用户名: 密码: 验证码:
镁合金轧制变形及边裂机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为最轻的金属之一,被广泛的应用到各种交通工具和移动产品上。轧制是镁板生产最主要的方式。但是由于金属镁固有的晶体结构和物理性质,在镁合金的塑性变形及镁板轧制的过程中很容易出现裂纹等缺陷。为了研究镁板轧制裂纹产生的原因,本文运用有限元技术,结合损伤理论,以及Gleeble热塑性物理模拟、实验室轧制、XRD等织构分析手段、SEM、金相分析等实验手段,系统的研究了镁合金塑性变形的特点,尤其是各向异性对镁合金弹塑性变形的影响;镁合金塑性变形中的损伤行为,以及影响镁板轧制边裂和轧板组织的诸多因素;并制定了镁板轧制边裂预测和改进的方案。
     镁合金塑性变形及损伤行为的研究表明:(1)塑性变形过程中,镁合金的各向异性行为非常显著。初始织构将严重影响镁合金变形后的形状,及变形过程中的应力-应变特征。当加载方向垂直于密排六方晶格的c轴,将出现明显的屈服现象;且变形将优先发生在沿着c轴的方向,使圆柱形试样的截面形状呈椭圆形。
     (2)镁合金塑性变形的各向异性具有强烈的温度和应变速率依赖性。温度越低,应变速率越高,各向异性越明显。且即使在400℃的较高温度,如果应变速率很大,则依然有很强烈的各向异性。(3)建立了考虑各向异性因素的镁合金弹塑性变形的本构方程:σ= C_(ij)ε_e+σlcosxcosλ。(4)镁合金的初始晶体取向、变形温度、应变速率等对塑性损伤有很大的影响,尤其初始织构将决定裂纹的扩展方向,使标准拉伸断口呈现取向性的椭圆形。(5)建立了综合考虑温度、应变速率,及晶体取向的损伤本构方程: 0 maxd C1uexp(RQT)。
     基于镁合金塑性变形本构和塑性损伤理论,用实验和有限元方法研究镁合金轧板边裂的结果表明:(1)初始织构对镁板轧制成形性有重大影响。当初始晶体结构的c轴垂直于镁板ND方向的时候,道次压下量62%未见边裂;而具有基面织构的镁板容易发生边裂。(2)镁板的形状对轧制边裂的影响可以用下面的方程预测,D=-0.124+0.09X-0.008X~2,X=宽/厚, 0     通过镁合金弹塑性变形和损伤的研究、轧制实验和有限元模拟,建立了基于温度、压下量和道次的轧制成型图、诸多经验方程、有限元模型,以指导镁合金的轧制,避免边裂。制订了能够实现少道次大压下量无边裂轧制的ND-TD-ND-TD镁板轧制工艺。
     本研究发展的理论和制订的新工艺将很好的指导镁板的轧制,很大程度提高轧制成形性和生产效率,具有重大生产和学术的意义。由于镁合金的密排六方结构和塑性变形的各向异性,其塑性损伤的机制跟以往研究损伤的材料不同,所以对镁合金的损伤的研究还有很漫长的道路。
As one of the lightest metals, Mg alloys are used in many fields, especially transport and mobile equipment. Rolling is the most common process to produce Mg sheet. But it is prone to crack during deformation in particular rolling, for its crystal structure and properties. To investigate the reason for edge crack, the finite element method, damage theory, and lots of experiments including thermal-mechanical test, rolling, XRD, SEM, OM were all used. The characteristic of Mg plastic deformation, especially effects of anisotropy, damage behavior, and factors affecting edge crack were studied systematically. Some ways were found out to predict and eliminate edge crack.
     Study of Mg deformation and damage behavior indicates, (1) anisotropy is obvious during Mg alloy deformation. Initial texture can impact the shape of samples and the stress- strain behavior. When loading direction is perpendicular to c-axis of HCP lattice, it turns out yielding clearly. Deformation would prefer along c-axis, and that make the section of sample oval. (2) the anisotropy of Mg deformation quite depends on temperature and strain rate. The lower temperature or higher strain rate, the more anisotropic. Even at 400℃anisotropy also exists when the strain rate is very high. (3) a constitutive equationσ= C_(ij)ε)e+σlcos xcosλconsidering crystal orientation was built. (4) initial crystal orientation, temperature, and strain rate play important role on damage. Initial texture can affect crack direction, and make the tensile fracture oval. (5) A damage constitutive equation, 0 maxd C1uexp(RQT)∫εfσε=εrelated with temperature, strain rate, and crystal orientation was established.
     Based on constitutive of plastic deformation and damage theory, edge crack was studied by means of experiment and finite element method. Results show, (1) initial texture plays important role in Mg sheet rollability. When c-axis of HCP lattice is vertical to ND, the Mg sheet is quality even after a rolling with reduction of 62%, while cracks appear at the edge of sheet with initial basal texture. (2) equation D=-0.124+0.09X-0.008X2 can be used to predict edge crack and study the effects of sheet shape on crack. X=width/thickness, 0     According to the study of plastic deformation and damage of Mg alloy, rolling experiment, and finite element simulation, a rolling map considering temperature, reduction, and pass was built, as well as some experience equation and finite element model. All these can be used to direct rolling of Mg sheet and avoid edge crack. A new ND-TD-ND-TD process was invented, and it can produce quality Mg sheet within few passes and big reduction.
     The new theories and processes developed in this work can be used to conduct rolling of Mg sheet. It can strongly improve rollabiltiy and production efficiency. As its HCP structure and deformation anisotropy, the damage mechanism of Mg alloy is different from the materials used to study damage before. Therefore, there is still a long way to investigate the damage of Mg alloys.
引文
[1]汪凌云,黄光杰,陈林,黄光胜,李伟,潘复生.镁合金板材轧制工艺及组织性能分析[J].稀有金属材料与工程2007;26:910-914.
    [2] Del Valle JA, Pérez-Prado MT, Ruano OA. Texture evolution during large-strain hot rolling of the mg az61 alloy [J]. Materials Science and Engineering A 2003;355:68-78.
    [3]李姗. Az31变形镁合金板材轧制工艺、组织与性能[D].西安:西安建筑科技大学, 2007.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社, 2005.
    [5] Barnett MR, Nave MD, Bettles CJ. Deformation microstructures and textures of some cold rolled mg alloys [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004;386:205-211.
    [6]陈彬,林栋,曾小勤. Az31镁合金大压下率轧制的研究[J].锻压技术2006:1-3.
    [7]傅定发,许芳艳,夏伟军.退火工艺对轧制az31镁合金组织和性能的影响[J].湘潭大学自然科学学报2005;27:57-61.
    [8]程永奇,陈振华,夏伟军.退火处理对az31镁合金轧制板材组织与冲压性能的影响[J].有色金属2006;58:5-9.
    [9]张文玉,刘先兰,陈振华.轧制路径对az31镁合金薄板组织性能的影响[J].特种铸造及有色合金2007;27:716-719.
    [10]曲家惠,姚路明,王福. Az31镁合金在不同轧制方式下的织构演变[J].轻合金加工技术2008;36:29-32.
    [11]张青来,胡永学,王粒粒.挤压后交叉轧制的镁合金薄板组织研究[J].热加工工艺2007;36:1-5.
    [12] Kobayashi T, Koike J, Yoshida Y, Kamado S, Suzuki M, Maruyama K, Kojima Y. Grain size dependence of active slip systems in an az31 magnesium alloy [J]. Journal of the Japan Institute of Metals 2003;67:149-152.
    [13] Kim WJ, Chung SW, Chung CS, Kum D. Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures [J]. Acta Materialia 2001;49:3337-3345.
    [14] Chang TC, Wang JY, O CM, Lee S. Grain refining of magnesium alloy az31 by rolling [J]. Journal of Materials Processing Technology 2003;140:588-591.
    [15] Gao H, Ramalingam SC, Barber GC, Chen G. Analysis of asymmetrical cold rolling with varying coefficients of friction [J]. Journal of Materials Processing Technology 2002;124:178-182.
    [16] Kim SH, You BS, Yim CD, Seo YM. Texture and microstructure changes in asymmetrically hot rolled az31 magnesium alloy sheets [J]. Materials Letters 2005;59:3876-3880.
    [17] Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an az31 magnesium alloy [J]. Journal of Materials Processing Technology 2007;182:644-647.
    [18] Lee SN, Lee DN. Analysis of deformation textures of asymmetrically rolled steel sheets [J]. International Journal of Mechanical Sciences 2001;43:1997-2015.
    [19]张文玉,刘先兰,陈振华.异步轧制az31镁合金板材的组织和晶粒取向[J].机械工程材料2007;31.
    [20]曲家惠,张正贵,王福. Az31镁合金室温异步轧制的织构演变[J].材料研究学报2007;21:354-358.
    [21]程永奇,陈振华,夏伟军.等径角轧制az31镁合金板材的组织与性能[J].中国有色金属学报2005;15:1369-1375.
    [22] Cheng YQ, Chen ZH, Xia WJ, Zhou T. Effect of channel clearance on crystal orientation development in az31 magnesium alloy sheet produced by equal channel angular rolling [J]. Journal of Materials Processing Technology 2007;184:97-101.
    [23]常量,曾小勤,丁文江.不同轧制方法制得镁合金板材的组织和织构特点[J].轻合金加工技术2007;35:4-8.
    [24] del Valle JA, Perez-Prado MT, Ruano OA. Accumulative roll bonding of a mg-based az61 alloy [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2005;410:353-357.
    [25] Chino Y, Sassa K, Kamiya A, Mabuchi M. Enhanced formability at elevated temperature of a cross-rolled magnesium alloy sheet [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2006;441:349-356.
    [26] Chino Y, Sassa K, Kamiya A, Mabuchi M. Microstructure and press formability of a cross-rolled magnesium alloy sheet [J]. Materials Letters 2007;61:1504-1506.
    [27] Jacobsson L, Persson C, Melin S. In-situ esem study of thermo-mechanical fatigue crack propagation [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008;496:200-208.
    [28] Riedel H. The formation of edge cracks during rolling of metal sheet [J]. Steel Research International 2007;78:818-824.
    [29] Na DH. Fe simulation of edge crack initiation and propagation of conventional grain orientation electrical stee [J]. International journal of modern physics. B, Condensed matter physics, statistical physics, applied physics 2008;22:5465-5470.
    [30] Wifi AS, Harmouch H, Abdel-Hamid A. A three dimensional finite element study of the flat strip rolling process. In: Mohamed EE, Professor Abdalla SW, Wifi AS, Prof, editors. Current advances in mechanical design and production vi. Oxford: Pergamon, 1995. p.175-185.
    [31] Kuklev AV. Reasons for the formation and growth of edge cracks on hot-rolled plates of steel 10khsnda [J]. Metallurgist (New York) 2008;52:289-292.
    [32] Han MH. Analysis and prevention of edge cracking phenomenon during hot rolling of non-oriented electrical steel sheets [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 1999;264:47-59.
    [33] Czerwinski F. A role of delta-ferrite in edge-crack formation during hot-rolling of austenitic stainless steels [J]. Scripta Materialia 1997;37:1231-1235.
    [34] Czerwinski F. The edge-cracking of aisi 304 stainless steel during hot-rolling [J]. Journal of Materials Science 1999;34:4727-4735.
    [35] Misra RDK. Effect of texture and microstructure on resistance to cracking of high-strength hot-rolled nb-ti microalloyed steels [J]. Metallurgical and materials transactions. A, Physical metallurgy and materials science 2004;35A:3024-3029.
    [36] Bache MR, Dunne FPE, Madrigal C. Experimental and crystal plasticity studies of deformation and crack nucleation in a titanium alloy [J]. Journal of Strain Analysis for Engineering Design 2010;45:391-399.
    [37] Wang LY, Huang GJ, Chen L, Huang GS, Li W, Pan FS. Research on rolling technology of magnesium alloy sheets [J]. Rare Metal Materials and Engineering 2007;36:910-914.
    [38] Sanjari M, Farzadfar SA, Jung IH, Essadiqi E, Yue S. Influence of strain rate on hot deformation behaviour and texture evolution of az31b [J]. Materials Science and Technology 2011.
    [39] Wan G. Anisotropy of dynamic behavior of extruded az31 magnesium alloy [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2010;527:2915-2924.
    [40] Zhang ZR. Anisotropy of low temperature superplasticity of fine grained magnesium alloy az31 processed by multidirectional forging [J]. Materials Science and Technology 2009;25:1442-1447.
    [41] Garces G. Anisotropy of the residual strain in mg-sicp composites [J]. Composites science and technology 2006;66:2664-2670.
    [42] Rudajevova A. Anisotropy of the thermal expansion in mg fibre composites [J]. Scripta Materialia 2005;53:1417-1420.
    [43] Tucker MT, Horstemeyer MF, Gullett PM, El Kadiri H, Whittington WR. Anisotropic effects onthe strain rate dependence of a wrought magnesium alloy [J]. Scripta Materialia 2009;60:182-185.
    [44] Kleiner S, Uggowitzer PJ. Mechanical anisotropy of extruded mg-6% al-1% zn alloy [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2004;379:258-263.
    [45] Yi S. Mechanical anisotropy and deep drawing behaviour of az31 and ze10 magnesium alloy sheets [J]. Acta Materialia 2010;58:592-605.
    [46] Xiong F. Anisotropy of tensile properties of extruded magnesium alloy az31 [J]. Materials Science Forum 2003;426-4:3605-3610.
    [47] Lin YN, Wu HY, Zhou GZ, Chiu CH, Lee S. Mechanical and anisotropic behaviors of mg-li-zn alloy thin sheets [J]. Materials & Design 2008;29:2061-2065.
    [48] Guo Q. Elevated temperature compression behaviour of mg-al-zn alloys [J]. Materials Science and Technology 2006;22:725-729.
    [49] Fang C. Hot compression deformation characteristics of mg-mn alloys [J]. Transactions of Nonferrous Metals Society of China 2010;20:1841-1845.
    [50] Yukutake E. Anisotropy and non-uniformity in plastic behavior of az31 magnesium alloy plates [J]. Materials Transactions 2003;44:452-457.
    [51] Lee BH, Park SH, Hong S-G, Park K-T, Lee CS. Role of initial texture on the plastic anisotropy of mg-3al-1zn alloy at various temperatures [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2011;528:1162-1172.
    [52] Prasad YVRK, Rao KP. Processing maps for hot deformation of rolled az31 magnesium alloy plate: Anisotropy of hot workability [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2008;487:316-327.
    [53] Hartig C. Plastic anisotropy and texture evolution of rolled az31 magnesium alloys [J]. Materials Science Forum 2005;495-497:1615-1620.
    [54] Agnew SR. Plastic anisotropy and the role of non-basal slip in magnesium alloy az31b [J]. International Journal of Plasticity 2005;21:1161-1193.
    [55] Wang YN, Huang JC. Texture analysis in hexagonal materials [J]. Materials Chemistry and Physics 2003;81:11-26.
    [56] Gehrmann R, Frommert MM, Gottstein G. Texture effects on plastic deformation of magnesium [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2005;395:338-349.
    [57] Park SH, Hong SG, Lee CS. Activation mode dependent {1 0 -1 2} twinning characteristics in a polycrystalline magnesium alloy [J]. Scripta Materialia 2010;62:202-205.
    [58] Capolungo L, et al. The role of elastic anisotropy on plasticity in hcp metals: A three-dimensional dislocation dynamics study [J]. Modelling and simulation in materials science and engineering 2010;18:085002.
    [59] Hill R. A theory of the yielding and plastic flow of anisotropic metals [J]. Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences 1948;193:281-297.
    [60] Huang HC, Xue L. Prediction of slant ductile fracture using damage plasticity theory [J]. International Journal of Pressure Vessels and Piping 2009;86:319-328.
    [61] Tang CY, Chow CL, Shen W, Tai WH. Development of a damage-based criterion for ductile fracture prediction in sheet metal forming [J]. Journal of Materials Processing Technology 1999;91:270-277.
    [62] Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory [J]. Engineering Fracture Mechanics 2008;75:3276-3293.
    [63] Xue L. Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading [J]. International Journal of Solids and Structures 2007;44:5163-5181.
    [64]温彤.韧性损伤模型及其在金属塑性加工中的应用研究[D].重庆:重庆大学, 1999.
    [65]赵震,谢晓龙,李明辉.空穴长大延性损伤新模型[J].金属学报2007;43:1037-1042.
    [66] Tasan CC, Hoefnagels JPM, ten Horn C, Geers MGD. Experimental analysis of strain path dependent ductile damage mechanics and forming limits [J]. Mechanics of Materials 2009;41:1264-1276.
    [67] Sommitsch C, Polt P, Ruf G, Mitsche S. On the modelling of the interaction of materials softening and ductile damage during hot working of alloy 80a [J]. Journal of Materials Processing Technology 2006;177:282-286.
    [68] Hfaiedh N, Saanouni K, Fran?ois M, Roos A. Self consistent intragranular ductile damage modelling in large plasticity for fcc polycrystalline materials [J]. Procedia Engineering 2009;1:229-232.
    [69] Bonora N, Milella PP. Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage mechanics [J]. International Journal of Impact Engineering 2001;26:53-64.
    [70]张士宏,宋鸿武,程明. Tc11钛合金热锻成形过程中延性损伤演化模型的建立[J].塑性工程学报2008;15:128-131.
    [71] Wang XB. Analysis of damage localization for ductile metal in process of shear band propagation [J]. Transactions of Nonferrous Metals Society of China 2006;16:153-158.
    [72] Boyer JC, Vidal-Salle E, Staub C. A shear stress dependent ductile damage model [J]. Journal of Materials Processing Technology 2002;121:87-93.
    [73] Elgueta M. Ductile damage analysis of sheet metal forming [J]. Journal of Materials Processing Technology 2002;121:148-156.
    [74] Abu Al-Rub RK, Voyiadjis GZ. On the coupling of anisotropic damage and plasticity models for ductile materials [J]. International Journal of Solids and Structures 2003;40:2611-2643.
    [75] Gupta S, Reddy NV, Dixit PM. Ductile fracture prediction in axisymmetric upsetting using continuum damage mechanics [J]. Journal of Materials Processing Technology 2003;141:256-265.
    [76] Lemaitre J. A continuous damage mechanics model for ductile fracture [J]. Journal of Engineering Materials and Technology-Transactions of the Asme 1985;107:83-89.
    [77]罗迎社,杨建平,高蕴听.金属塑性损伤的电阻测试法[J].湘潭大学自然科学学报1987:51-56.
    [78]祁美兰,贺红亮.延性金属材料中损伤分布的统计方法[J].武汉理工大学学报2008;30:23-26.
    [79]宋美娟,王智祥,汪凌云.镁合金的超塑性与损伤定量分析[J].稀有金属2006;30:300-303.
    [80] Ochsner A, Gegner J, Winter W, Kuhn G. Experimental and numerical investigations of ductile damage in aluminium alloys [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2001;318:328-333.
    [81] Besson J. Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms [J]. International Journal of Plasticity 2009;25:2204-2221.
    [82] Pires FMA, Neto EAD, Owen DRJ. On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials [J]. Computer Methods in Applied Mechanics and Engineering 2004;193:5223-5256.
    [83] Ganapathysubramanian S, Zabaras N. Computational design of deformation processes for materials with ductile damage [J]. Computer Methods in Applied Mechanics and Engineering 2003;192:147-183.
    [84] Chung SW, Kim SJ, Kim JH. Finite element simulation of metal forming and in-plane crack propagation using ductile continuum damage model [J]. Computers & Structures 2002;80:1771-1788.
    [85] Nielsen KL. Ductile damage development in friction stir welded aluminum (aa2024) joints [J]. Engineering Fracture Mechanics 2008;75:2795-2811.
    [86] Jackiewicz J, Kuna M. Non-local regularization for fe simulation of damage in ductile materials [J]. Computational Materials Science 2003;28:684-695.
    [87] Pirondi A, Bonora N. Modeling ductile damage under fully reversed cycling [J]. ComputationalMaterials Science 2003;26:129-141.
    [88] Khelifa M, Oudjene M, Khennane A. Fracture in sheet metal forming: Effect of ductile damage evolution [J]. Computers & Structures 2007;85:205-212.
    [89] Stoffel M. Experimental validation of anisotropic. Ductile damage and failure of shock wave-loaded plates [J]. European Journal of Mechanics a-Solids 2007;26:592-610.
    [90] Lee WT. Compression along the easy-glide orientation of ultrafine and fine-grained mg-3al-1zn alloy [J]. Metallurgical and materials transactions. A, Physical metallurgy and materials science 2010:3282-3286.
    [91] Gurson AL. Continuum theory of ductile rupture by void nucleation and growth .1. Yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology-Transactions of the Asme 1977;99:2-15.
    [92] Boldetti C, Pinna C, Howard IC, Gutierrez G. Measurement of deformation gradients in hot rolling of aa3004 [J]. Experimental Mechanics 2005;45:517-525.
    [93] Kwak WJ, Kim YH, Lee JH, Hwang SM. A precision on-line model for the prediction of roll force and roll power in hot-strip rolling [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 2002;33:3255-3272.
    [94] Jiang ZY, Tieu AK, Zhang XM, Lu C, Sun WH. Finite element simulation of cold rolling of thin strip [J]. Journal of Materials Processing Technology 2003;140:542-547.
    [95] Yoshida H, Yorifuji A, Koseki S, Saeki M. An integrated mathematical simulation of temperatures, rolling loads and metallurgical properties in hot strip mills [J]. ISIJ International 1991;31:571-576.
    [96] Lenard JG, Pietrzyk M. The predictive capabilities of a thermal-model of flat rolling [J]. Steel Research 1989;60:403-406.
    [97] Pietrzyk M, Lenard JG. The effect of the temperature rise of the roll on the simulation of the flat rolling process [J]. Journal of Materials Processing Technology 1990;22:177-190.
    [98]刘相华,白光润.复杂断面型钢轧制温度场的有限元分析[J].固体力学学报1987;12:362-367.
    [99] Qu ZD, Zhang SH, Li DZ, Wang ZT. Finite element analysis for microstructure evolution in hot finishing rolling of steel strips [J]. Acta Metallurgica Sinica (English Letters) 2007;20:79-86.
    [100] Salehi MS, Serajzadeh S. A model to predict recrystallization kinetics in hot strip rolling using combined artificial neural network and finite elements [J]. Journal of Materials Engineering and Performance 2009;18:1209-1217.
    [101]孙林,张清东,陈先霖.中板轧机板形控制性能的研究[J].钢铁2002;37:34-38.
    [102] Kumar AM, Hahn GT, Rubin CA. A study of subsurface crack initiation produced byrolling-contact fatigue [J]. Metallurgical Transactions a-Physical Metallurgy and Materials Science 1993;24:351-359.
    [103] Ju SH, Cha KC. Evaluating stress intensity factors of a surface crack in lubricated rolling contacts [J]. International Journal of Fracture 1999;96:1-15.
    [104] Ould Ouali M, Aberkane M. Micromechanical modeling of the rolling of a a1050p aluminum sheet [J]. International Journal of Material Forming 2009;2:25-36.
    [105] Li Q, Lovell MR. The establishment of a failure criterion in cross wedge rolling [J]. International Journal of Advanced Manufacturing Technology 2004;24:180-189.
    [106] Thomas B, Samarasekera I, Brimacombe J. Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems [J]. Metallurgical and Materials Transactions B 1984;15:307-318.
    [107]朱光明,杜凤山,孙登月.板带轧制变形区内摩擦力分布的有限元模拟[J].冶金设备2002;134:1-4.
    [108]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社, 2002.
    [109]陈振华,严红革,陈吉华,全亚杰,王慧敏,陈鼎.镁合金.北京:化学工业出版社, 2004.
    [110] Kim WJ, Park JD, Kim WY. Effect of differential speed rolling on microstructure and mechanical properties of an az91 magnesium alloy [J]. Journal of Alloys and Compounds 2008;460:289-293.
    [111] Mackenzie LWF, Pekguleryuz M. The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008;480:189-197.
    [112] Xia WJ, Chen ZH, Chen D, Zhu SQ. Microstructure and mechanical properties of az31 magnesium alloy sheets produced by differential speed rolling [J]. Journal of Materials Processing Technology 2009;209:26-31.
    [113]陈维平,陈宛德,詹美燕,李元元.轧制温度和变形量对az31镁合金板材组织和硬度的影响[J].特种铸造及有色合金2007;27:338-341.
    [114]陈火红,杨剑,薛小香,王朋波.新编marc有限元实例教程:机械工业出版社, 2007.
    [115] Ji YH, Park JJ. Analysis of thermo-mechanical process occurred in magnesium alloy az31 sheet during differential speed rolling [J]. Materials Science and Engineering: A 2008;485:299-304.
    [116]郭鹏,张兴国,郝海,金俊泽. Az31镁合金圆锭连铸过程温度场的数值模拟[J].中国有色金属学报2006;16:1570-1576.
    [117]周珂.镁合金板材性能及轧制过程的模拟研究.哈尔滨:哈尔滨理工大学, 2007.
    [118] Bonora N, Gentile D, Pirondi A, Newaz G. Ductile damage evolution under triaxial state of stress: Theory and experiments [J]. International Journal of Plasticity 2005;21:981-1007.
    [119] La Rosa G, Mirone G, Risitano A. Effect of stress triaxiality corrected plastic flow on ductile damage evolution in the framework of continuum damage mechanics [J]. Engineering Fracture Mechanics 2001;68:417-434.
    [120] Brunig M, Chyra O, Albrecht D, Driemeier L, Alves M. A ductile damage criterion at various stress triaxialities [J]. International Journal of Plasticity 2008;24:1731-1755.
    [121] Mashayekhi M, Ziaei-Rad S. Identification and validation of a ductile damage model for a533 steel [J]. Journal of Materials Processing Technology 2006;177:291-295.
    [122] Mediavilla J, Peerlings RHJ, Geers MGD. A nonlocal triaxiality-dependent ductile damage model for finite strain plasticity [J]. Computer Methods in Applied Mechanics and Engineering 2006;195:4617-4634.
    [123] Lapovok R, Hodgson D. A damage accumulation model for complex strain paths: Prediction of ductile failure in metals [J]. Journal of the Mechanics and Physics of Solids 2009;57:1851-1864.
    [124] Hu H, Zhang D, Pan F, Yang M. Analysis of the cracks formation on surface of extruded magnesium rod based on numerical modeling and experimental verification [J]. Acta Metallurgica Sinica (English Letters) 2009;22:353-364.
    [125] G CM, J LD. The effect of stress system on the workability of metals. Scotland, 1966.
    [126] Styczynski A, Hartig C, Bohlen J, Letzig D. Cold rolling textures in az31 wrought magnesium alloy [J]. Scripta Materialia 2004;50:943-947.
    [127] Kim WJ, Lee JB, Kim WY, Jeong HT, Jeong HG. Microstructure and mechanical properties of mg-al-zn alloy sheets severely deformed by asymmetrical rolling [J]. Scripta Materialia 2007;56:309-312.
    [128] Canadinc D, Sehitoglu H, Verzal K. Analysis of surface crack growth under rolling contact fatigue [J]. International journal of fatigue 2008;30:1678-1689.
    [129] Bogdanski S, Trajer M. A dimensionless multi-size finite element model of a rolling contact fatigue crack [J]. Wear 2005;258:1265-1272.
    [130] Grabulov A, Ziese U, Zandbergen HW. Tem/sem investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-d crack reconstruction by focused ion beam [J]. Scripta Materialia 2007;57:635-638.
    [131] Grabulov A, Petrov R, Zandbergen HW. Ebsd investigation of the crack initiation and tem/fib analyses of the microstructural changes around the cracks formed under rolling contact fatigue (rcf) [J]. International journal of fatigue 2010;32:576-583.
    [132] Cockcrof.Mg, Latham DJ. Ductility and workability of metals [J]. Journal of the Institute of Metals 1968;96:33-&.
    [133] Yan H, Xu SW, Chen RS, Kamado S, Honma T, Han EH. Twins, shear bands and recrystallization of a mg-2.0%zn-0.8%gd alloy during rolling [J]. Scripta Materialia 2011;64:141-144.
    [134] Wang J, Dong H, Wang L, Wu Y, Wang L. Effect of hot rolling on the microstructure and mechanical properties of mg-5al-0.3mn-2nd alloy [J]. Journal of Alloys and Compounds 2010;507:178-183.
    [135] Lee JB, Konno TJ, Jeong HG. Effect of differential speed rolling on the anisotropy of mechanical properties and texture evolution of az31 mg alloys [J]. Journal of Alloys and Compounds 2010;499:273-277.
    [136] Chiang C-T, Lee S, Chu C-L. Rolling route for refining grains of super light mg-li alloys containing sc and be [J]. Transactions of Nonferrous Metals Society of China 2010;20:1374-1379.
    [137] Jin Q, Shim S-Y, Lim S-G. Correlation of microstructural evolution and formation of basal texture in a coarse grained mg-al alloy during hot rolling [J]. Scripta Materialia 2006;55:843-846.
    [138] Liang S, Sun H, Liu Z, Wang E. Mechanical properties and texture evolution during rolling process of an az31 mg alloy [J]. Journal of Alloys and Compounds 2009;472:127-132.
    [139] Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T. Deformation mechanism and texture and microstructure evolution during high-speed rolling of az31b mg sheets [J]. Journal of Materials Science 2008;43:7148-7156.
    [140] Chino Y, Sassa K, Mabuchi M. Texture and stretch formability of mg-1.5 mass % zn-0.2 mass % ce alloy rolled at different rolling temperatures [J]. Materials Transactions 2008;49:2916-2918.
    [141] Wang MY, Xin RL, Wang BS, Liu Q. Effect of initial texture on dynamic recrystallization of az31 mg alloy during hot rolling [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2011;528:2941-2951.
    [142] Lee BH, Park SH, Hong SG, Park KT, Lee CS. Role of initial texture on the plastic anisotropy of mg-3al-1zn alloy at various temperatures [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2011;528:1162-1172.
    [143] Huang X, Suzuki K, Chino Y. Influences of initial texture on microstructure and stretch formability of mg-3al-1zn alloy sheet obtained by a combination of high temperature and subsequent warm rolling [J]. Scripta Materialia 2010;63:395-398.
    [144] Dai Q, Zhang D, Chen X. On the anisotropic deformation of az31 mg alloy under compression [J]. Materials & Design 2011;32:5004-5009.
    [145] Jin QL. Effects of grain refinement on rollability of az31 mg alloy [J]. Materials Science Forum 2005;475-479:533-536.
    [146] Dai Q, Zhang D, Lan W, Fang L, Zhang J. Effect of the width on az31 sheet rolling [J]. Acta Metallurgica Sinica (English Letters) 2010;23:154-160.
    [147] Watanabe H. Optimization of rolling conditions in mg-al-ca alloy containing insoluble second phase particles [J]. Materials Transactions 2008;49:1262-1269.
    [148] Watanabe H. Effect of texture on tensile properties at elevated temperatures in an az31 magnesium alloy [J]. Scripta Materialia 2005;52:449-454.
    [149] Barnett MR. Texture selection mechanisms in uniaxially extruded magnesium alloys [J]. Scripta Materialia 2010;63:721-724.
    [150] Wang H. Effects of basal texture on mechanical behaviour of magnesium alloy az31b sheet [J]. Materials science & engineering. A, Structural materials : properties, microstructure and processing 2010;527:3588-3594.
    [151] ZHANG D, DAI Q, FANG L, XU X. Prediction of edge cracks and plastic-damage analysis of mg alloy sheet in rolling [J]. Transactions of Nonferrous Metals Society of China 2011;21:1112-1116.
    [152] Nelson S, Ladani L, Topping T, Lavernia E. Fatigue and monotonic loading crack nucleation and propagation in bimodal grain size aluminum alloy [J]. Acta Materialia 2011;59:3550-3570.
    [153] Lemaitre J. Damage evaluation through micro-hardness measurements [J]. Comptes rendus de l'Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 1987;304:601-604.
    [154] Chakoumakos BC. Hardness and elastic-modulus of zircon as a function of heavy-particle irradiation dose .1. Insitu alpha-decay event damage [J]. Radiation Effects and Defects in Solids 1991;118:393-403.
    [155] Oliver WC. Hardness and elastic-modulus of zircon as a function of heavy-particle irradiation dose .2. Pb-ion implantation damage [J]. Radiation Effects and Defects in Solids 1994;132:131-141.
    [156] Kurchakov EE. Formation of the plastic zone in an anisotropic body with a crack [J]. International applied mechanics 2008;44:982-997.
    [157] Qian CF. Micro-simulation of crack tip plastic zone and dislocation-free zone [J]. Acta metallurgica sinica 2004;40:159-162.
    [158] Bian LC. The minimum plastic zone radius criterion for crack initiation direction applied to surface cracks and through-cracks under mixed mode loading [J]. International journal offatigue 2004;26:1169-1178.
    [159] Song G-S, Zhang S-H, Zheng L, Ruan L. Twinning, grain orientation and texture variation of az31 mg alloy during compression by ebsd tracing [J]. Journal of Alloys and Compounds 2011;509:6481-6488.
    [160] Choi SH, Shin EJ, Seong BS. Simulation of deformation twins and deformation texture in an az31 mg alloy under uniaxial compression [J]. Acta Materialia 2007;55:4181-4192.
    [161] Xin Y, Wang M, Zeng Z, Huang G, Liu Q. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scripta Materialia 2011;64:986-989.
    [162] Chino Y, Lee J-S, Sassa K, Kamiya A, Mabuchi M. Press formability of a rolled az31 mg alloy sheet with controlled texture [J]. Materials Letters 2006;60:173-176.
    [163] Chino Y, Sassa K, Kamiya A, Mabuchi M. Influence of rolling routes on press formability of a rolled az31 mg alloy sheet [J]. Materials Transactions 2006;47:2555-2560.
    [164] Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry. In: Kojima Y, Aizawa T, Higashi K, Kamado S, editors. Magnesium alloys 2003, pts 1 and 2, vol. 419-4. Zurich-Uetikon: Trans Tech Publications Ltd, 2003. p.51-56.
    [165] Kojima Y. Project of platform science and technology for advanced magnesium alloys [J]. Materials Transactions 2001;42:1154-1159.
    [166] Kojima Y, Aizawa T, Kamado S, Higashi K. Progressive steps in the platform science and technology for advanced magnesium alloys. In: Kojima Y, Aizawa T, Higashi K, Kamado S, editors. Magnesium alloys 2003, pts 1 and 2, vol. 419-4. Zurich-Uetikon: Trans Tech Publications Ltd, 2003. p.3-20.
    [167] Beer AG, Barnett MR. Microstructural development during hot working of mg-3al-1zn [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 2007;38A:1856-1867.
    [168] Zhang BP, Tu YF, Chen JY, Zhang HL, Kang YL, Suzuki HG. Preparation and characterization of as-rolled az31 magnesium alloy sheets [J]. Journal of Materials Processing Technology 2007;184:102-107.
    [169] Vespa G, Mackenzie LWF, Verma R, Zarandi F, Essadiqi E, Yue S. The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium az31 sheet [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008;487:243-250.
    [170] Jeong HT, Ha TK. Texture development in a warm rolled az31 magnesium alloy [J]. Journal of Materials Processing Technology 2007;187:559-561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700