Image Processing. Washington, DC. 1995, 2:469-473
    [40] Elad M, Feuer A. Restoration of single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. IP, 1997, 6(12):1646-1658
    [41] Elad M, Feuer A. Super-resolution reconstruction of an image. In: Proc 19th IEEE Conf. Israel, Jerusalem. 1996:391-394
    [42] Elad M, Feuer A. Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Trans IP. 1999, 8(3):387-395
    [43] Alam M S, Bognar J G., Hardie R C, et al. Infrared image registration and high-resolution reconstruction using multiple transationally shifted aliased video frames. IEEE Trans. Instrumentation and Measurement. 2000, 49(5):915-923
    [44] Elad M, Feuer A. Super-resolution reconstruction of image sequences. IEEE Trans. PAMI. 1999, 21(9):817-834
    [45] Andrew J T, Hugh G L, Peter M. A. Super-resolution target identification from remotely sensed images using a hopfield neural network. IEEE Trans. Geoscience and Remote Sensing, 2001, 39(4):781-796
    [46] Eckert M P, Bradley A P. Perceptual quality metrics applied to still image compression. Signal Processing, 1998, 70:177-200
    [47] Wang Z, Bovik A C, Sheikh H R. et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Processing, 2004, 13(4): 600-612
    [48] Wang Z, Bovik A C. A universal image quality index. IEEE Trans. signal Processing Letters, 2002, 9(3):81-84
    [49] Hontsch I, Karam L J. Adaptive image coding with perceptual distortion control. IEEE Trans. Image Processing, 2002, 11(3):213-222
    [50] Rosenholtz R, Watson A B. Perceptual adaptive JPEG coding. In: Processing of the IEEE International conference on Image Processing, 1996:901-904
    [51] Karunasekera S A, Kingsbury N G. A distortion measure for blocking artifacts in images based on human visual sensitivity. IEEE Trans. Image Processing, 1995, 4(6): 713-724
    [52] Miyahara M, Kotani K, Algazi V R. Objective picture quality scale (PQS) for image coding. IEEE Trans. Communication, 1998, 46(9):1215-1226
    [53] Pohaly A M. Video quality expert group: current results and future directions. In: Processing of the SPIE. Perth, Australia. 2000, 4067:742-753
    [54] 彭思龙. 小波域图像分辨率重构算研究: [博士学位论文]. 北京: 中国科学院自动化研究所. 2003
    [55] Battiato S, Gallo G, Stanco F. A locally-adaptive zooming algorithm for digital images. Image Vision and Computing, 2002, 20(11):805-812
    [56] Li Xin, Orchard M T. Edge-directed prediction for lossless compression of natural images. IEEE Trans. Image Processing, 2001, 10(6):813-817
    [57] Li Xin, Orchard M T. New edge-directed interpolation. IEEE Trans. on Image Processing, 2001, 10(10):1521-1527
    [58] Candocia F M, Principe J C. Superresolution of images based on local correlations. IEEE Trans. Neural Networks, 1999, 10(2):372-380
    [59] Gilboa G, Sochen N, Zeevi Y Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Processing, 2002, 11(7):689-703
    [60] Thomas L M, Gonner C, Spitzer K. Survey: interpolation methods in medical image processing. IEEE Trans. Medical Imaging, 1999, 18(11):1049-1075
    [61] Parker J A, Kenyon R V, Troxel D E. Comparison of interpolation methods for image resampling. IEEE Trans. Medical Imaging, 1983, 2(1):31-39
    [62] 崔屹. 数字图像处理技术与应用. 北京:电子工业出版社, 1997.11-17
    [63] Park S K, Schowengerdt R A. Image reconstruction by parametric cubic convolution. CVGIP: Graphical Models and Image Processing, 1983, 23(3):258-272
    [64] Kim C H, Secong S M, Lee J A. et al. Winscale: an image-scaling algorithm using an area pixel model. IEEE Trans. Circuits and Systems for Video Technology, 2003, 13(6):549-553
    [65] Bose N K, Kim H C. Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes. In: Processing of the IEEE conference on Acoustics, Speech and Signal Processing, Minneapolis, MN,1993, 5:269-272
    [66] 曹聚亮. 图像超分辨率处理、成像及相关技术研究: [博士学位论文]. 长沙:国防科技大学图书馆, 2004.
    [67] Keren D, Peleg S, Brada R. Image sequence enhancement using sub-pixel displacement. Computer Vision and Pattern Recognition, 1998. Proceedings CVPR’88, Computer Society Conference on, 1998: 742-746
    [68] Aizawa K, Komatsu T, Saito T. Acquisition of very high resolution images using stereo cameras. In: Visual Communication and Image Processing, Processing of the SPIE, 1991, 1605:318-328
    [69] Iran M i, Oskoui S. Improving resolution by image registration. Computer Vision, Graphics, Image Processing, 1991, 53(5):231-239
    [70] Tom B C, Katsaggelos A K. Resolution enhancement of video sequences using motion compenesation. In: Proc. 1996 IEEE International Conf. on Image Processing. Lausanne, Switzerland. 1996:713-716
    [71] Schultz R R, Stevenson R L. Improved definition image expansion. Acoustics, Speech, and Signal Processing, ICASSP-92, 1992 IEEE International Conference on, 1992, 3: 23-26
    [72] 唐荣锡, 汪嘉业, 彭群生等. 计算机图形学教程. 北京: 科学出版社,1994. 175-179
    [73] 朱桂斌. 高清晰度静止图像压缩编码技术. 长沙: 国防科技大学,1997. 62-68
    [74] 朱桂斌, 张邦礼, 吴乐华等. 基于 Delaunay 三角剖分的图形变形技术研究. 中国图象图形学报, 2003, 8(6):642-646
    [75] 邵春丽, 胡鹏, 黄承义等. Delaunay 三角网的算法详述及其应用发展前景. 测绘科学, 2004, 12(6):68-71
    [76] Lertrahtlanapanich S, Bose N K. High resolution image formation from low resolution frames using Delaunay triangulation. IEEE Trans. Image Processing, 2002, 11(12): 1417-1426
    [77] Lertrahtlanapanich S. Superresolution from degraded image sequence using spatial tessellations and wavelets: [Ph.D Thesis]. The Pennsylvania State University, 2003
    [78] 丁艺芳. 基于小波变换和视觉系统的图像质量综合评价新算法: [博士学位论文]. 上海: 上海大学图书馆, 2001
    [79] 陶洪久. 图像超分辨率处理方法研究:[博士学位论文]. 武汉: 华中科技大学图书馆,2003
    [80] Antoon M D. Subjective quality assessment of compressed images. Signal Processing, 1997, 58:235-252
    [81] 魏政刚等. 图像质量评价方法的历史、现状和未来. 中国图象图形学报, 1998, 3(5):236-239
    [82] 唐传尧. 图像电子学基础. 南京:东南大学出版社, 1999. 25-32
    [83] 赵慧波. 用于平板显示器的图像缩放引擎设计研究:[硕士学位论文]. 武汉:华中科技大学图书馆, 2005
    [84] 李仕杰. 用于平板显示器的定标器芯片前端设计与验证:[硕士学位论文]. 武汉:华中科技大学图书馆, 2005
    [85] 刘政林, 赵慧波, 邹雪城等. 定标器中图像增强模块的设计. 电视技术, 2004, (10):59-61
    [86] 郭旭, 刘政林, 邹雪城等. LCD 定标器中图像锐化模块设计. 计算机与数字工程, 2005, 33(5):82-84
    [87] 刘政林, 邹雪城, 向祖权等. 定标器的设计与实现. 电子学报, 2006, 34(1): 185-188
    [88] 刘政林, 郭旭, 邹雪城等. 基于改进 Bayer 抖动算法的图像色彩增强技术. 华中科技大学学报, 2006, 34(5):68-70
    [89] 刘政林, 邹雪城, 陈毅成等. 平板显示器中定标器的时序约束条件. 华中科技大学学报, 2005, 33(1):44-46
    [90] 贝斯著. 数字信号处理的 FPGA 实现. 刘凌, 胡永生译. 北京:清华大学出版社, 2003. 66-82
    [91] 姚天任, 江太辉. 数字信号处理. 武汉: 华中科技大学出版社, 2000. 107-119
    [92] 何斌. FPGA 的 EDA 设计方法. 光学精密工程, 1995(6):113-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700