TB6和TA15钛合金β锻组织演变及动态再结晶行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着航空材料以传统满足单纯的静强度设计向现代损伤容限设计转变,对钛合金提出了损伤容限的要求。为了适应这种选材判据的变化,采取对钛合金β锻是一种主要技术途径。钛合金在β锻时因加热温度超过β相变点,β晶粒长大倾向特别大,极易形成粗晶组织,并导致随后的“组织遗传性”,而钛合金动态再结晶是细化β晶粒的有效手段之一。作者以锻态和铸态为初始组织的TB6钛合金以及双态为初始组织的TA15钛合金为研究对象,通过等温恒应变速率热模拟压缩试验,对其β锻过程中的动态再结晶行为及微观组织演变规律进行了研究,并构建描述其微观组织规律的相关模型。研究结果对TB6及TA15钛合金β锻过程中β晶粒细化及钛合金β锻的发展具有重要的理论指导意义和实际应用价值。
     论文系统性地研究了TB6(锻态和铸态)和TA15(双态)钛合金β锻过程中动态再结晶行为。结果表明,锻态TB6钛合金的动态再结晶形核仅出现在原始晶界附近,其对应的再结晶发生机制为不连续动态再结晶;铸态TB6钛合金的动态再结晶形核主要出现在原始晶界和β晶粒内部两类地点,其再结晶发生机制分别对应着不连续动态再结晶和连续动态再结晶;双态TA15钛合金的动态再结晶形核主要出现在原始晶界及变形带处,其对应的形核机制分别为晶界弓弯形核和亚晶旋转形核。锻态TB6钛合金在应变速率≥1s~(-1)时,β晶粒被拉长,基本未发生动态再结晶,以动态回复为主。在应变速率≤0.1s~(-1)时,以动态再结晶为主,且在应变速率为0.01s~(-1)~0.1s~(-1),变形温度≤950℃时,动态再结晶发生较充分,动态再结晶晶粒长大不明显,能获得明显细化的变形组织;在应变速率≤0.001s~(-1)及变形温度≥1050℃时,虽然动态再结晶发生较充分,但动态再结晶晶粒长大明显,变形组织粗化严重。从获得均匀、细小的变形组织考虑,锻态TB6钛合金的热变形参数以应变速率≤0.1s~(-1),变形温度≤950℃为宜。铸态TB6钛合金在应变速率≤0.001s~(-1)及变形温度≥950℃时,动态再结晶发生充分,并以晶内形核为主,变形组织均匀、细小;在应变速率≥1s~(-1)时,基本未发生动态再结晶,β晶粒被拉长,以动态回复为主;在其他变形条件下发生部分动态再结晶,再结晶体积分数不超过20%。从获得均匀、细小的变形组织考虑,铸态TB6钛合金的热变形参数以应变速率≤0.001s~(-1)及变形温度≥950℃为宜。双态TA15钛合金在应变速率≤0.01s~(-1)时以不连续动态再结晶为主,动态再结晶晶粒呈大小不一的混晶组织;在应变速率≥0.1s~(-1)时以连续动态再结晶为主,整个动态再结晶过程保持较高的形核速率,晶粒长大现象不明显,呈现形核为主的动态再结晶。
     探究了铸态TB6钛合金在热变形+快冷过程中产生的形变诱导马氏体的原因、形貌特征、相转变过程以及变形参数对形变诱导马氏体析出量的影响规律。证实了形变诱导马氏体主要是合金在微观上的成分偏析以及变形晶粒内部的内应力所致。形变诱导马氏体存在针状和锯齿状两类形貌特征,其晶体结构均为斜方马氏体(α"),晶格常数为a=0.301nm,b=0.491 nm,c=0.463 nm。形变诱导马氏体组织转变模式是先形成近似平行的细条状或针状主干,后从主干中不断生长成树枝状,枝干之间可能发生交合、重叠,马氏体内部存在孪晶。形变诱导马氏体析出量随变形温度升高先增多后减少。应变速率对形变诱导马氏体析出量的影响规律与变形温度区间有关。在800℃~900℃时,马氏体析出量与应变速率的关系呈单峰特征,即在0.1s~(-1)时马氏体析出量达到峰值;在925℃~1000℃时,马氏体析出量与应变速率的关系呈双峰特征,即在0.01s~(-1)和1s~(-1)时出现峰值;在>1000℃时,马氏体析出量随应变速率增加先增多后减少,在1s~(-1)时达到最少,继续增加应变速率,则析出量又出现明显增多。在所有的实验变形参数范围内,马氏体析出量在925℃、1s~(-1)时达到最大,此时马氏体的体积分数约为50%。
     探讨了利用加工硬化率(θ)来确定钛合金动态再结晶临界应变的可行性,并提出了相关的数据处理技术及其方法。结果表明,钛合金发生动态再结晶时,其动态再结晶临界应变对应着θ~σ曲线拐点,且在–?θ/?σ~σ曲线上出现最小值。利用此拐点判据,确定出了锻态TB6和双态TA15钛合金在不同变形条件下的动态再结晶临界应变。这两类原始组织钛合金的动态再结晶临界应变随应变速率增加和变形温度降低而增大,且锻态TB6和双态TA15钛合金的临界应变(εc)与峰值应变(εp)之间分别存在εc/εp=0.62和εc/εp=0.504的相关性。通过引入Z参数较好地表征了这两类钛合金的临界应变与热变形参数之间的函数关系。基于数理统计方法确定出了锻态TB6和双态TA15钛合金的临界应变与Z参数的函数关系分别为εc=1.7129×10-2Z0.156和εc=1.72×10~(-2)Z0.0605。
     研究了锻态TB6和双态TA15钛合金的动态再结晶动力学行为和动态再结晶晶粒尺寸演变模型。结果表明,锻态TB6和双态TA15钛合金的动态再结晶体积分数随变形温度升高和应变速率降低而增大,且其动态再结晶动力学曲线均呈现“S”型。采用Avrami动力学模型建立了锻态TB6钛合金的动态再结晶动力学方程为1.1848其中误差分析表明,所建立的动态再结晶动力学方程具有较高的精度。基于动态再结晶晶粒生长驱动力分析,提出了动态再结晶等效反驱动力“抑制”晶粒长大的概念,在此基础上,构建出了动态再结晶晶粒尺寸演变模型为,并采用遗传算法确定出了模型中的参数。误差分析表明,所建立的晶粒尺寸模型具有较高的精度。
In recent years, as the aeronautical materials with traditional strength design criterion to modern damage tolerance design criterion, titanium alloy has to be meet the requirement of the performance of damage tolerance. In order to adopt this change of material selection criterion, the beta forging on titanium alloy is a major technical way. Since titanium alloy in beta forging is heated upon the beta phase transition temperature, the diffusion coefficient of alloy elements and impurity element in the beta phase is big. Beta grain growth tendency is particularly obvious and leads to the subsequent "organization hereditary". Dynamic recrystallization occurred in titanium alloy is one of the effective means of refining beta grains. In this paper, the hot dynamic recrystallization behavior and microstructure evolution of titanium alloy TB6 with different original microstructures, namely as-cast and as forged, and of titanium alloy TA15 with original duplex microstructure, have been studied during the isothermal forging in theβphase field. The microstructure evolution models have also been estab1ished. The results are of great theoretical significance and practical application for grains refinement in beta forging of titanium alloys TB6 and TA15 and beta forging development.
     In this paper, dynamic recrystallization behavior of titanium alloy TB6 (as-forging and as-cast) and TA15 (double beta state) has been studied systematically during theβforging process. The results show that titanium alloy TB6 with original microstructures as-forging only nucleates near the grain boundaries, and the operation of discontinuous dynamic recrystallization as predominant mechanisms is anticipated correspondingly. Titanium alloy TB6 with original microstructures as-cast has two typical nucleation sites, namely, grain interiors and near grain boundaries, the operation of discontinuous dynamic recrystallization and continuous dynamic recrystallization as predominant mechanisms is anticipated correspondingly. Titanium alloy TA15 with original duplex microstructure has two typical nucleation sites, namely, deformation band and near grain boundaries, and nucleation mechanism is of grain boundaries bulging and subgrain rotation correspondingly. For titanium alloy TB6 with as-forging microstructures, dynamic recovery of appears andβgrain elongate with strain rate higher than 1s~(-1). Dynamic recrystallization appears with strain rate lower than 0.1s~(-1), and with strain rate range from 0.01s~(-1) to 0.1s~(-1) and deformation temperature lower than 950℃, since dynamic recrystallization are sufficient and dynamic recrystallization grain growth is not apparent, deformation microstructures are of refinement. With strain rate lower than 0.001s~(-1) and deformation temperature higher than 1050℃, although dynamic recrystallization is sufficient, dynamic recrystallization grains grow up dramatically. Thus the feasible strain rates are not more than 0.1s~(-1) and feasible deformation temperatures are not higher than 950℃as viewed from obtaining fined recrystallized microstructures. For titanium alloy TB6 with As-cast microstructure, dynamic recrystallization are sufficient and nucreate in grain interiors, so deformation microstructures are of refinement in the strain rates no more than 0.001s~(-1) and deformation temperatures no lower than 950℃. In the deformation conditions of stran rates higher 1s~(-1), dynamic recovery occurs withβgrain enlongating. In other deformation condition, partial dynamic recrystallization appears, and the value of dynamic recrystallization volume fraction is not more than 20%. Increasing deformation temperature and decreasing strain rate can promote dynamic recrystallization of titanium alloy TA15 with double state microstructures. In strain rate no more than 0.01~(-1), discontinuous dynamic recrystallization occurs and dynamic recrystallization microstructures are non-uniform. In strain rate no lower than 0.1s~(-1), continuous dynamic recrystallization occurs with high nucleation rate and not obvious grain growth, which presents dynamic recrystallization related to nucleation primarily
     Due to the composition segregation and the inner stress in deformed grains, the deformation-induced martensite which was produced from as-casted TB6 Ti alloy in the hot working and following rapid solidification process was testified. In the research, although there are two microstructural morphology in the deformation-induced martensite: needle shaped and serrated martensite, the structure of both two type of martensite belong to the orthorhombic martensite whose lattice parameters are a=0.301nm,b=0.491 nm,c=0.463 nm. The production mechanism of deformation-induced martensite could be concluded with following steps. Firstly, the parallel wicker shaped or needle shaped main dendrites were formed in the hot working and following rapid solidification process. Then, the branch dendrites were gradually grown from the main dendrites, traverse and overlap with each other. In the dendrites of deformation-induced martensite, twins could be found. The precipitate quantity of deformation-induced martensite increase with the deformation temperature, then decrease gradually. The influence of strain rate on precipitate quantity of deformation-induced martensite is closely related to the deformation temperature region. When the deformation temperature region is between 800℃-900℃, the relationship of precipitate quantity of martensite with strain rate present a single-peak characteristics and reach the peak value at 0.1s~(-1). When the deformation temperature region is between 925℃~(-1)000℃, the relationship of precipitate quantity of martensite with strain rate present a bipeaks characteristics and reach the peak value at 0.01s~(-1) and 1s~(-1). When the deformation temperature is higher than 1000℃, the precipitate quantity will increase firstly with strain rate and then decrease with the raise of strain rate. The minimum value of precipitate quantity will appeare when the strain rate is 1s~(-1). However, with the strain rate further increasing, the precipitate quantity will increase obviously once again. In all deformation conditions, in this research, when the deformation conditions are 925℃and 1s~(-1), the maximum precipitate quantity of martensite with volume fraction of about 50% could be obtained.
     The feasibility of determining dynamic recrystallization critical strain using work hardening rate was dicussed, and the relevant data processing techniques and methods were proposed. The results show that the inflection point and the minimum value will appear inθ~σcurve and–?θ/?σ~σcurve respectively, when the dynamic recrystallization of titanium alloys occur in the deformation process. Based on the inflection point inθ~σcurve that could be used as evidence to judge the critical strain of dynamic recrystallization, the critical strains of dynamic recrystallization in deformed TB6 and double state TA15 Ti alloy were confirmed. With the increase of strain rate and decrease of deformation temperature, the critical strain of dynamic recrystallization the two kind of Ti alloy increase obviously. For the critical strain of dynamic recrystallization, it is related to the peak strain that can be shown by some equations:εc/εp=0.62 for deformed TB6 Ti alloy andεc/εp=0.504 for double state TA15 alloy, respectively. In order to further inflect the relationship between critical strain and deformation conditions for both two Ti alloy, Z parameter can be used in the research. And the function between the two parameter can be shown as the following equations:εc=1.7129×10-2Z0.156 for deformed TB6 Ti alloy andεc=1.72×10-2Z0.0605 for double state TA15 alloy, respectively.
     The behavior of dynamic recrystallization kinetic and the evolution model of dynamic recrystallized grain size have been studied. The results show that dynamic recrystallization volume fraction of dynamic recrystallized grains for titanium alloy TB6 with as-forging and TA15 with double state increase with increase of temperature and decrease of strain rate. For both the two alloys, the kinetic curve of dynamic recrystallization looks like“S”. The kinetic model of dynamic recrystallization can be contributed to the structure of Avrami kinetic model, for titanium alloy TB6 with original as-forging microstructures: 1.1848(1 92R3T0.8) and titanium alloy TA15 with original double state: and by analysing the errors, the model of dynamic recrystallization kinetic shows a high accuracy. In this research, the drive force for the growth of dynamic recrystallized grains in Ti alloy was assayed in theory. Then, the theory that the driving force provided by interface energy and strain energy could stimulate grain growth, while the equivalent non-driving force restrain the grain growth is also be announced. By this basis, the evolution model of dynamic recrystallized grain size was established, which is of and the parameters in this model were confirmed by using inherit calculation method. By analysing the errors, the model of grain size shows a high accuracy .
引文
[1]张喜燕,赵永庆,白晨光.钛合金及应用.北京:化学工业出版社, 2005:67-74.
    [2]莱茵斯,皮特尔斯编,陈振华等译.钛与钛合金.北京:化学工业出版社, 2005:20.
    [3]付艳艳,宋月清,惠松骁,等.航空用钛合金的研究与应用进展.稀有金属. 2006, 30(6): 850-856.
    [4]王哲.飞机结构应用Ti-1023钛合金应注意的问题.钛工业进展. 2000, 3: 27-28.
    [5]沙爱学,王庆如,李兴无.航空用高强度结构钛合金的研究及应用.稀有金属. 2004, 28(1): 239-242.
    [6]唐长国,朱金华.应变速率对Ti1-1023拉伸性能的影响.上海:上海钢铁研究所,1993:606-610.
    [7]魏寿庸,宋晋,杨昭苏,等. Ti-1023合金.上海:上海钢铁研究所, 1993:60-66.
    [8] Rosenberg H W. Beta titanium aloys with structural benefit. Beta Titanium Alloys in 1980‘,ed. R R Boyer, TMS-AIME,Warrendale. 1984: 61-71.
    [9] Duerig T, Allison J, Williams J. Microstructural influences on fatigue crack propagation in Ti-10V-2Fe-3Al. Metallurgical and Materials Transactions A. 1985, 16(5): 739-751.
    [10] Boyer R R. Design properties of a high-strength titanium alloy, Ti-10V-2Fe-3Al. Journal of Materials Science. 1980, 32(3): 61-65.
    [11]王金友,葛志明,周彦邦.航空用钛合金.上海:上海科学技术出版社, 1985:66.
    [12] Kuhlman G W, Kim I Y W. A critical appraisal of thermomechanicaI processing of structural titanium alloys. Journal of Materials Science , 1991,12: 465-491.
    [13] Boyer R, Briggs R. The use ofβtitanium alloys in the aerospace industry. Journal of Materials Engineering and Performance. 2005, 14(6): 681-685.
    [14] Boyer R, Kuhlman G. Processing properties relationships of Ti-10V-2Fe-3Al. Metallurgical and Materials Transactions A. 1987, 18(12): 2095-2103.
    [15] Chen C C, Wyman-Gordon Co. W M, Boyer R R. Practical considerations for manufacturing high-strength Ti--10V--2Fe--3Al alloy forgings. Journal of Materials Science. 1979, 37(7): 33-39.
    [16] Tamirisakandala S, Bhat R, Vedam B. Recent advances in the deformation processing of titanium alloys. Journal of Materials Engineering and Performance. 2003, 12(6): 661-673.
    [17] Boyer R R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A. 1996, 213(1-2): 103-114.
    [18] Rendigs K H. Titanium Products Used at Airbus. Journal of Materials Engineering and Performance , 2004,41(4): 2659–2671.
    [19] Davies D P. Effect of heat treatment on the mechanical properties of Ti-10 V-2 Fe-3 Al for dynamically critical helicopter components. Journal of aircraft, 1993,34: 1851-1858.
    [20] Boyer R R. Applications of Beta Titanium Alloys in Airframes. Beta Titanium Alloys in the 1990's, D. Eylon, R.R. Boyer and D.A. Koss (eds.), Warrendale, PA: TMS,1993: 335-346.
    [21] Terlinde G, Fischer G. Beta titanium alloys. Journal of aircraft, 1996,26(3): 335-346.
    [22]魏寿庸,祝瀑. Ti-6.5Al-2Zr-1Mo-1V钛合金简介.钛工业进展. 1997(7): 7-11.
    [23]吴崇周,李兴无,黄旭,等. TA15钛合金疲劳裂纹扩展与显微组织的关系.稀有金属材料与工程. 2007, 36(12): 2128-2131.
    [24]李兴无,沙爱学,张旺峰,等. TA15合金及其在飞机结构中的应用前景.钛工业进展. 2003,20(4-5): 90-94.
    [25]吴晨刚,王高潮,董洪波,等. TA15钛合金的超塑性研究及组织变化.热加工工艺. 2009,26(5): 5-7.
    [26]耿启冬,王高潮,董洪波. TA15合金应变速率循环超塑性研究.热加工工艺. 2008, 37(11): 43-45.
    [27]沙爱学,李兴无,储俊鹏,等.热处理工艺对TA15钛合金冲击性能的影响.稀有金属. 2006, 30(1): 26-29.
    [28]储俊鹏,张庆玲,李兴无,等.普通退火对TA15合金拉伸性能的影响.金属学报. 2002,38(增刊): 81-83.
    [29]郭志军,王俭,魏寿庸,等.β热处理对TA15钛合金组织及性能的影响.中国新技术新产品. 2009(24): 23-24.
    [30]张旺峰,曹春晓,李兴无,等.β热处理TA15钛合金对力学性能的影响规律.稀有金属材料与工程. 2004, 33(7): 768-770.
    [31]范荣辉,朱明,惠松骁. TA15ELI显微组织及损伤容限性能研究.钛工业进展. 2007, 24(1): 12-15.
    [32]刘瑞民,李兴无,沙爱学. TA15合金板材的组织和性能研究.材料开发与应用. 2005, 20(4): 23-26.
    [33]王洋,尤逢海,朱景川,等. TA15合金热变形行为研究.机械工程材料. 2006, 30(11): 63-65.
    [34]郭鸿镇.合金钢与有色合金锻造.西安:西北工业大学出版社, 1999:5-7.
    [35]郭鸿镇,姚泽坤,冯超,等.温度和应变速率对Ti-1023合金等温压缩行为的影响.稀有金属材料与工程. 2003, 32(7): 566-568.
    [36]鲍如强,黄旭,黄利军. Ti-10V-2Fe-3Al合金热工艺的研究.稀有金属. 2005, 29(2): 214-218.
    [37]鲍如强,黄旭,黄利军,等. Ti-1023合金的变形机制及加工图.有金属材料与工程. 2005, 34(3): 522-525.
    [38] Semiatin S, Seetharaman V, Weiss I. The thermomechanical processing of alpha/beta titanium alloys. Journal of the Minerals, Metals and Materials Society. 1997, 49(6): 33-39.
    [39] Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys. Journal of Materials Processing Technology .1998, 243(1-2): 82-88.
    [40] Krishna V G, Prasad Y V R K, Birla N C, et al. Processing map for the hot working of near-[alpha] titanium alloy 685. Journal of Materials Processing Technology. 1997, 71(3): 377-383.
    [41] Raj R. Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes . Metallurgical and Materials Transactions A. 1981, 12(6): 1089-1097.
    [42]鲍如强,黄旭,曹春晓,等.加工图在钛合金中的应用.材料导报. 2004, 18(7): 26-29.
    [43] Coyne J E. The beta forging of titanium alloys. Pergamon Press.
    [44]吴峰,张海渠,宋鸿武,等. TC11钛合金β相区热变形行为及组织演变的研究进展.沈阳大学学报. 2009, 21(6): 26-29.
    [45]范荣辉,朱明,惠松骁,等. TA15 (ELI)钛合金厚板损伤容限性能研究.金属热处理. 2007, 32(2): 27-30.
    [46]脱祥明,岳耀峰.热处理对Ti-6242S合金显微组织和性能的影响.稀有金属. 2001, 25(4): 315-319.
    [47]朱知寿,王庆如,郑永灵.准β锻造钛合金的组织与性能研究.金属学报. 2002, 38(增刊): 382-384.
    [48] Andrade U, Meyers M A, Vecchio K S, et al. Dynamic recrystallization in high-strain, high-strain-rate plastic deformation of copper. Acta Metallurgica et Materialia. 1994, 42(9): 3183-3195.
    [49] Salishchev G, Galeyev R, Zherebtsov S V. Dynamic Recrystallization of Titanium and Ti-6Al-4V Alloy. Journal of Materials Processing Technology, 2001,38(2):27-31.
    [50] Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083). Materials Science and Engineering A. 1996, 205(1-2): 23-30.
    [51] Salishchev G A, Imayev R M, Senkov O N, et al. Formation of a submicrocrystalline structure in TiAl and Ti3Al intermetallics by hot working. Materials Science and Engineering A. 2000, 286(2): 236-243.
    [52] Schulmann K, Mlcoch B, Melka R. High-temperature microstructures and rheology of deformed granite, Erzgebirge, Bohemian Massif. Journal of Structural Geology. 1996, 18(6): 719-733.
    [53] Kim S, Yoo Y. Continuous dynamic recrystallization of AISI 430 ferritic stainless steel. Metals and Materials International. 2002, 8(1): 7-13.
    [54] Humphreys F J, Prangnell P B, Priestner R. Fine-grained alloys by thermomechanical processing.Current Opinion in Solid State and Materials Science. 2001, 5(1): 15-21.
    [55] Sakai T, Ohashi M. Dislocation substructures developed during dynamic recrystallisation in polycrystalline nickel. Materials Science and Technology. 1990, 6(1): 1251-1257.
    [56] Miura H, Sakai T, Jonas J J. Variant selection of dynamically nucleated twins at triple junctions in a copper tricrystal. Scripta Materialia. 2006, 55(2): 167-170.
    [57] Miura H, Sakai T, Mogawa R, et al. Nucleation of dynamic recrystallization at grain boundaries in copper bicrystals. Scripta Materialia. 2004, 51(7): 671-675.
    [58] Mcdonald D T, Humphreys F J, Bate P S. Nucleation and texture development during dynamic recrystallization of copper. Journal of Materials Processing Technology, 2005,263(10): 1195-200.
    [59] Dehghan-Manshadi A, Barnett M R, Hodgson P D. Hot Deformation and Recrystallization of Austenitic Stainless Steel: Part I. Dynamic Recrystallization. Metallurgical and Materials Transactions A. 2008, 39(6): 1359-1370.
    [60] Wang B X, Liu X H, Wang G D. Dynamic recrystallization behavior and microstructural evolution in a Mn-Cr gear steel. Materials Science and Engineering A. 2005, 393(1-2): 102-108.
    [61] Montheillet F, Lurdos O, Damamme G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization. Acta Materialia. 2009, 57(5): 1602-1612.
    [62] Frommert M, Gottstein G. Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H. Materials Science and Engineering: A. 2009, 506(1-2): 101-110.
    [63] Abdollah-Zadeh A, Eghbali B. Mechanism of ferrite grain refinement during warm deformation of a low carbon Nb-microalloyed steel. Materials Science and Engineering: A. 2007, 457(1-2): 219-225.
    [64] Maki T O S. Dynamic Recrystallization in Ferritic Stainless Steel. Strength of Metals and Alloys. 1982, 16(1): 529-534.
    [65] Tsuji N, Matsubara Y, Saito Y. Dynamic recrystallization of ferrite in interstitial free steel. Scripta Materialia. 1997, 37(4): 477-484.
    [66] Eghbali B, Abdollah-Zadeh A, Hodgson P D. Dynamic softening of ferrite during large strain warm deformation of a plain-carbon steel. Materials Science and Engineering: A. 2007, 462(1-2): 259-263.
    [67]李龙飞,杨王玥,孙祖庆.低碳钢在A(c1)点以下温度变形时的铁素体动态再结晶.金属学报. 2003, 39(4): 419-425.
    [68] Kaibyshev O S. On the role of twinning in dynamic recrystallization. Fizika Metallov i Metallovedenie. 2000, 89(4): 70-77.
    [69] Beer A G, Barnett M R. Microstructural Development during Hot Working of Mg-3Al-1Zn. Metallurgical and Materials Transactions A. 2007, 38(8): 1856-1867.
    [70] Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet. Materials Science and Engineering A. 2003, 339(1-2): 124-132.
    [71] Arthur Galiyev R K T S. Continuous Dynamic Recrystallization in Magnesium Alloy. Materials Science Forum. 2003(419): 509-514.
    [72] Balasubrahmanyam V V, Prasad Y V R K. Deformation behaviour of beta titanium alloy Ti-10V-4.5Fe-1.5Al in hot upset forging. Mater Sci Eng. 2002, A336(1-2): 150-158.
    [73] Yamagata H. Dynamic recrystallization and dynamic recovery in pure aluminum at 583K. Acta Metallurgica et Materialia. 1995, 43(2): 723-729.
    [74] Solberg J K, Mcqueen H J, Ryum N, et al. Influence of ultra-high strains at elevated temperatures on the microstructure of aluminium. Part I. Philosophical Magazine A. 1989, 60(4): 447-471.
    [75] Rustam Kaibyshev I M O S. Geometric Dynamic Recrystallization in an AA2219 Alloy Deformed to Large Strains at an Elevated Temperature. Materials Science Forum. 2004, 467 - 470: 1199-1204.
    [76] Barrabes S R. Geometric Dynamic Recrystallization inα-Zirconium at Elevated Temperatures. Materials Science Forum. 2004, 467-470: 1145-1150.
    [77] Petrov Y N, Svechnikov V L, Nadezhdin G N. Energy of stacking faults and dislocation structure of titanium alloys. Fizika Metallov Metallovedenie. 1984, 58(1): 76-80.
    [78] Guo Z, Miodownik A P, Saunders N, et al. Influence of stacking-fault energy on high temperature creep of alpha titanium alloys. Scripta materialia. 2006, 54(12): 2175-2178.
    [79] Babaréko A A, Belova O S, Kopylov V N, et al. Dynamic recrystallization of beta-phase in titanium alloy. Metal Science and Heat Treatment. 1991, 33(9): 703-707.
    [80] Yang Y. Dynamic recrystallization in adiabatic shear band inα-titanium. Materials Letters. 2006, 60(17-18): 2198-2202.
    [81] Tan M J, Chen G W, Thiruvarudchelvan S. High temperature deformation in Ti-5Al-2.5Sn alloy. Journal of Materials Processing Technology. 2007, 192-193: 434-438.
    [82] Bin X D. Flow behavior and microstructure evolution during hot compression of TA15 titanium alloy. Transactions of Nonferrous Metals Society of China. 2006, 16(3): 2066-2071.
    [83] Wang K L, Fu M W, Lu S Q, et al. Study of the dynamic recrystallization of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy in [beta]-forging process via Finite Element Method modeling and microstructure characterization. Materials and Design. 2011, 32(3): 1283-1291.
    [84]李兴无,张庆玲,沙爱学,等.变形温度对TA15合金组织和性能的影响.材料工程. 2004(1):8-11.
    [85]董显娟,鲁世强,肖璇,等.片层厚度对TAl5合金β相区变形行为的影响.材料热处理技术. 2010, 39(6): 1-5.
    [86]张旺峰,李兴无,马济民,等.热变形参数对TA15再结晶晶粒尺寸的影响.金属学报. 2002, 38(增刊): 158-160.
    [87]王锋. TA15合金热变形组织和性能研究.[硕士学位论文] .天津:天津大学,2008.
    [88] Prasad Y V R K, Seshacharyulu T, Medeiros S C, et al. Influence of oxygen content on the forging response of equiaxed ([alpha]+[beta]) preform of Ti-6Al-4V: commercial vs. ELI grade. Journal of Materials Processing Technology. 2001, 108(3): 320-327.
    [89]陈慧琴,曹春晓,郭灵,等. TC11钛合金β相区热变形动态再结晶过程的研究.材料工程. 2009(5): 43-48.
    [90] Kubiak K. Investigation of dynamic recrystallization in two-phase titanium alloy Ti-6Al-4V. Journal of Materials Processing Technology, 2000,28(12): 92-96.
    [91]朱知寿,陈明,王新南,等. TC21钛合金高温热变形行为研究.中国材料进展. 2009, 28(2): 51-55.
    [92]曾卫东,孙郧立. Ti-17合金的热压缩变形行为研究.材料科学与工艺. 1996, 4(2): 20-24.
    [93] Balasubrahmanyam V V, Prasad Y. Deformation behaviour of beta titanium alloy Ti–10V–4.5 Fe–1.5 Al in hot upset forging. Materials Science and Engineering A. 2002, 336(1-2): 150-158.
    [94] Balasubrahmanyam V, Prasad Y. Hot deformation mechanisms in Ti-5.5Al-1Fe alloy. Journal of Materials Engineering and Performance. 2001, 10(6): 731-739.
    [95] Bao R, Huang X, Cao C. Deformation behavior and mechanisms of Ti-1023 alloy. Transactions of Nonferrous Metals Society of China. 2006, 16(2): 274-280.
    [96] Furuhara T, Toji Y, Abe H, et al. Dynamic recovery and recrystallization in beta-titanium alloys. materials science forum. 2003, 426-432: 655-660.
    [97]赵永庆,舒滢,曾卫东,等.高度稳定化β型Ti40阻燃钛合金的动态再结晶行为.稀有金属材料与工程. 2009, 38(8): 1432-1436.
    [98]赵映辉,葛鹏,杨冠军,等. Ti-1300合金锻造加工的热压缩模拟.稀有金属材料与工程. 2009, 38(3): 550-553.
    [99]张行健,吕宏军,王琪,等.钛合金模锻工艺的研究进展.材料导报. 2007, 21(11): 95-98.
    [100]王新南,朱知寿,童路,等.锻造工艺对TC4-DT和TC21损伤容限型钛合金疲劳裂纹扩展速率的影响.稀有金属快报. 2008, 27(7): 12-16.
    [101]朱知寿,王庆如,郑永灵,等.损伤容限型钛合金新型β锻造工艺.中国有色金属学报. 2004, 14(3): 13-16.
    [102]周义刚,张宝昌.钛合金近β锻造研究.航空学报. 1989, 10(1): 60-66.
    [103]周义刚,曾卫东.钛合金高温形变强韧化研究.机械工程学报. 1996, 32(5): 70-73.
    [104]陈玉秀,佘植中.钛合金亚β锻造与热处理组织与性能的研究.南昌航空工业学院学报. 1989(1): 57-64.
    [105]王宝善,马文革,刘广义,等.近β锻造工艺在BT-20合金上的应用.金属学报. 2002, 38((增刊)): 385-388.
    [106]魏寿庸,何瑜,祝瀑. BT20钛合金的工艺特性及锻造与模锻工艺.钛工业进展. 2000(3): 11-15.
    [107]鲁世强,欧阳德来. TA15钛合金β热变形过程中动态再结晶形核机制研究.材料热处理学报. 2009, 30(6): 127-131.
    [108]韩明臣.钛合金热变形时的动态回复和再结晶.稀有金属快报. 2007, 26(12): 41-42.
    [109]曹春晓.选材判据的变化与高损伤容限钛合金的发展.金属学报. 2002, 38(增刊): 4-11.
    [110]张尚洲,雷家峰,关少轩,等.热处理对高弹高强高韧钛合金性能的影响.金属学报. 2002, 38(增刊): 74-77.
    [111]蔡学章,Eylon D. Ti—1100合金β热处理组织特性.稀有金属材料与工程. 1994, 23(3): 27-32.
    [112]马英杰,刘建荣,雷家峰,等.热处理制度对钛合金片层组织的影响.稀有金属材料与工程. 2005, 34(增刊): 19-23.
    [113]李健,周义刚. TC11钛合金β锻造变形程度及其锻后热处理对组织性能的影响.机械工程材料. 1998, 22(4): 22-24.
    [114]罗媛媛,赵永庆,戚运莲,等. Ti-26高强钛合金在大变形条件下的组织与性能研究.钛工业进展. 2007, 24(4): 35-38.
    [115] Li L X, Lou Y, Yang L B, et al. Flow stress behavior and deformation characteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures. Materials and Design. 2002, 23(5): 451-457.
    [116] Han Y, Zeng W, Zhao Y, et al. Modeling of constitutive relationship of Ti-25V-15Cr-0.2Si alloy during hot deformation process by fuzzy-neural network. Materials and Design. 2010, 31(9): 4380-4385.
    [117] Zener C, Hollomon J H. Effect of Strain Rate Upon Plastic Flow of Steel. Journal of Applied Physics . 1944, 15(1): 22-32.
    [118] Mcqueen H J, Ryan N D. Constitutive analysis in hot working. Materials Science and Engineering A. 2002, 322(1-2): 43-63.
    [119] Barnett M R, Beer A G, Atwell D, et al. Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn. Scripta Materialia. 2004, 51(1): 19-24.
    [120] Nagarjuna S, Evans J T. The grain size dependence of flow stress in a Cu-1%Cd alloy. Materials Science and Engineering: A. 2007, 466(1-2): 68-70.
    [121]李超.金属学原理.北京:哈尔滨工业大学出版社, 1989:516.
    [122] Duerig T W, Albrecht J, Richter D, et al. Formation and Reversion of Stress-Induced Martensite in Ti--10 V--2 Fe--3 Al. Acta materialia. 1982, 30(12): 2161-2172.
    [123] Duerig T W, Middleton R M, Terlinde G T, et al. Stress Assisted Transformation in Ti-10V-2Fe-3Al. Journal of Materials Processing Technology. 1980, 2: 1503-1512.
    [124]沈桂琴,张虹. Ti—10V—2Fe—3Al合金的应力诱发马氏体转变.航空材料学报. 1997, 17(2): 26-31.
    [125] Zhang L C, Zhou T, Aindow M, et al. Nucleation of stress-induced martensites in a Ti/Mo-based alloy. Journal of Materials Science. 2005, 40(11): 2833-2836.
    [126] Zheng Y F, Cai W, Zhang J X, et al. Microstructural development inside the stress induced martensite variant in a Ti–Ni–Nb shape memory alloy. Acta materialia. 2000, 48(6): 1409-1425.
    [127] Meng X L, Cai W, Zheng Y F, et al. Stress-induced martensitic transformation behavior of a Ti–Ni–Hf high temperature shape memory alloy. Materials Letters. 2002, 55(1-2): 111-115.
    [128] Kaibyshev R, Shipilova K, Musin F, et al. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion. Materials Science and Engineering A. 2005, 396(1-2): 341-351.
    [129] Dougherty L M, Robertson I M, Vetrano J S. Direct observation of the behavior of grain boundaries during continuous dynamic recrystallization in an Al-4Mg-0.3Sc alloy. Acta Materialia. 2003, 51(15): 4367-4378.
    [130] Poliak E I, Jonas J J. A one-parmenter approach to determining the critical conditions for the initiation of dynamic recrystallization. Acta Materialia. 1996, 44(1): 127-136.
    [131] Poliak E I, Jonas J J. Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation. ISIJ International. 2003, 43(5): 684-691.
    [132] Ryan N D, Mcqueen H J. Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel. Can. Metall. Q. 1990, 29(2): 147-162.
    [133] Gottstein G, Brunger E, Frommert M, et al. Prediction of the critical conditions for dynamic recrystallization in metals. Zeitschrift fur Metallkunde. 2003, 94(5): 628-635.
    [134] Poliak E I, Jonas J J. Critical Strain for Dynamic Recrystallization in Variable Strain Rate Hot Deformation. ISIJ International. 2003, 43(5): 692-700.
    [135] Najafizadeh A, Jonas J J. Predicting the Critical Stress for Initiation of Dynamic Recrystallization. ISIJ International. 2006, 46(11): 1679-1684.
    [136]黄光杰,钱宝华,汪凌云,等. AZ31镁合金初始动态再结晶的临界条件研究.稀有金属材料与工程. 2007, 36(12): 1080.
    [137] Estrin Y. Dislocation theory based constitutive modelling: foundations and applications. Journal of Materials Processing Technology. 1998, 80-81: 33-39.
    [138] Ung T, Zehetbauer M. Stage IV work hardening in cell forming materials, part II: A new mechanism. Scripta Materialia. 1996, 35(12): 1467-1473.
    [139] Nabarro F, Basinski Z S, Holt D B. The plasticity of pure single crystals. Advances in Physics. 1964, 13(50): 193-323.
    [140] Gottstein G, Frommert M, Goerdeler M, et al. Prediction of the critical conditions for dynamic recrystallization in the austenitic steel 800H. Materials Science and Engineering A. 2004, 387-389: 604-608.
    [141] Mecking H, Kocks U F. Kinetics of Flow and Strain-Hardening. Acta materialia. 1981, 29(11): 1865-1875.
    [142] Kocks U F. Laws for Work-Hardening and Low-Temperature Creep. Journal of Materials Processing Technology. 1976, 98(1): 76-85.
    [143] Gil S J, Van H P, Aernoudt E. Large strain work hardening and textures. Progress in Materials Science. 1980, 25(2-4): 69-134.
    [144] Pantleon W. Stage IV work-hardening related to disorientations in dislocation structures. Materials Science and Engineering A. 2004, 387-389: 257-261.
    [145] Mecking H. Dislocation Modelling of Physical Systems. Pergamon Press. 1981(4): 197-211.
    [146] Johnson W, Mehl R. Reaction kinetics in processes of nucleation and growth. Trans, AIME. 1939, 135: 416-468.
    [147] Avrami M. Kinetics of Phase Change. I General Theory. Journal of Chemical Physics. 1939, 7: 1103-1112.
    [148] Avrami M. Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei. Journal of Chemical Physics. 1939, 8: 212-224.
    [149] Toloui M, Serajzadeh S. Modelling recrystallization kinetics during hot rolling of AA5083. Journal of Materials Processing Technology. 2007, 184(1-3): 345-353.
    [150] Cho S H, Yoo Y C. Hot rolling simulations of austenitic stainless steel. Journal of Materials Science. 2001, 36(17): 4267-4272.
    [151] Serajzadeh S. Modelling the warm rolling of a low carbon steel. Materials Science & Engineering A. 2004, 371(1-2): 318-323.
    [152] Serajzadeh S. Prediction of dynamic recrystallization kinetics. Modelling and Simulation inMaterials Science and Engineering. 2004, 12: 1185-1200.
    [153] Zahiri S H, Davies C H, Hodgson P D. A mechanical approach to quantify dynamic recrystallization in polycrystalline metals. Scripta Materialia. 2005, 52(4): 299-304.
    [154] Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization. Acta Materialia. 2009, 57(9): 2748-2756.
    [155] Ji G, Li F, Li Q, et al. Research on the dynamic recrystallization kinetics of Aermet100 steel. Materials Science and Engineering: A. 2010, 527(9): 2350-2355.
    [156] Yanagida A, Yanagimoto J. A novel approach to determine the kinetics for dynamic recrystallization by using the flow curve. Journal of Materials Processing Technology. 2004, 151(1-3): 33-38.
    [157] Ruibal E, Urcola J J, Fuentes M. Recrystallized grain size and grain growth in a low-alloy steel after hot deformation in torsion. Materials science and technology. 1985, 1(9): 732-736.
    [158] Huang J S, Zhang J, Cuevas A, et al. Recrystallization and grain growth in bulk Cu and Cu (Sn) alloy. Materials Chemistry and Physics. 1997, 49(1): 33-41.
    [159] Gil F X, Rodr D, Planell J A. Grain growth kinetics of pure titanium. Scripta Metallurgica. 1995, 33(8): 1361-1366.
    [160] Wilkinson D S, Caceres C H. The Mechanism of Strain-Enhanced Grain Growth During Superplastic Deformation. Acta materialia. 1984, 32(9): 1335-1345.
    [161] Sato E, Kuribayashi K. Superplasticity and Deformation Induced Grain Growth. ISIJ International. 1993, 33(8): 825-832.
    [162] Clark M. Deformation-Enhanced Grain Growth in a Superplastic Alloy. Acta materialia. 1973, 21(9): 1195-1206.
    [163] Rabinovich M K, Trifonov V G. Dynamic grain growth during superplastic deformation. Acta Materialia. 1996, 44(5): 2073-2078.
    [164] Cheong B H, Lin J, Ball A A. Modelling of hardening due to grain growth for a superplastic alloy. Journal of Materials Processing Technology. 2001, 119(1-3): 361-365.
    [165] Li M, Xiong A, Huang W, et al. Microstructural evolution and modelling of the hot compression of a TC6 titanium alloy. Materials Characterization. 2002, 49(3): 203-209.
    [166]毛卫民,赵新兵.金属再结晶与晶粒长大.北京:冶金工业出版社, 1994:432.
    [167] Prasad G V, Goerdeler M, Gottstein G. Work hardening model based on multiple dislocation densities. Materials Science and Engineering A. 2005(400-401): 231-233.
    [168] Lin J, Liu Y. A set of unified constitutive equations for modelling microstructure evolution in hot deformation. Journal of Materials Processing Technology. 2003(143-144): 281-285.
    [169] Estrin Y, Toth L S, Molinari A, et al. A dislocation-based model for all hardening stages in large strain deformation. Acta Materialia. 1998, 46(15): 5509-5522.
    [170] Gil F J, Planell J A. Behaviour of normal grain growth kinetics in single phase titanium and titanium alloys. Materials Science and Engineering A. 2000, 283(1-2): 17-24.
    [171] Wilkinson D S, C C H. On the mechanism of strain-enhanced grain growth during superplastic deformation. Acta Metallurgica. 1984, 32(9): 1335-1345.
    [172] Senkov O N, Myshlyaev M M. Grain growth in a superplastic Zn-22% Al alloy. Acta materialia. 1986, 34(1): 97-106.
    [173] Caceres C H, Wilkinson D S. Grain growth at low strain rates in a superplastic Cu alloy. Scripta Metallurgica. 1982, 16(12): 1363-1365.
    [174] Sandstrom R, Lagneborg R. A model for hot working occurring by recrystallization. Acta Metallurgica. 1975(23): 387-398.
    [175] Beynon J H, Sellars C M. Modelling microstructure and its effects during multipass hot rolling. ISIJ international. 1992, 32(3): 359-367.
    [176] Lin J, Yang J. GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys. International Journal of Plasticity. 1999, 15(11): 1181-1196.
    [177] Engler O. EBSD local texture study on the nucleation of recrystallization at shear bands in the alloy Al-3%Mg. Scripta Materialia. 2001, 44(2): 229-236.
    [178] Troeger L P, Starke E A. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al-Mg-Si-Cu alloy. Materials Science and Engineering A. 2000, 293(1-2): 19-29.
    [179] Miura H, Sakai T, Hamaji H, et al. Preferential nucleation of dynamic recrystallization at triple junctions. Scripta Materialia. 2004, 50(1): 65-69.
    [180] Huang G, Liu Q, Wang L, et al. Dynamic Recrystallization of 3104 Aluminum Alloy during Isothermal Compression Deformation at Elevated Temperatures. Materials Science Forum . 2007, 546(2): 1061.
    [181] Murty S V, Torizuka S, Nagai K, et al. Dynamic recrystallization of ferrite during warm deformation of ultrafine grained ultra-low carbon steel. Scripta Materialia. 2005, 53(6): 763-768.
    [182] Miura H, Aoyama H, Sakai T. Effect of Grain-Boundary Misorientation on Dynamic Recrystallization of Cu-Si Bicrystals. 1994, 58: 267-275.
    [183] Belyakov A, Miura H, Sakai T. Dynamic recrystallization under warm deformation of a 304 type austenitic stainless steel. Materials Science and Engineering A. 1998, 255(1-2): 139-147.
    [184] Fatemi-Varzaneh S M, Zarei-Hanzaki A, Beladi H. Dynamic recrystallization in AZ31magnesium alloy. Materials Science and Engineering: A. 2007, 456(1-2): 52-57.
    [185]刘楚明,刘子娟,朱秀荣,等.镁及镁合金动态再结晶研究进展.中国有色金属学报. 2006, 16(1): 1-12.
    [186] Sakai T, Miura H, Goloborodko A, et al. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Materialia. 2009, 57(1): 153-162.
    [187] Huang J, Xu Z. Evolution mechanism of grain refinement based on dynamic recrystallization in multiaxially forged austenite. Materials Letters. 2006, 60(15): 1854-1858.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700