异形管件液压成形关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
异形管件液压胀形是利用液体介质在管坯内部施加高压,从而使管材沿径向局部扩张变形的一种金属塑性成形工艺,它属于管材深加工技术范畴。该技术始于二十世纪60年代,近10年来由于汽车工业发展的需要,国外对这种技术日益重视。该技术不仅简化了模具结构,而且可以制造出采用其它成形方法所不能制造的复杂曲面工件,它对提高汽车零部件的稳定性、零部件综合机械性能、减少零件加工数量、减少工序、节省材料、降低成本和减少汽车自重有十分重要的意义。而且由于异形管件液压胀形时良好的应力状态,它可以比其它成形方法获得更大的变形程度。它可以与弯曲、压印、冲孔等工序复合,取得更大的经济效益。异形管件液压胀形可以在普通液压机或专用液压胀形压力机上配以专用模具装置完成。
    所谓异形管件,是指相对于直管而言形状不规则的管形零件,实际应用中通常有T型管、多通管、异径管、凸筋管、波纹管等。本课题主要研究异径管,这些异形管产品在工业中广泛应用,需求量大。
    在消化吸收国内外文献资料的基础上,利用动力显式有限元模拟软件DYNAFORM在国内首次模拟出胀形比达1.8的胀形结果。分析了异形管液压成形过程和成形规律,研究了胀形介质的选择、原始管坯尺寸的确定、管材的成形性能、液压成形工艺的实施方法等关键技术问题。运用有限变形理论,以运动方程和边界条件为基础,推导出模拟异形管液压胀形的动力分析有限元计算列式,给出了基于时间中心差分的位移场的显式求解法,并对数值积分法、应力应变的计算、边界条件的处理等关键问题进行了深入研究。采用动力显式有限元模拟软件DYNAFORM模拟了加载路径对成形过程影响规律、最小圆角半径与成形内压关系、不同材质对成形影响规律、摩擦系数与管壁厚度分布关系、通过分析异形管件成形过程缺陷得出胀形工作图。同时,提出了异形管件截面设计原则,模具设计原则以及管件材质特性确定方法。
    本文的分析方法和结论对于空心零件的成形将具有较为普遍的指导和参考意义。
The hydroforming of Abnormity Tube using liquid to apply high internal pressure to the tube so as to make the tube deformed along radial is a new forming process of plastic forming, which belong to the tube deep process technique.category. it iniatiated in the years of 60th of 20th century and with the increasing demands of auto industry in the past 10 years, many foreign countries have paid more and more attention to the technique. It not only simplified the tooling structure, but also can manufacture many parts with complex surface such can not be manufactured by other forming process. It has the significant meanings in improving the stability and the integrative mechanical performance of the auto components, reducing the amount of process and working procedure, saving material, reducing costs and lessening the deadweight of the automobile. Further more because of the well stress state when hydroforming, it can achieve greater deformation than other forming process. It can compound with other working procedure such as bending, marking, and punching so as to achieve greater economy benefit. The hydroforming of Abnormity Tube can carry through in common hydraulic press or special hydroforming press.
    The so-called Abnormity Tube is the anomalistic shape tube relativing to the straight tube and in the practical application the T-shape tube, multibarrel tube, different diameter tube, protruding rib tube and corrugation tube are the familiar shape. This paper deals with the different diameter tube, all the Abnormity Tube are widely applied in the industry.
    On the base of absorbing domestic and overseas literature information, the result of expanding rate reaching 1.8 has been first time simulated in domestic. The hydroforming process and the forming rule has been analysed, the choice of the expanding medium, the confirmation of the origin tube size, the material forming capability, the implement method of tube hydroforming of has been investigated. By using finite deform theory, movement equation and boundary condition, the finite element calculate formulas for Abnormity Tube Hydroforming has been induced and the explict solution method of the displacement field based on the time middle difference has been given. In addition, some other key issues such as numerical integral method, stress-strain calculation and the disposal of boundary condition have also been lucubrated. By using the dynamic explict finite element simulation software -
    
    DYNAFORM, the results that the effect of the loading path on the forming process and the relationship between the friction coefficient and the distributing of the thickness of the tube have been achieved. And also achieved the expanding working chart by analyzing the forming failures. Meanwhile, the design principle of the cross section of the abnormity tube, the principle of mould design and the confirmation method of the tube material characteristic have been brought forward too.
    The analysis method and the conclusion of this paper has relatively universal guidance and reference meanings to the forming of hollow parts.
引文
[1] 孙友松等. 面向新世纪的塑性加工技术. 锻压技术. 2000.2.P59-60
    [2] Dr.-Ing.B.Engel. (Schuler Hydroforming GmbH & Co. KG,Wilnsdorf) Process Orientated Control of Hydroforming Production Lines. Papers of the "International Conference on Hydroforming".Volume.1.1999.10.P191-200.
    [3] 张永强,李志杰. 1250/850/850液压胀形机胀形力控制系统.锻压技术.1999.2.P53-55
    [4] Prof.T.Altan. Formability and Design Issues in Tube Hydroforming. Papers of the "International Conference on Hydroforming". Volume.1.1999.10.P1-22.
    [5] F.Dohmann.(University of Paderborn)Introduction of the Processes of Hydroforming. Papers of the "International Conference on Hydroforming".Volume.1.1999.10.P1-22.
    [6] 洪慎章. 三通管接头液压挤胀成形力的工程解法.锻压技术.1997.5.P25-28
    [7] 洪慎章. 多通管接头液压胀形成形的工艺分析及工程计算.模具技术.1998.3.P56-61
    [8] 王同海,孙胜. 管材胀形工艺分类及变形力学特征.锻压技术.1999.4.P30-32,48
    [9] 李良福. 在组合凹模内用管坯成形直角三通管的研究.锻压技术.1999.5.P36-39
    [10] 向毅斌,吴诗淳. 空洞敏感材料超塑性胀形过程的有限元分析,锻压技术.2000.4.P36-39
    [11] 李国刚,吕如民. 紫铜管三通接头的轴向压缩胀形工艺及模具设计. 锻压机械.2000.4.P26-28,34
    [12] 尚彦凌等. 非均质厚壁球壳液压胀形过程有限元模拟. 锻压机械.2000.5.P38-41
    [13] 赵长财等. 小变薄率波纹管的液压胀形工艺研究. 机械工程学报.1999.35(1)P27-29
    [14] 彭颖红. 金属塑性成形仿真技术. 上海交通大学出版社. 1999
    [15] 程晶,郦剑,雷志新. 液压成形技术.矿山机械.1999.2.P49-51
    [16] 谭晶,赵振铎,孙胜. 液压成形技术的最新进展.锻压机械.2001.2.P11-15
    [17] 王孝培. 冲压手册(第二版). 机械工业出版社. 1988
    [18] 李洪洋,戴昆等. 方截面轻体件的内高压成形研究. 锻压技术. 2001.1.P31-32
    [19] 夏巨谌,杨雨春等 T型管接头挤压胀形过程的有限元分析. 锻压技术. 2001.1.P25-28
    [20] 杨雨春,夏巨谌,胡国安. 多通管塑挤胀形工艺的力学分析. 锻压技术. 1997.22.P26-30
    [21] 杨雨春,夏巨谌,胡国安. 大变形多通管挤压胀开介质的研究. 华中理工大学学报. 1999,(4)
    [22] 杨雨春,夏巨谌,胡国安. 多通管塑挤胀形关键技术的研究. 金属成形工艺. 1996.14.P42-43,52
    
    
    [23] 杨雨春. 多通管挤压胀形工艺及其弹塑性动力显式有限元模拟的研究. 华中理工大学博士学位论文,1999
    [24] Prof.em. Dr.-Ing.F.Dohmann. (Universiry GH of Paderborn). Introduction to the Processes of Hydroforming. Papers of the "internaltional Conference on Hydroforming". Volume.1.1999.10.P1-22
    [25] Ch.Hartl, Siempelkamp Pressen Systeme GnbH & Co., Krefeld. Theoretical fundaments of Hydroforming. Volume.1.1999.10.P23-36
    [26] A. Birkert,J.Neubert,Krupp Drauz GmbH, Heibronn. Tool and Part Design for Tube Hydroforming. Volume.1.1999.10.P47-60
    [27] S.Padmanabhan, CATIA Beratung und Schulung, Herrenberg. Design of Die Parting surfaces. Volume.1.1999.10.P61-76
    [28] B.S.Levy,ISPAT Inland Inc.,Chicago,USA. Recommendations on the use of Forming Limit Curves for Hydroforming Steel. Volume.1.1999.10.P77-96
    [29] E.Bollinger,D.-W.Jutten, Usinor tubes,Montanaire,Frankreich. Tube for Hydroforming. Volume.1.1999.10.P97-104
    [30] T.Altan,M.Koc.Y.Aue-u-lan,k.tibari,Ohio State University,Columbus,USA. Formability and Design Issues in Tube Hydroforming. Volume.1.1999.10.P105-122
    [31] K.siegert,P.Guel-Lopez, Institute for Metal forming Technology, Stuttgart. Hydroforming of Tubes with External High Pressure. Volume.1.1999.10.P463-480
    [32] P.Hora,M.Skrikerud,T.Longchang,Institut fur Umformtechnik,Zurich,Schweiz. Possibilities and Limitations of FEM-Simulation in Hydroforming Operations. Volume.1.1999.10.P407-424
    [33] C.J.Bruggemann,General Motors Corp.,Detroit,USA. Hydroforming of Structure Parts for Personal Cars. Volume.1.1999.10.P353-372
    [34] R.Marando,Dana Corp.,Reading,USA. Tubular Hydroforming: The Enabling Technology. Volume.1.1999.10.P373-378
    [35] M.Schroeder,DaimlerChrysler AG, Hamburg. Hydroforming of BIW Structural Parts and Exhaust Components. Volume.1.1999.10.P335-352

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700