5083铝合金力学性能及超塑性成形数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境污染和能源短缺问题的日益尖锐,各大交通运输工具制造商都加快对交通工具轻量化的研究与开发,而铝合金作为飞机、航天器以及汽车轻量化的理想材料,已成为当前航空航天工业、汽车工业开发研究的热点,但其常温下难以加工成形,制约了铝合金的应用。而在超塑性状态下成形是目前解决铝合金成形最为有效的方法之一。为此,本文开展了铝合金力学性能与超塑性成形工艺的研究。首先,采用恒应变速率单向拉伸法,研究了材料在不同温度、不同应变速率下的塑性、超塑性性能,确定了材料最佳成形参数,并建立了随温度变化的本构模型;其后,进行了超塑胀形有限元模拟,改进了气压加载方式,分析了单元类型、摩擦对模拟结果的影响;同时,首次模拟了超塑性差温拉深,详细研究了毛坯几何形状、压边间隙、温度差、摩擦系数对板料差温拉深性能的影响;最后,在模拟的基础上设计了三套实验模具及成形工艺,分别对AIRBUS支架件进行胀形、差温拉深及恒温拉深实验,并将实验结果分别与模拟结果比较。
     通过恒应变速率单向拉伸实验,首次研究了AA5083合金在温度为100~535℃、应变速率为0.013~0.00005s-1范围内的力学性能,获得最大延伸率为525℃、0.0002s-1应变速率下的397%。结果表明:200℃温度以下,AA5083材料延伸率较低,且随着应变速率的提高而减小,无超塑性;250℃温度以上,AA5083合金呈现超塑性,各试样延伸率随温度的升高而提高,并具有应变速率敏感性。各拉伸曲线流变应力随温度的升高而减小、随应变速率的增大而增大;基本呈现应变硬化、应变硬化与应变软化动态平衡的稳态流变和应变软化三种现象,各种现象表现程度随温度、应变速率不同而相异。分析了应变、应变速率对应变速率敏感性指数的影响。采用Hollomon经验公式拟合真应力-应变曲线中的应变硬化阶段,测定了n值。建立了AA5083合金在100~525℃温度、0.013~0.008s-1应变速率范围内修正的粘塑性本构模型,结果表明:该模型的预测值与实验值吻合良好。
     改进了MARC软件默认的压力加载算法,对AA5083支架件进行了超塑性胀形模拟。结果表明:零件的几何模型对材料成形的厚度分布影响显著,设计零件时应尽量避免小圆角半径、大深宽比及形状突变;优化的加载方式控制了变形集中区域的变形速度,改善了板料的成形性能,厚度分布更均匀。分析讨论了实体单元、壳单元及膜单元模拟,对板料超塑胀形厚度分布、压力-时间曲线的影响。结果表明:壳单元最适合模拟板料成形。此外,改善超塑性胀形中的润滑条件,亦可提高板料流动性能。
     改变了AA5083支架工件模型及模具,采用二次开发MARC软件,首次成功模拟了该材料超塑性差温拉深。分析了零件的拉深比,表明应用常规拉深无法一次成形该工件。而采用凹模为525℃、凸模为150℃差温拉深,1.05~1.1倍板厚刚性压边间隙、优化的毛坯及0.1mm/s的拉深速度,成形了厚度分布均匀、高度满足要求、减薄率明显低于超塑性胀形的工件。分析了压边间隙对工件材料流动、压边力及拉深力的影响;并且研究了凸、凹模温度差、摩擦对提高拉深性能的重要作用。
     在超塑性胀形及差温拉深模拟的基础上,对AIRBUS支架件进行了实验研究。采用胀形模拟获得的优化及默认加载曲线,控制实验中气体压力加载。结果表明:默认的加载曲线,压力加载速度过快,致使工件变形速度太大,厚度减薄严重而破裂;优化的加载曲线,成功成形了AA5083支架件,且其模拟与实验结果吻合良好,但工件整体变薄严重,厚度分布不均匀。依据模拟获得的参数,进行了超塑性差温拉深实验,结果表明:差温拉深工艺、形状优化的毛坯、无凸缘及形状突变的模型设计,均改善了拉深工件的成形性能;工件成形厚度分布均匀,且其结果与模拟结果吻合。最后,比较了超塑性胀形、差温拉深及恒温拉深成形工件厚度分布。
With environmental and energy issues becoming increasingly acute, the major transportation manufacturers are speeding up research and development of lightweight vehicles. As an ideal material of lightweight for airplane, spacecraft, and automobile, aluminum alloy has become hot spots of research and development by the aerospace industry and automotive industry. But aluminum alloy is difficult to form at room temperature that restricts its application. However, superplastic forming of aluminum alloy is one of the most effective methods to slove that problem at present. Therefore, aluminum alloy was carried out the research on mechanical properties and the technology of superplastic forming. First of all, the constant strain rate uniaxial tension method was used to study the plastic and superplastic properties of materials at different temperatures under various strain rates, determine the optimal forming parameters and establish constitutive model of materials as the temperature change. And then, the pressure control algorithm was improved in superplastic bulging simulation and the simulation was applied to analyze the influence of the friction and elements type on forming results. In addition, Superplastic differential temperature drawing was also simulated firstly in MARC software through secondary development for a detailed disscussion on impacts of blank geometry, blankholder gap, temperature difference and friction coefficient on sheet drawing performance. Finally, based on simulation, three sets of experiments mold and forming process were designed to carries out bulging test, constant temperature and differential temperature drawing experiments, respectively. And experiments results were compared with the simulation one.
     Mechanical behavior of 5083 aluminum alloy was investigated through the constant strain rate tests at temperature of 100 ~ 535℃and strain rate of 0.013 ~ 0.00005s-1. Superplastic flow was achieved with a maximum tensile elongation of 397% at 525℃, 0.0002s-1 strain rate. The result shows that AA5083 has a lower elongation which reduces with increasing strain rate and is not indicated superplasticity below 200℃. Above 250℃, AA5083 shows superplasticity and its elongation increases with rising the temperature and behaves strain rate sensitivity. The curve of flow stress decreases with rising the temperature and increases with increasing the strain rate, which basically shows three phenomena: strain hardening, dynamic steady-state flow between strain hardening and strain softening and strain softening. The performance level of the phenomena is different as the temperature or strain rate vary. The strain rate sensitivity index m was measured with the constant-strain-rate technique and was influenced by the strain and strain rate. The strain hardening exponent n was determined by that Hollomon empirical formula fitted strain-hardening stage of true stress - true strain curves. A constitutive equationusing up-dated viscoplasticity equation of AA5083 was established at temperature of 100 ~ 525℃and strain rate of 0.013 ~ 0.008s-1. The results show that the predicted values are in good agreement with the experimental data.
     With improvement of the default pressure control algorithm in MARC, the superplastic bulging simulation was carried out AA5083 bracket. The results show that the geometric model of parts has a significant impact on the distribution of thickness so that components should be designed to avoid the small fillet radius, large aspect ratio, and the shape mutation. The optimized pressure load algorithm controls the deformation rate in critical regions of the part and improves the sheet forming properties leading to more uniform thickness distribution. It was discussed that the impact of solid element, shell element, and membrane element simulation on the sheet thickness distribution and the pressure - time curve. The simulation results show that shell element is the most suitable to simulate the sheet deformation. In addition, the improvement of lubrication conditions in superplastic bulging ameliorates the sheet flow property.
     Superplastic differential temperature drawing was firstly successfully simulated in MARC through secondary development with the changed model of AA5083 bracket and die. The parts drawing ratio was analyzed and showed that the conventional drawing could not make the parts in one step forming. The simulation result reveals the superplastic differential temperature drawing is able to the bracket, in which technology there are die in 525℃, punch in 150℃, blank holder gap of 1.05 ~ 1.1 times of the sheet thickness, the optimized blank, and the drawing speed of 0.1mm/s. And the workpiece has a uniform thickness distribution, high enough for request and lowwer thinning ratio than one of superplastic bulging in that simulation forming. It was analyzed that the impact of the blank holder gap on the material flow, blank holder force, and drawing force. And it was also investigated that the effect of the temperature difference between die and punch, and friction coefficient on improving the performance of drawing.
     In the basis of simulation on superplastic bulging and differential temperature drawing, AIRBUS brackets were performed expermental study. The optimization and default load curves through bulging simulation were used to control gas pressure load of experiments. The results show that pressure of the default curve is loaded too fast so that the workpiece has an over large deformation rate and a serious thickness reduction to fracture. However, the optimized load curve successfully form AA5083 bracket in the experiment which is in good agreement with simulation results. But thickness of the workpiece is thinned seriously and non-uniform distribution. Superplastic differential temperature drawing was carried on according to that simulation results. The experimental results show that differential temperature drawing process, the optimized blank shape, no flange and the mutations shape designed in the workpiece model improve the drawing formability of the workpiece and the uniform thickness distribution, which is similar with the simulation results. At last, there were comparation of workpiece thickness among superplastic bulging, superplastic differential temperature drawing, and constant temperature drawing.
引文
[1] Jupp J A, Price H J. Transport Aircraft—a Challenge for Aluminum Alloys for the 21st Century.The Aeronautical Journal, Apr.1998, 181 - 188.
    [2] Staley J T, Liu John and Hunt W H. Aluminum Alloys for Aerostructures. Advanced Materials &Processes, Oct.1997, 17 - 19.
    [3]骞西昌,杨守杰,张坤等.铝合金在运输机上的应用与发展.轻合金加工技术, 2005, 33(10):1-7.
    [4]潘复生,张丁非.铝合金及应用.北京:化学工业出版社, 2006: 366-367.
    [5] Friedrich H, Schumann S. Research for a“new age of magnesium”in the automobile industry.Journal of Materials Processing Technology, 2001, 117: 276-281.
    [6]彭晓东,刘江.轻合金在汽车工业中的应用.汽车工艺与材料,1999,1: 1-16.
    [7] Aghion E, Bronfin B. Magnesium alloys development toward the 21st century. Materials Science Forum, 2000, 22: 19-28.
    [8] Jain M, Allin J, Lloyd D J. Fracture Limit Prediction Using Ductile Fracture Criteria for Forming of an Automotive Aluminum Sheet. International Journal of Mechanical Sciences, 1999, 41(10):1273-1288.
    [9] Hoy-Petersen N. Proc.47th Annual World Magnesium Conf.,International Magnesium Association, 1990, 118: 18.
    [10] Aedesian M M, Baker H. Magnesium and Magnesium alloys. ASM International, 1999.
    [11]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2002:336-338
    [12]刘静安,周昆.航空航天用铝合金材料的开发与应用趋势.铝加工,1977,20(6):51-59.
    [13]吴诗淳.金属超塑性变形理论.北京:国防工业出版社,1997.
    [14]林兆荣.金属超塑性成形原理及应用.北京:航空工业出版社,1990:4
    [15] Underwood E E. Review of Superplasticity. J.Metals, 1962, 14(3):414-419.
    [16] Backofen W A, Tumer L I, Avery D H. Superplasticity in an Al-Zn alloy. Trans ASM, 1964, 57: 980-990.
    [17]张立斌,海锦涛,白秉哲等.超塑技术在高新材料中的应用及发展策略.科学学报, 1996, 92(1): 39-41.
    [18]海锦涛,王仲仁.国内外超塑性研究近况与发展.锻压技术,1992,6:36-40.
    [19] O.A卡依勃舍夫.金属的塑性与超塑性.王燕文译.北京:机械工业出版社,1982.
    [20]何景素,王燕文.金属的超塑性.北京:科学出版社,1993.
    [21]陈浦泉.组织超塑性.哈尔滨:哈尔滨工业大学出版社,1988
    [22]季霍诺夫.金属与合金的超塑性效应.刘春林译.北京:科学出版社,1983.
    [23] Wakai F, Sakaguchi S, Matsuno Y. Superplasticity of yttriastabilized tetragonal Zr02 polycrystas. Advanced ceramics materials, 1986, 1:259-363.
    [24] Nieh T G., Wadsworth J, Wakai F. Recent advances in superplastic ceramics and ceramic composites. International Materials Reviews, 1991, 36(4):146-161.
    [25] Nieh T G, McNally C M, Wadsworth J. Superplasticity in intermetallic alloys and ceramics. JOM, 1989, 41(9):31-5.
    [26] Maehara Y, Langdon T G. Superplasticity in ceramics. Journal of Materials Science, 1990, 25(5): 2275-2286.
    [27] Yan Y, Zhang C B, Liu B R. Superplastic Deformation and Fracture Mechanism of a SiCp/2024Al Composite. Acta Metallurgica Sirtica(English Letters),1999,12(6):1295-1302.
    [28] Takeshi Y, Himaki S,Takayuki T. Superplastic Forming of aluminum Matrix Composite. Technical Review-Mitsubishi Heavy Industries, 1998, 28:82-86.
    [29] Kawamura Y, Inoue A. Flow Stress and Elongation of Superplastie Deformation in La55A12/5Ni2O Metallic Glass. Materials Research Society Symposium, Materials Research Society, Warrendale, PA, USA, 2000: 303-308.
    [30]崔忠圻,王中.高应变速率超塑性的研究进展.航天工艺,1993,3:1-8.
    [31] Takashi N, Hirohito H, Naoyuki K.et al. High Strain Rate Superplmtic Bulge Forming of SiC Particle Reinforced 2124 Aluminum Alloy symposite.Japan Institute of Light Metals, 1998, 48(8): 380-384.
    [32] Rodd R I, Kim J S, Zahid G H.et al. High Strain Rate Superplasticity in Three Contrasting Fine Grained Aluminium Alloys.Materials Research Society Symposium, Materials Research Society, Warrendale, PA, USA, 2000: 273-281.
    [33] Higashi K. Very High Strain Rate Superplasticity in Near-Nano Scale Aluminum alloys. NATO ASI Series E.233, 407-416.
    [34] Bottomley I E.Superplastic Forming and Diffusion Bonding of Aircraft Structures . Proceedings of the Institution of Mechanical Engineers, Part G: Journal of aerospace Engineering, 1995, 209(3):227-231.
    [35] Weisert E D.Advanced Structural Components by SPF/DB. Processing Titanium Science andTechnology, 1984, 2:1221-1228.
    [36] Weisert E D, Stachee G W. Fabrication Titanium Parts with SPF/DB Process. Metal Progress, 1987, 3:33-37.
    [37] Anderson T T, Hislop L. Production of Aerospace Parts Using Superplastic forming and Diffusion Bonding of Titanium Superplasticity in Aerospace.The metallurgical Society, 1988: 345-360.
    [38]张家顺.美国宇航工业超塑成形近况.航空工艺技术,1989,6:29-33.
    [39]宋飞灵.英国超塑成形技术应用现状.机械工程学报,1994,3:20-22
    [40] Bose K, Birla N C. Development of superplastic forming/diffusion bonding techniques for Ti-6Al-4V alloys. Transactions of the Indian Institute of Metals, 1984, 37(5): 535-542.
    [41]曹大明,陈敬之.钛合金超塑成形/扩散连接新工艺在航空工业中的应用.国外航空工艺,1985,3:1-6.
    [42]曹大明.英国宇航超塑成形/扩散连接技术的发展.国外航空工艺,1986,3:23-24.
    [43] Shiota M.Some properties of aqueous titanium isopropoxide-hydrogenperoxide solutions and their decomposition to produce titanium dioxide. Journal of Materials Science, 1988, 23(5):1718-1724.
    [44]王卫英.超塑性成形过程数值模拟技术研究及应用[博士学位论文].南京:南京航空航天大学,1998,1-15.
    [45]文九巴,杨蕰林,杨永顺等.超塑性应用技术.北京:机械工业出版社, 2005,42.
    [46]王华侨,张毅,孙焕军,李京喜.薄壁铝合金半球壳塑性成型与模拟技术应用.航天制造技术,2008, 1: 35-39.
    [47]蔡云,童国权,葛永成.铝合金超塑性气胀成形壁厚分布工艺研究.模具工业, 2009, 35(3): 23-26.
    [48] Nieh T G, Hsiung L M, Wadsworth J. High strain rate superplasticity in a continuously recrystallized Al-6 %Mg-0.3 %Sc alloy. Acta mater, 1998, 46 (8):2789-2800.
    [49] Komura S, Berbon P B. High strain rate superplasticity in an Al-Mg alloy containing scandium. Scripta Materialia, 1998, 38 (12):1851 - 1856.
    [50]潘青林. Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究(硕士学位论文).长沙:中南大学, 1996.
    [51]王敏,马彩霞. LY12铝合金在超塑性变形中的空洞行为.塑性工程学报, 2007, 14(1):27-30.
    [52]肖代红,陈康华. Al-5.3Cu-0.8Mg-0.6Ag合金的超塑性变形.宇航材料工艺, 2007,4:50-54.
    [53]刘黎明,陶华,肖于德. Al-Mg系铝合金超塑性薄壁管材.中南大学学报(自然科学版), 2007, 38(4): 608-611.
    [54]张艳姝,周义,金泉林.工业铝合金5182和6016的超塑性研究.材料热处理学报. 2004, 25(4):33-36.
    [55]颜银标,赵金伟,智建中. 7A04铝合金复杂零件的超塑性成形工艺研究.金属成形工艺, 2003, 21(5): 50-56.
    [56]王治国,李振芳. 5083 H19铝合金百叶带的研制.轻合金加工技术, 1998, 26(9): 16-20
    [57]于莉莉,张星翔,赵永军,马英义. 5083-H321铝合金厚板生产工艺研究.轻合金加工技术, 2008, 36(10) :20-24.
    [58]诸葛跃,王家宣,李春. 5083铝合金法兰盘液态模锻成形技术.金属铸锻焊技术, 2009, 38(7): 80-82.
    [59]吴文祥,孙德勤,曹春艳等. 5083铝合金热压缩变形流变应力行为.中国有色金属学报, 2007, 17(10): 1667-1671.
    [60]张海军,钱兵羽,宁江利.不同变形方式对5083铝合金组织的影响.黑龙江科技学院学报, 2007, 17(4):254-258.
    [61] PAUL GREEN W, KULAS Maryanne. Deformation and failure of a superplastic AA5083 aluminum material with a Cu addition. Metallurgical and Materials Transactions A. 2006, 37A(9):2727-2738.
    [62] KULAS Maryanne, PAUL GREEN W, TALEFF Eric M, et al. Failure mechanisms in superplastic AA5083 materials. Metallurgical and Materials Transactions A. 2006, 37A(8):645-656.
    [63] KULAS Maryanne, PAUL GREEN W, TALEFF Eric M, et al. Deformation mechanisms in superplastic AA5083 materials. Metallurgical and Materials Transactions A. 2006, 36A(5): 1249-1262.
    [64] Larry D Hefti. Commercial Airplane Applications of Superplastically Formed AA5083 Aluminum Sheet. Journal of Materials Engineering and Performance, 2007, 16(2): 136-141.
    [65] Dunwood B J. The production of automotive body panels in 5083 SPF aluminium alloy. Superplasticity in Advanced Materials ICSAM-2000.Orland USA: Trans Tech Publications, 2000, 59-64.
    [66] Barnes A J. Industrial applications of superplastic forming: Trends and Prospects. Superplasticity in Advanced Materials ICSAM-2000. Orlando USA: Trans Tech Publications,2000, 3-15.
    [67]王钰.铝合金在造船中的应用与发展.轻金属, 1994, 4:49-54.
    [68]中国大百科全书:力学篇.北京:中国大百科全书出版社,1985:559.
    [69] Zienkiewicz O C, Taylor R L. The Finite element method. 4th edition. NewYork: MeGraw-Hill, 1991.
    [70]李园春,李淼泉等.变形-损伤耦合的超塑性恒压轴对称充模胀形的有限元模拟.固体力学学报,1997,18(2):109-116.
    [71] Zhou D J, Lian J S. Numerical Analysis of Superplastic Buldging for Cavity-Sensitive Materials. International Journal of Mechanical Sciences, 1987, 29(8):565-576.
    [72]辛傲斌.材料成形计算机模拟.北京:冶金工业出版社,2006.
    [73]王瑙成,助敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997,460-495.
    [74]李人宪.有限元法基础.北京:国防工业出版社,2002.
    [75] Bonet J, Wargadipura A H S, Wood R D. A Pressure Cycle Control Algorithm for Superplastic Forming.Communication in Applied Numerical Methods,1989,5:121-128
    [76] Bonet J, Wood R D, Collins R. Pressure-Control Algorithms for the Numerical simulation of Superplastic Forming. International Journal of Mechanical Sciences, 1994, 36(4):297-309.
    [77] Rama S C, Chandra N. Development of A Pressure Prediction Method for Superplastic Forming Process.International Journal of Non-linear Mechanics,199l,126(5):711-725.
    [78] Ding X D, Zbib H M, Hamiton C H,et al.On the Optimization of Superplastic Blowing-Forming Processes. Journal of Materials Engineering and Performance, 1995, 4:474-485.
    [79] Cheng J H. Analytical Prediction of Pressure-Time Curve for Free Inflation of Superplastic Sheet into Hemispherical Dome. Journal of Chinese Institute of Engineers,Transactions of the Chinese Institute of Engineers,Series A, 1994,17(6):823-834.
    [80] Zelin M G, Ebersole D K, Gampala R S,et al .Optimization of Pressure Schedule in Superplastic Forming.Technology Transfer in a GlobalCommunity Intemational SAMPE Technical Conference,Covina,CA,1996,28:636-644.
    [81]王卫英,张中元,李靖宜.基于数值模拟的超塑性成形压力-时间曲线计算机辅助设计.南航空航天大学学报,1998,30(2):132-137.
    [82] Engelman B E, Whirley R G, Raboin P J. Adaptive Superplastic Forming Using NIKE2D with Island.Chenot,Wood,Zienkiewicz.Numerical Methods in Industrial Forming Process,Balkema,1992,59-66.
    [83] Doltsinis S T.Numerical Analysis and Design of Industrial Superplastic Forming. Journal De Physique, 1993, 3(7):1187-1197.
    [84] Tisza M.Computer Aided Simulation of Superplastic Sheet Metal Forming Process.Thompson, NUMIFORM89, Balkema, 1989, 515-520.
    [85] Hoon H ,Soo S H.Superplastic Sheet Forming Analysis by the Finite Element Method with Directional Reduced Integration.Chenot,Wood,Zienkiewicz,Numerical Methods in Industrial Forming Process,Balkema,1992,851-856
    [86] Kmglor A A, Lutfullin R Y, Kaibyshev O A.Simulation of the Superplastic Forming of Spherical Vessel Using the Finite Element Methods. Chenot, Wood, Zienkiewicz, Numerical Methods in Industrial Forming Process,Balkema,1992,857-860
    [87] Lee S Y, Chang C P, Wu H Y.Superplastic Forming Model Application for AI-Li8090.Chenot,Wood,Zienkiewicz, Numerical Methods inIndustrial Forming Process, Balkema,1992,861-866
    [88] Yong H K, Hong S S, Lee J S,et al. Analysis of Superplastic Forming Processes Using A Finite-Element Method.Journal of Materials Processing Technology,1996,62:90-99
    [89] Reza Sadeghi, Zachary Pursell.Finite Element Modeling of Superplastic Forming Using Analytical Contact Surface. Proceedings of the 1997 InternationalConference on Superplasticity in Advanced Materials(ICSAM-97),Bangalore,India,1997,719-728
    [90] Keith S H, Joel C B, EIRoy L M. Numerical Simulation of Industrial Superplastic Forming.Concurrent Product and Process EngineeringAmerican Society of Mechanical Engineers, Manufacturing Engineering Division, MED, ASME,New York, NY, 1995, 1:105-116.
    [91] Boner J, Bhargava P, Wood R D. Finite Element Analysis of the Superplastic Forming of Thick Sheet Using the Incremental Flow Formulation.International Journal for Numerical Methods in Engineering,1997,40(17):3205-3228.
    [92] Chandra N,Rama S C,Rama J. Design and Analysis of3-D Superplastic Forming Processes.Proceedings of the 1994 International Conference onSuperpiasticity in Advanced Materials(ICSAM-94),Moscow,Russia,1994,577-582.
    [93] Ghassan T K, Sherif A E G. Modeling and Evaluation of Superplastic Forming of Weldalite TM-049 Sheet Products.Technical Paper Society of Manufacturing Engineers, MR 1998, 6.
    [94] Li Y X, Hu P, Cao Y. Numerical Simulation of the Superplastic Constrained Bulging of Sheet Metals in Cylindrical Dies.Journal of Materials Processing, 1997, 40(17):1205-1218.
    [95]邢会林.板料超塑性成形过程的数值模拟及微机控制[博士学位论文].哈尔滨:哈尔滨工业大学,1994
    [96] Zhang K F, Wang Z R, Lai X M, et al. Design in Superplastic Forming Process by Rigid Visco-Plastic Shell FEM. Proceedings of the 1997 InternationalConference on Superplasticity in Advanced Materials(ICSAM-97), Bangalore, India,1997,735-738.
    [97] Hawkins R, Belk JA. Deep Drawing of Superplastic Material. Metals Technology 1976, 3(11):516-521.
    [98]靳红雨,吴义娟.筒形件温差拉深数值模拟研究.工程设计学报, 2006,13(1):62-64.
    [99]张国泽,叶旭明.超塑性合金的差温拉深与立体胀形.热加工工艺, 2004; 6: 43-46.
    [100]吴德忠,张凯峰.差温拉深/超塑性胀形复合工艺研究.哈尔滨工业大学学报, 2000, 32(5): 114-115.
    [101] Iwasaki H, Masaki Y, Higashi K, et al. Superplastic behaviour of 5083 aluminium alloy bearing 0.12 wt% Zr . Journal of the Society of Materials Science (Japan), 1992, 41(460): 17-22.
    [102] Verma R, Kim S. Superplastic behavior of copper-modified 5083 aluminum alloy . Journal of Materials Engineering and Performance, 2007; 16(2): 185-191.
    [103] Verma R, Friedman P A, Ghosh A K, et al. Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet. Metallurgical Transactions in Materials, Series A, 1996, 27:1889–1898.
    [104]单毅敏,罗兵辉,柏振海. 5083铝合金高温变形的流变应力.铝加工, 2006, 172(6): 1?6.
    [105] Kulas M A, Krajewski P E, Bradley J R,et al. Forming limit diagrams for AA5083 under SPF and QPF conditions. Materials Science Forum, 2007, 551-552: 129-34.
    [106] Martin C F, Blandin J J, Salvo L. Variations in microstructure and texture during high temperature deformation of Al-Mg alloy. Materials Science & Engineering A, 2001, 297(1-2): 212-222.
    [107] Iwasaki H, Hosokawa H, Mori T, et al. Quantitative assessment of superplastic deformation behavior in a commercial 5083 alloy. Materials Science and Engineering A, 1998, 252:199–202.
    [108] Kanna K, Johnson C H, Hamilton C H. A study of superplasticity in a modified 5083 Al–Mg–Mn alloy. Metallurgical Transactions in Materials, Series A, 1998, 29:1211–1220.
    [109] Patankar S N, Jen T M. Inhomogeneities in initial cavity distribution in a superplasticAl5083 alloy. Scripta Materialia, 1998, 38(8):1255–1261.
    [110] Friedman P A, Ghosh A K. Microstructural evolution and superplasticdeformation behaviour of fine grain 5083Al. Metallurgical Transactions in Materials, Series A, 1996, 27:3827–3839.
    [111] Jiang X G, Earthman J C, Mohamed F A.Cavitation and cavity-induced fracture during superplastic deformation. Journal of Material Science, 1994, 29:5499-5506.
    [112] Taleff E M, Lesuer D R, Wadsworth J. Enhanced Ductility in Coarse-Grained Al-Mg Alloys. Metallurgical and Materials Transactions A, 1996, 27A:343-352.
    [113] Chan K C, Tong G Q. The cavitation behavior of a high-strain-rate superplastic Al6061/20SiCw composite under uniaxial and equibiaxial tension. Scripta Material, 1998, 38:1705-1710.
    [114] Bampton C C.The effect of superplastic deformation on subsequent service properties of fine grained 7475Al. Journal of Engineering materials and technology, 1983, 105:55-60.
    [115] Bae D H, Ghosh A K. Cavity formation and early growth in a superplastic Al-Mg alloy.Acta Matererialia, 2002, 50: 511-523.
    [116] Bae D H, Ghosh A K, Bradley J R.Stress-state dependence of cavitation and flow behavior in superplastic aluminum alloys. Metallurgical and Materials Transactions, 2003, 34(A):2449-2463.
    [117] Imamur H, Ridley N. Superplastic behaviour in a commercial 5083 aluminium alloy. In: S.Hori, M.Tokizane, N.Furushiro, editors. Proceedings of International Conference in Superplasticity of Advanced Materials, ICSAM’91, Osaka, Japan, 1991:453–458.
    [118] Vetrano J S, Lavender CA, Hamilton C H, et al. Superplastic behaviour in a commercial 5083 aluminium alloy. Scripta Metallurgica et Materialia, 1994, 30(3):565–570.
    [119] Keeler S P.Determination of forming limits in automotive stampings. Sheet Mental Industry, 1965,.42:683–691.
    [120] Hamilton C H, Ghosh A K. Mechanical behaviour hardening characteristics of a superplastic Ti-6Al-4V alloy. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1979,10(6): 699-706.
    [121]童国权. 3Y-TZP陶瓷超塑性变形特性及显微组织结构研究[博士学位论文].南京:南京航空航天大学, 1996 ,29-30.
    [122] Tong G Q, Lin Z R. On the strain rate sensitivity index and grain boundary glassy phase of superplastic 3T-ZP. Chinese Journal of materials research, 1998, 12 (2):144-148.
    [123]宋玉泉.超塑性均匀大变形动态过程的力学分析.吉林工业大学学报,1985,1:13-21.
    [124]宋玉泉,赵军.超塑性胀形动态过程的新的流变方程.吉林工业大学学报,1985, 3:256-261.
    [125] Hamilton C H. Simulation of static and deformation-enhanced grain growth effects on superplastic ductility. Metallurgical Transaction A, 1989, 20(A): 2783-2792.
    [126]邢会林,张凯峰,王仲仁.超塑性本构关系的研究.哈尔滨工业大学学报,1996,26(2):100-105.
    [127]张辉,彭大暑.5182铝合金热轧再结晶模型.金属热处理.2000,25(12):21-23.
    [128]邓学峰,张辉,陈振华.耐热铝合金(FVS0812)板材温拉伸本构方程.塑性工程学报, 2006, 13(3): 83?87.
    [129] Zhou M, Clode M P. Constitutive equations for modeling flow softening due to dynamic recovery and heat generation during plastic deformation. Mechanics of Materials, 1998, 27(2): 63?76.
    [130]王孟君,任杰,黄电源,姜海涛.汽车5182铝合金板材的温拉伸流变行为.中国有色金属学报,2008,18(11): 1958-1963.
    [131]李迪,毕新雯.汽车覆盖件用铝合金板冲压成型的材料参数敏感性.山东理工大学学报,2004,18(3):27-31.
    [132]宋玉泉,管志平.拉伸变形应变硬化指数的理论和实验规范.金属学报,2006,42(7):673-680.
    [133]宋玉泉,程永春,王习文.拉伸变形应变硬化指数的实验测量及其精细分析.中国科学(E), 2001, 31(3):193-202.
    [134]宋玉泉,程永春.拉伸变形应变速率敏感性指数的力学涵义及其规范测量.机械工程学报,2000,36(8):33-35.
    [135]梁新邦,李久林,张振武.金属力学及工艺性能试验方法国家标准汇编.北京:中国标准出版社,1996:67-70.
    [136] Xing H L, Zhang K F, Wang Z R. Recent development in the mechanics of superplasticity and its applications. Mater Proc Tech, 2004, 151: 196-202.
    [137] Wood R D, Bonet J. A review of the numerical analysis of superplastic forming. Mater Proc Tech, 1996, 60: 45-53.
    [138] Rama S C, Chanora N. Development of a pressure prediction method for superplastic forming process. Non-linear Mech, 1991, 126: 711-725.
    [139]王卫英,张中元,李靖谊.板料超塑胀形过程仿真及其应用.机械科学与技术, 1999, 18: 795-797.
    [140] Wittenauer J,Kim W J ,Sherby O D. Superplastic gas-pressure deformation of iron carbide sheet.Mater Sci Engin,1995,A 194:69~76.
    [141]高霖,童国权,骆飞,刘建业.恒应变速率超塑气胀成形试验系统的测控原理及实现.数据采集与处理, 2000, (02):153-156.
    [142]张德荣.超塑性力学.北京:航空工业出版社,1990
    [143]向毅斌.超塑性板料成形模拟及扩散连接件界面断裂韧性分析[博士学位论文].陕西西安:西北工业大学,2001.
    [144] MSC. Marc /Volume A: Theory and User Information (2005), 8-22.
    [145] Johnson W, Al-Naib T Y M, and Duncan J L.Superplastic Forming Techniques and Strain Distributions in a Zinc-Aluminum Alloy.Journal of the Institute of Metals, 1972, 100:45-50.
    [146] Fields D S, Mehl D L, and Addis B F.Thermoforming of Metals,U S Patent Number 3340101,1967.
    [147] Nakamura K. Manufacturing Method of Formed Product Having Required Wall Thickness by Superplastic Blow Forming Method. Patent Abstract of Japan, No.197020, 1989.
    [148]时张杰.铝合金超塑性差温拉深研究[硕士学位论文].江苏南京:南京航空航天大学,2007: 54.
    [149]邓陟,王先进,陈鹤峥.金属薄板成形技术.北京:兵器工业出版社,1993:68.
    [150]杨晨.板料展开有限元逆运算[硕士学位论文].江苏南京:南京航空航天大学.2003:50-60.
    [151]肖景容,姜奎华.冲压工艺学.北京:机械工业出版社.1999:72-90.
    [152]罗曼诺夫斯基.冷压手册(迟家骏译).北京:中国工业出版社,1957:117.
    [153]常志华,黄尚宇,姜奎华.方盒形件冲压拉深比的物理概念及成形极限的计算.中国有色金属学报,1993, 3(2): 44-51.
    [154]吴诗惇.冲压工艺学.西安:西北工业大学出版社,1987:
    [155] Schuler. Metal forming handbook . New York :Springer-Verlag , 1998.
    [156]张贵宝,陈军,肖华等.两种压边方式下板料拉深成形性能及载荷分析.上海交通大学学报, 2008,42(1):42-56.
    [157] Yoshihara S, Manabe K, Nishimura H. Effect of blank holder force cont rol in deep-drawing process of magnesium alloy sheet. Journal of Materials Processing Technology, 2005, 170:579 - 585.
    [158]孙成智,陈关龙,林忠钦,等.基于数值模拟的变压边力优化设计.上海交通大学学报, 2004 ,38(7):1086-1090.
    [159] Wang H B , Xu W L , Lin Z Q , et al . Stamping and stamping simulation with a blankholder gap. Journal of Materials Processing Technology, 2002, 120 :62 -67.
    [160] Chen L , Yang J C , Zhang L W , et al . Finite element simulation and model optimization of blankholder gap and shell element type in the stamping of a washingtrough [J ] . Journal of Materials Processing Technology, 2007, 182:637 - 643.
    [161]汪大年.金属塑性成形原理.北京:机械工业出版社,1982:122
    [162]唐黎明.超塑性气压测控系统的设计与实现[硕士学位论文].江苏南京:南京航空航天大学.2006:14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700