商用车车架拓扑优化轻量化设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,重型商用车的高水平振动将影响驾乘人员乘坐舒适性、运载货物的安全性和道路条件。汽车设计师极大关注汽车结构的优化设计,即提高商用车零部件的刚度和强度并减轻其结构重量。商用车零部件的轻量化设计变得越来越重要,已成为汽车工业重要研究的主题。用于汽车零部件轻量化设计的优化方法可分为三种:尺寸、形状和拓扑优化。
     在尺寸优化中,其设计变量为材料参数(如弹性模量E和密度ρ)和尺寸参数(如杆梁的横截面尺寸、转动惯量,板的厚度,弹性支承刚度,两部件之间的联接刚度等)。在形状优化中,其设计变量为边界点的坐标,为计及网格的变化,有基向量法和摄动向量法两种方法可以应用。
     拓扑优化用来确定结构的最优形状和质量分布。拓扑优化计算每一单元的材料特性并改变材料分布,在一定的约束条件下实现优化目标。目前人们已经认识到,与拓扑结构不变的优化方法相比,拓扑优化能极大地改进结构设计。因此,拓扑优化方法受到了极大的重视并取得了快速发展。例如,拓扑优化的均匀化方法和密度法已广泛应用于商用车的结构设计。在密度法中每一个单元仅有一个表示材料密度的变量。在均匀化法中,对2D壳单元有两个尺寸变量,对3D块体元有三个尺寸变量。每个单元的附加变量就是其方位角。
     近年来,上述三种优化方法已成功用于商用车零部件优化设计并取得了很大的成功。然而,上述三种优化方法很难处理自由度和设计变量巨大的有限元模型优化问题。迄今为止,大多数结构优化研究仅限于处理商用车单一零部件的优化问题。很少见到有关在整车装配环境下零部件优化方面的研究报导。
     应当说明的是,即使作用在整车上的载荷是已知的,但作用在每个零部件(如驾驶室、车架等)上的载荷多半是未知的。因为在整车装配环下各零部件之间存在弹性动态耦合关系,每个零部件的边界条件也很难精确给出。在此情况下,单一零部件的优化仅能给出不精确结果,还可能是毫无意义的结果。因此,即使单一零部件的设计是优化的,但整车装配环境下可能不再是优化的。也就是说,零部件的单独优化设计不等同于在整车装配环境下的优化。为了得到整车性能的优化,必须在整车装配环境下对零部件进行优化设计。为此目的,本文讨论在整车装配环境下商用车车架的轻量化优化设计问题,包括简化的建模方法和更有效的拓扑优化方法,解决在整车装配环境下,零部件大规模优化问题。本文完成的主要研究工作如下:
     回顾并综述了结构优化方法在商用车零部件设计中的应用,论述了单一零部件的尺寸、形状和拓扑优化的国内外研究现状,指出了大规模优化问题遇到的困难以及本文要讨论的问题。
     讨论了车架刚度对商用车乘坐舒适性和货物运输安全性的影响。由于不平道路激励引起的商用车高水平振动将影响乘坐舒适性和货物运输的安全性。为此,建立了整车有限元模型,分析了车架振动的加速度功率谱密度(PSD)均方根值(RMS)。为了说明车架刚度对乘坐舒适性和货物安全性的影响,给出了两种不同车架刚度在4种激励作用下驾驶员座椅地板和货厢中心的PSD和RMS。结果表明,当车架的刚度提高时,驾驶员座椅地板和货厢的PSD和RMS均较大的降低(频率为14-26Hz),从而改善了驾乘舒适性和货物安全性。此结论可为后续改进车架设计提供参考。
     对商用车结构进行了拓扑优化及拓扑灵敏度分析。首先,回顾了结构静态位移和模态频率的灵敏度分析方法和拓扑优化方法(均匀化法和密度法)。然后,针对大规模结构优化所产生的困难,提出了商用车零部件结构优化的新概念和新方法。把结构在外载荷作用下的应变能定义为结构刚度的逆测度,提出了基于子结构单元和超单元的结构静态拓扑修改灵敏度的新概念,并给出了相应的结构静态拓扑优化的方法。把振动特征值λr定义为模态刚度,提出了子结构基于单元和超单元拓扑修改的模态刚度灵敏度的概念,同时建立了相应的动态拓扑优化方法。应用所提出方法,计算了商用车架的静态扭转和弯曲刚度灵敏和车架的扭转模态和弯曲的模态刚度灵敏度。这些拓扑修改灵敏度信息可用来改进车架的设计。
     在整车装配环境下商用车车架的优化设计过程中。讨论了包括多体系统模拟、模态综合和结构模态缩减等结构响应分析方法,并指出,这些方法很难用来处理在整车装配环境下商用车的零部件的优化问题。针对大规模结构优化所带来的计算困难,提出了在整车装配环境下车架优化设计的新方法。应用主模态缩减和静态缩减方法,提出了基于整车分析的动态子结构缩减方法。在此基础上,建立了在整车装配环境下车架的动态拓扑优化方法。所提出的分析方法已应用于商用车车架的设计。结果表明,所提出的方法是正确的和有效的。在计算中,得到了车架中每个元件的模态刚度灵敏度及车架模态刚度对整车的贡献。
     最后,给出了论文研究的主要结论以及商用车优化设计需要进一步研究的问题。
It is well known that the excessive levels of vibration in heavy trucks negatively affect driver comfortability, cargo safety and road condition. The automotive designers pay great attention to optimize the vehicle structure, that is, to increase stiffness and strength and to reduce weight. Weight optimizing structural components for heavy trucks is becoming more and more important.Therefore the structural optimization has been the subject of numerous studies and widely used to develop the truck. The optimal methods used in the automotive component design can be divided into three types, size, shape and topology optimization.
     In the size optimization, the design variables are the used material parameters such as the elastic module(E) and density(ρ), and the size parameters such as the cross sectional area of a beam, bending moment of inertia, the thickness of a plate, an elastic support with spring stiffness and an connector of stiffness between two components, etc. In the shape optimization, the design variables are the coordinates of the boundary node points. In order to account for mesh changes, the basis vector approach and the perturbation vector approach, are used.
     The topology optimization is used to affirm an optimized shape and material distribution for a given structure. The topology algorithm calculates the material properties for each element,and alters the material distribution to optimize the defined objective function under given constrains. It has been recognized that topology optimization can more greatly improve the structure design than fixed-topology optimization. Up to date significant progress has been made with a variety of different approaches. For example, homogenization or a density method has been widely used to solve the topological optimization problem of trucks. For the density method, each element has one variable representing its material density. For the homogenization method which is limited to 2-D and 3-D elements, there are two size variables for each shell element and three void size variables for each solid element, and an additional variable for each element is the void orientation angel.
     In recent years, all three optimal methods described above have been widely applied to the component design of the truck and significant successes have been achieved. However, for the optimal problems of the large scale finite element model with a large number of degree of freedom and design variable, the difficulties arise and three methods described above are difficult to deal with. Up to date, most of the optimizations are limited to deal with the individual component of the truck. A few studies can be found for the optimization under full truck assembly.
     It should be pointed out that even though the loads on the full truck are usually known, the loads on each component, such as cab, body and frame, are rarely known. Since there exist the elastic and dynamic coupling relations between components under the assembly environment of the truck, it is difficult to obtain the boundary conditions of each component. In this case, the optimization for the individual component may not only give inaccurate result but also may be meaningless, if exact loads and boundary conditions can not be given. As can be seen that even through the optimal design for the individual component is obtained, the design of full assembly truck may not be optimal, In other words, the optimization of the individual is not equal to the optimization of full assembly truck. Therefore, it is necessary to discuss the optimization of the component under full truck assembly environment in order to obtain the optimal performances of the full truck. To this end, this paper presents the optimization of the frame under full truck assembly environment including the simplified modeling and more effective topological optimal method for solving the large scale optimal problems of components under full truck assembly environment. The main contents of this paper are studied as following:
     A review on the applications of structural optimal method to the component design of the truck is given. The state-of-the-arts of the size, shape and topological optimizations for the individual component of trucks is presented. The difficulties resulting from the large scale optimal problems of the structure and problems to be discussed in this paper are also given.
     The effect of frame stiffness on the ride comfort and the cargo ride safety is discussed. As can be seen that excessive levels of vibration in commercial vehicles, due to excitation from the road irregularities, can lead to cargo damage and safety problems. Therefore a finite element model of full vehicle was established. The computation algorithm for acceleration power spectral density (PSD) and root mean square (RMS) are also given. In order to show the effect of frame stiffness on the ride comfort and cargo ride safety, two frames with different stiffness were given in the computations of PSD and RMS of the drivers and body vertical accelerations for four excitation cases. The computed results showed that when the stiffness of the frame is increased, the values of RMS the driver and body are decreased significantly at the frequency band 14~26Hz, which can effectively improve the ride comfort and cargo ride safety. This conclusion can be used to improve the design of frame as a valuable guide.
     The topological optimization and topological sensitivity analysis of the truck structure are presented in this paper. Firstly, the sensitivity analysis methods for the static displacements and modal frequencies, and the topological optimal methods which including, the homogenization and the density methods, are reviewed, And then, focusing on difficulties of resulting from the optimal design problems in large scale finite element model of the complex structure, a new conceptions and new methods for the topology optimization design of the truck component are developed. The strain energy resulting from the loads applied to the structure is defined as the inverse measurement of the stiffness of the structure. The new conception of the static sensitivity for topological modification based on the element and superelement is presented and the corresponding static topological optimal method is developed for structures. The eigenvaluesλr can be defined as the modal stiffness. The modal stiffness sensitivities based on the element and super element(substructure) are presented for the topological modification, and the corresponding dynamic topological optimal method are developed. By using the present methods for sensitivity computation the static topological modification sensitivities of the torsional and bending stiffness of the truck frame, and the modal stiffness sensitivities of the torsional and bending modes are obtained. The topological modification sensitivities can be to improve the frame design as a valuable guide.
     In the discussion of the optimal design of the truck frame under full vechiche assembly environement, the response analysis methods including multi-body system simulation, component mode synthesis and structural reduction are discussed. It is pointed out that it is difficult to use these methods to deal with the optimal design of the truck component under full vehicle assembly environment. By considering, difficulty resulting form the optimal problem with large scale degrees of freedom and design variables, the new methods for the optimization of the frame under full vehicle assembly environment are developed. Using the normal mode reduction and the static reduction, the dynamic substructural reduction and the dynamic topological optimization method are developed for the frame design under full vehicle assembly environment. The present method is applied to the design of the truck frame, and the obtained results indicate that the proposed method is valid and effective. The sensitivities of the modal stiffness of each component and the modal stiffness of the frame to the full vehicle are obtained from the computations.
     Finally, the conclusions are drawn and problems to be further investigated are also presented for the truck.
引文
[1]WEN JH. Optimization analysis in Utility Vehicle/Golf car simulation[J]. SAE Paper, 2006-01-3457.
    [2]JEONG Y. Crashworthiness topology optimization:With X-frame and deformation decomposition based on homogenized-density method[J]. SAE Paper,2004-01-1176.
    [3]YOUN BD, CHOI KK, YI K. Reliability-based robust design optimization using the performance moment integration method and case study of engine Gasket-sealing problem[J]. SAE Paper,2005-01-0812.
    [4]DEMIRDOGEN C, RIDGE J, POLLOCK P, ANDERSON S. Weight-optimized design of a front suspension component for commercial heavy trucks[J]. SAE Paper,2004-01-2709.
    [5]MANGALARAMANAN P, DAUBER D. Implications of shape optimization in structural design[J]. SAE Paper,2004-01-2712.
    [6]KRISHNA MMR. Finite element shape optimization of a steering knuckle for a heavy truck-a case study [J]. SAE Paper,2001-01-0634.
    [7]LEE YE, KOCER F. Minimize driveline gear noise by optimization technique[J]. SAE Paper,2003-01-1482.
    [8]MONTGOMERY DT, REITZ RD. Optimization of heavy-duty diesel engine operating parameters using a response surface method[J]. SAE Paper,2000-01-1962.
    [9]KRISHNA MMR. A methodology of using topology optimization in finite element stress analysis to reduce weight of a structure [J]. SAE Paper,2001-01-2751.
    [10]CHANG HS. A Study on the analysis method for optimizing mounting brackets[J]. SAE Paper,2006-01-1480.
    [11]KRISHNA MMR, Anderson SV. Shape optimization application in upper control arm design[J]. SAE Paper,2000-01-3445.
    [12]KRISHNA MMR. Design of an upper-control arm using shape optimization [J]. SAE Paper, 2001-01-2711.
    [13]LAXMAN S, MOHAN R. Structural optimization:Achieving a robust and light-weight design of automotive components[J]. SAE Paper,2007-01-0794.
    [14]HE J, ZHANG G, VLAHOPOULOS N. Uncertainty propagation in multi-disciplinary design optimization of undersea vehicles[J]. SAE Paper,2008-01-0218.
    [15]MA ZD, WANG H, KIKUCHI N, PIERRE C, RAJU B. Substructure design using a multi-domain, multi-step topology optimization approach[J]. SAE Paper,2003-01-1303.
    [16]CHANDRASEKARAN AK, RIZZONI G, SOLIMAN A, JOSEPHSON J, CARROLL M. Design optimization of heavy vehicles by dynamic simulations [J]. SAE Paper, 2002-01-3061.
    [17]GUO ZJ, FAN DL, XU RL, TIAN CY. Modal design optimization of an articulated frame[J]. SAE Paper,2008-01-1589.
    [18]SARACHO CM, NOGUEIRA CF, MIYOSHI CS, ARGENTINO MA. An Integrated approach for an articulated bus development durability and dynamics simulations[J]. SAE Paper,2004-01-3455.
    [19]WANG H, MA ZD, KIKUCHI N, PIERRE C, RAJU B. Multi-domain, multi-step topology optimization for vehicle structure crashworthiness design[J]. SAE Paper, 2004-01-1173.
    [20]CHOI KK, TANG J, HARDEE E, YOUN BD. Application of reliability-based design optimization to durability of military vehicles[J]. SAE Paper,2005-01-0530.
    [21]SUN D, PAULLS A, SWIFT K, SMITH R, GILL L. Stress concentrations and structural analysis[J]. SAE Paper,2006-01-2411.
    [22]PERSEGUIM OT, NETO AC, ARGENTINO MA, NOGUEIRA CF. Comfort and vibration study of a tractor and trailer combination using simulation and experimental approaches the jumping ride Behavior[J]. SAE Paper,2000-01-3517.
    [23]SCHMIT D. Design of a medium and heavy-duty truck cab shell[J]. SAE Paper, 2004-01-2637.
    [24]SOLIMAN AMA. Improvement of the truck ride comfort via cab suspension[J]. SAE Paper,2008-01-1148.
    [25]GRYP D. Using modern technology to improve truck seating[J]. SAE Paper, 1999-01-3735.
    [26]宋希庚,薛冬新,韩松.悬挂式座椅与重型车的平顺性[J];大连理工大学学报,1995,35(3):376-379.
    [27]周颖.董尔珠.载货汽车行驶平顺性评价方法分析[J];汽车工程,1989(2):50-58.
    [28]孙中辉,李幼德,孙中红,郭彦颖.改进的车辆平顺性模型[J].吉林大学学报(工学版),2008,38(3):497-503.
    [29]VANDERPLAATS GN. Saving energy through design optimization[J]. SAE Paper, 2003-01-1331.
    [30]KIM BS, KOSCHEL W. Shape optimization of a front suspension fork according to the axiom of constant stress[J]. SAE Paper,1999-01-0032.
    [11]CHANG JM, HUANG M, TYAN T, LI G, GU L. Structural optimization for vehicle pitch and drop[J]. SAE Paper,2006-01-0316.
    [32]KRISHNA MMR. Finite element topography and shape optimization of a jounce bumper bracket[J]. SAE Paper,2002-01-1468.
    [33]PORTO ECB, KATO GM, RIBEIRO R, JUNIOR WWL. Structural optimization of a rear cabin suspension bracket and of a frame air filter bracket[J]. SAE Paper, 2004-01-3391.
    [34]MAHADEVAN S. Design optimization for reliability and robustness[J]. SAE Paper, 2004-01-0237.
    [35]EADS K, HAGHIGHI K, FUEHNE J. Shape optimization of an exhaust system[J]. SAE Paper,2001-01-0636.
    [36]SUBRAMANIAN S, SURAMPUDI R, THOMSON KR, VALLURUPALLI S. Optimization of damping treatment for structure-borne noise reduction[J]. SAE Paper, 2003-01-1592.
    [37]QIN G, ZHANG YQ, CHEN LP, YANG ZJ. Synthesis and analysis of the double-axle steering mechanism considering dynamic loads [J]. SAE Paper,2008-01-1105.
    [38]FONTANA R, SLAVE R, ANDRADE F. Optimizing 4x4 steering geometry [J]. SAE Paper, 2007-01-2675.
    [39]KOEGELER HM, REGNER G, SAMS T. Using simulation and optimization tools to decide engine design concepts[J]. SAE Paper,2000-01-1267.
    [40]ZHANG JM, LAMBRECHT S. Effect of element size and pre-deformation on unsafe zone structural finite element analyses[J]. SAE Paper,2007-01-0980.
    [41]RASTOGI N. Stress analysis and lay-up optimization of an all-composite pick-up truck chassis structure[J]. SAE Paper,2004-01-1519.
    [42]CHASE E. Truck durability evaluation through computer simulation[J]. SAE Paper, 2001-01-2763.
    [43]Abrantes JP, Argentino MA, Concalves ACC. Integrating the results of sheet forming simulation in crashworthiness[J]. SAE Paper,2003-01-3742.
    [44]RIZVI AA. Dimensional management-setting static and dynamic dimensional goals concurrently [J]. SAE Paper,2002-01-2004.
    [45]杨志军,吴晓明,陈塑寰,孟树兴.多工况约束下客车顶棚拓扑优化[J].吉林大学学报(工学版),2006,36:12-15.
    [46]庄才敖,荣见华,李东斌.考虑应力和频率要求的车架结构拓扑优化设计[J].汽车工程,2008,5:449-452+385.
    [47]范文杰,范子杰,桂良进,刘东.多工况下客车车架结构多刚度拓扑优化设计研究[J].汽车工程,2008,6:531-533.
    [48]上官文斌,蒋翠翠,潘孝勇.汽车悬架控制臂的拓扑优化与性能计算[J].汽车工程, 2008,8:709-712.
    [49]陈茹雯,李守成,吴小平.基于有限元法的拓扑优化技术在某军车车身骨架设计中的应用研究[J].汽车工程,2006,4:390-393.
    [50]WENG JS. Robust optimization design of the powertrain mounting system of the light truck[J]. SAE Paper,2007-01-0556.
    [51]VANTSEVICH VV, VYSOTSKI MS, GILELES LK, ZAKHARIK M, HAPPAWANA GS. Optimal mass and geometric parameters in multi-wheel drive trucks for improved transport and fuel efficiency [J]. SAE Paper,1999-01-3733.
    [52]MOKHTAR MOA, IBRAHIM IM, BUTCH AME. New suspension design for heavy duty trucks:Dynamic considerations[J]. SAE Paper,2000-01-3447.
    [53]VERMA M, RIZZONI G, GUENTHER DA, RUSSELL JL. Modelling, simulation and design space exploration of a MTV 5.0 ton cargo truck in MSC-ADAMS[J]. SAE Paper, 2005-01-0938.
    [54]史文库,洪哲浩,赵涛.汽车动力总成悬置系统多目标优化设计及软件开发[J].吉林大学学报(工学版),2006,36:654-658.
    [55]万德安,赵建才.轿车车门刚度有限元分析及结构优化[J].汽车工程,2001,6:385-388.
    [56]MCKENZIE TA, HICKS WJ, CONAWAY RL. A new generation of vibration isolation for the conventional truck cab[J]. SAE Paper,2000-01-3515.
    [57]MILICH EP, FIFE NF, GUENTHER DA. A validation study of vehicle dynamics simulations for heavy truck handling maneuvers[J]. SAE Paper,2001-01-0139.
    [58]BASSI FA, SCAFFIDI C, TINTI FC, VICARI C, CASELLA M, ESPOSTO E. Acoustic design of an innovative sound package for heavy-duty cabin for future generation European trucks[J]. SAE Paper,2007-01-4227.
    [59]COSME C, GHASEMI A, GANDEVIA J. Application of computer aided engineering in the design of heavy-duty truck frames[J]. SAE Paper,1999-01-3760.
    [60]SIQUEIRA LP, NOGUEIRA F. Application of modal analysis and operating deflection shapes on the study of trucks and buses dynamic behavior[J]. SAE Paper,2001-01-2780.
    [61]BAE HR, GRANDHI RV, CANFIELD RA. Structural design optimization based on reliability analysis using evidence theory[J]. SAE Paper,2003-01-0877.
    [62]BAYSAL O, BAYRAKTAR I. Computational simulations for the external aerodynamics of heavy trucks[J]. SAE Paper,2000-01-3501.
    [63]RIBBENS J. Design guidelines for truck frame repairability benefits and necessity[J]. SAE Paper,2003-01-1246.
    [64]PAN XY, ZONNI D, CHAI GZ, ZHAO YQ, JIANG CC. Structural optimization for engine mount bracket[J]. SAE Paper,2007-01-2419.
    [65]WIERWILLE WW, SCHAUDT WA, FITCH GM, HANOWSKI RJ. Development of a performance specification for indirect visibility systems on heavy trucks[J]. SAE Paper, 2007-01-4231.
    [66]ESMAILZADEH E, TABARROK B. Directional response and yaw stability of articulated log-hauling trucks[J]. SAE Paper,2000-01-3478.
    [67]AHMADIAN M, PATRICIO PS. Dynamic influence of frame stiffness on heavy truck ride evaluation[J]. SAE Paper,2004-01-2623.
    [68]HASSAN R, MCMANUS K. Factors affecting truck driver's perceived comfort[J]. SAE Paper,2001-01-1571.
    [69]HASSAN R, MCMANUS K. Heavy vehicle ride and driver comfort[J]. SAE Paper, 2001-01-0386.
    [70]FERREIRA WG, MARTINS F, KAMEOKA S, SALLOUM AS, KAEYA JT. Structural optimization of automotive components applied to durability problems [J]. SAE Paper, 2003-01-3547.
    [71]SUTTON T, POPE R, BRANDEWIE K, HENRY J. International truck and engine high performance vehicle driveability-ride and handling[J]. SAE Paper,2001-01-2787.
    [72]JARIMOPAS B, SINGH SP, SAENGNIL W. Measurement and analysis of truck transport vibration levels and damage to packaged tangerines during transit[J]. SAE Paper,2005; 18: 179-188.
    [73]SINGH J, SINGH SP, JONESON E. Measurement and analysis of US truck vibration for leaf spring and air ride suspensions, and development of tests to simulate these conditions[J]. SAE Paper,2006; 19:309-323.
    [74]HAATAJA M, LEINONEN T. On the distribution of braking forces in road braking[J]. SAE Paper,2000-01-3413.
    [75]AHMADIAN M, AHN YK. On-vehicle evaluation of heavy truck suspension kinematics[J]. SAE Paper,2003-01-3394.
    [76]SHURTZ ML, GUENTHER DA, HEYDINGER GJ. Refinements of a heavy truck ABS model[J]. SAE Paper,2007-01-0839.
    [77]SALEM MI, MUCINO VH, GAUTAM M, AQUARO M. Review of parameters affecting stability of partially filled heavy-duty tankers[J]. SAE Paper,1999-01-3709.
    [78]SPURR WA. Ride and handling development of the 2003 Chevrolet Kodiak and GMC TopKick[J]. SAE Paper,2002-01-3115.
    [79]RIEDEL A, SCHMIDT A. Testing control systems of trucks and truck-trailer-combinations with hardware in the loop-very real tests in a virtual world[J]. SAE Paper,2001-01-2768.
    [80]DONAVAN PR. The influence of truck tire type and pavement on the emission of noise from trucks under highway operating conditions[J]. SAE Paper,2007-01-2255.
    [81]GUNTER D, BYLSMA W, LETHERWOOD M, DENNIS S. Using 3D multi-body simulation to evaluate future truck technologies[J]. SAE Paper,2005-01-0934.
    [82]AERI P, MORRISH M. On the optimization of a steering hanger beam component[J]. SAE Paper,2008-01-0876.
    [83]吕文泉,刘汉光,陆永能.采用油气悬架的汽车起重机平顺性试验分析[J];建筑机械,2003(9):42-44。
    [84]王超.多轴汽车转向特性及其操纵稳定性研究[D];长安大学,2006.
    [85]吴修德,李刚炎,胡剑.基于CAN的载重汽车制动集中控制系统[J];汽车电子,2007(23)11-2:278-280.
    [86]张祯琦.基于国产三维CAD软件的载货汽车设计及整车性能计算与评估系统研究[D];西南交通大学,2007.
    [87]胡学兆.轻型载货汽车行驶平顺性分析及优化[D];吉林大学,2007.
    [88]吴怀主,李凌阳.全浮式驾驶室重型卡车平顺性分析[J];汽车科技,2008(2):49-51.
    [89]陶坚.三轴平衡悬架载货汽车平顺性分析与优化,湖南大学硕士论文,2006.
    [90]陶坚,任恒山.三轴平衡悬架载货汽车平顺性建模研究[J];广西工学院学报,2006,17(2):41-44.
    [91]吴朝晖.三轴载货车的平顺性分析及振动仿真[D];湖南大学,2005.
    [92]沈铁军.时域内双轴载重汽车行驶平顺性建模仿真与试验研究[D];吉林大学,2006.
    [93]李明兵.双轴转8×4载货车多体动力学仿真分析及系统开发[D];华中科技大学,2006.
    [94]胡济尧,刘志.运材汽车列车随机振动的模拟及行驶平顺性的研究[J];林业科学,1991,27(1):54-59.
    [95]孙景工,宋传学.采用单轴激振法对改善轻型载货汽车平顺性的研究[J];汽车技术,1996(6):17-20.
    [96]谢卫国,汪红心.载货车平顺性预测与优化[J];汽车工程,1991,13(3):150-160.
    [97]魏胜君,孙蓓蓓,张晓阳.基于集中质量的铰接式自卸车平顺性仿真研究[J];机械制造与研究,2008,37(1):40-41.
    [98]江浩斌,王波,黄炯.基于平顺性和道路友好性的载货汽车悬架参数优化[J];现代交通技术,2008,5(4):71-74.
    [99]冯振东,林逸,范光明.江铃轻型载货车行驶平顺性的改善[J];汽车工程1995,17(1):12-18.
    [100]秦民.汽车驾驶室平顺性优化设计[J];计算机辅助工程,2006,15(1):161-162.
    [101]李丽莉,李玉峰,王杏华,王海.汽车行驶平顺性的预测及优化设计[J];天津大学学报,1999,32(4):450-453.
    [102]KRISHNA MMR, RAINA K. Finite element shape optimization of a power-take-off housing unit[J]. SAE Paper,2000-01-0118.
    [103]GAETA A, MONACA AL, FRASCA F. A combined optimization of automotive body joints[J]. SAE Paper,2003-01-2797.
    [104]宋传学,蔡章林,安晓鹃.车辆平顺性的虚拟仿真及试验[J].吉林大学学报(工学版),2007,37(2):259-262.
    [105]FU Y, CHUANG CH, LI G, YANG RG. Reliability-based design optimization of a vehicle exhaust system[J]. SAE Paper,2004-01-1128.
    [106]徐岩,杨志军,陈宇东,陈塑寰.载货汽车发动机飞轮壳加强筋布置的优化设计[J].吉林大学学报(工学版),2005,35(4):451-456.
    [107]陈塑寰,麻凯.板壳加筋结构的组合优化[J].吉林大学学报(工学版),2008,38:388-392.
    [108]HERNANDES JA, FERREIRA RTL, FARIA AR. An Assessment of structural optimization using CATIA V5[J]. SAE Paper,2008-36-0183.
    [109]GU L, LI G, YANG RG. An Excel-based robust design tool for vehicle structural optimization[J]. SAE Paper,2004-01-1124.
    [110]房立存,秦世引.基于多目标遗传算法的混合电动汽车参数优化[J].汽车工程,2007,12:1036-1040.
    [111]蒋春明,阮米庆.汽车机械式变速器多目标可靠性优化设计[J].汽车工程,2007,12:1090-1093.
    [112]舒磊,方宗德,董军,陈善志.汽车子结构的复合域拓扑优化[J].汽车工程,2008,5:444-448.
    [113]BAE HR, GRANDHI RV, CANFIELD RA. Structural design optimization based on reliability analysis using evidence theory[J]. SAE Paper,2003-01-0877.
    [114]吕兆平.能量法解耦在动力总成悬置系统优化设计中的运用[J].汽车工程,2008,6:523-526.
    [115]GOBBI M, GUARNERI P, MASTINU G. Optimal robust design optimization with application to a piezoelectric brake[J]. SAE Paper,2008-01-2554.
    [116]ZOTTIN W, CUCO APC, REIS MVF. Application of optimization techniques in the design of engine components [J]. SAE Paper,2008-01-0219.
    [117]曹文钢,曲令晋,白迎春.基于灵敏度分析的客车车身质量优化研究[J].汽车工程,2009,3:278-281.
    [118]陈剑,徐陈夏.发动机悬置系统优化设计及其可靠性分析[J].汽车工程,2009,3: 234-238.
    [119]吕兆平,闫剑滔,李宏庚,许文光,尹亮.基于有限元技术的动力总成悬置支架拓扑优化的研究[J].汽车工程,2009,4:321-325.
    [120]王登峰,张斌,陈静,刘伟,孙兆福,吴永刚.商用车驾驶室白车身焊点缩减拓扑优化研究[J].汽车工程,2009,4:326-330.
    [121]YAMAMOTO T, MARUYAMA S, YAMADA H. Feasibility study of a new optimization technique for the vehicle body structure in the initial phase of the design process[J]. SAE Paper,2007-01-2344.
    [122]潘孝勇,柴国钟,刘飞,徐驰.悬置支架的优化设计与疲劳寿命分析[J].汽车工程,2007,4:341-345.
    [123]李红建,邱少波,林逸,张君媛,刘静岩.汽车车身复杂钣金件的拓扑优化设计[J].汽车工程,2003,3:303-306+30.
    [124]AQUARO M, MUCINO VH, GAUTAM M, SALEM M. A finite element modeling approach for stability analysis of partially filled tanker trucks[J]. SAE Paper, 1999-01-3708.
    [125JADELI H, CHENG N T. Augmented lagrangian genetic algorithm for structural optimization[J]. J Aerospace Engng.,1994,7:104-118.
    [126]ALEFELD G, HERZBERGER J. Introduction to interval computations[M]. New York: Academic Press,1983.
    [127]ARORA J S, ELWAKEIL O A, CHAHANDE A I, HSIDH C C. Global optimization methods for engineering applications [J]. A Rev. Struct. Optim.,1994,9:137-159.
    [128]DE SILVA C W. An algorithm for the optimal design of passive vibration controllers for flexible systems[J]. J. Sound Vib.,1981,75:495-502.
    [129]COSTER J E, STANDER N. Structural optimization using augmented lagrangian methods with secant Hessian updating[J]. Struct. Optim.,1996,12:113-119.
    [130]HANSEN J S, LIU Z S, OLHOFF N. Shape sensitivity analysis using a fixed basis function finite element approach[J]. Struct. Multidisc. Optim.,2001,21:177-195.
    [131]DEMS K, HAFTKA R T. Two approaches to sensitivity analysis for shape variation of structures[J]. Mech. Struct. Mach.,1988,16:501-522.
    [132]DEMS K, MROZ Z. On shape sensitivity approaches in the numerical analysis of structures[J]. Struct. Optim.,1993,6:86-93.
    [133]DING Y. Shape optimization of structures:a literature survey[J]. Comp.& Struct.,1986, 24:985-1004.
    [134]HAFTKA R T, GRANDHI R V. Structural shape optimization—a survey [J]. Comp. Meth. App. Mech. Engrg.,1986,57:91-106.
    [135]LUND E, OLHOFF N. Shape design sensitivity analysis of eigenvalues using exact numerical differentiation of finite element matrices[J]. Struct. Optim.,1994,8:52-59.
    [136]DUYSINX P, BENSOE M P. Topological optimization of continuum structures with local stress constraints[J]. International Journal for Numerical Methods in Engineering,1998, 43:1453-1478.
    [137]PETERSSON J. On the continuity of the design-to state mappings for trusses with variable topology [J]. International Journal of Engineering Science,2001,39:1119-1141.
    [138]GUO X, CHENG GD, YAMAZAKI K. A new approach for the solution of singular optima in truss topology optimization with stress and local bucking constraints [J]. Structural and Multidisciplinary Optimization,2001,22:364-373.
    [139]KIRSCH U. Optimal topology of structures[J]. Appl. Mech. Rev.,1989,42:233-239.
    [140]ROZVANY G I N, BENDSOE M P, KIRSCH U. Layout optimization of structures [J]. Appl. Mech. Rev.,1995,48:41-118.
    [141]SUZUKI K, KIKUCHI N. A homogenization method for shape and topology optimization[J]. Comput. Mech. Appl. Mech. Engrg.,1991,93:291-318.
    [142]GADALA M E, EI-MADANY M M, GADALA M S. Finite element and analytical modeling of a tractorsemitrailer vehicle[J]. Comput. Struct.,1986,23:281-289.
    [143]BAUM J H, BENNETT J A, CARNE T G. Truck ride improvement using analytical and optimization methods[J]. SAE Paper,1977, no:770609.
    [144]IBRAHIM I M, CROLLA D A, BARTON D C. Effect of frame flexibility on the ride vibration of trucks[J]. Computers & Structures,1996,58(4):709-713.
    [145]陈宇东.结构振动分析[M].吉林大学出版社,2008.
    [146]CHEN SU HUAN. Matrix perturbation theory in structural dynamic design[M]. Science Press, Beijing,2007.
    [147]MEIROVICH L. ELEMENTS OF VIBRATION ANALYSIS[M]. MCGRAW-HILL, INC, NEW YORK,1975.
    [148]载货汽车设计,武田信之著,1992年,方永龙译,1998年,人民交通出版社[M].。
    [149]郭立群,王登峰。车架刚度对商用车乘坐舒适性的影响。吉林大学学报(工学版),2010,40(4)。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700