电脉冲法消除残余应力的理论及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对传统时效技术消除残余应力的局限性,本论文提出了一种采用电脉冲时效技术消除材料内部残余应力的方法,并对其理论及若干关键技术问题进行了研究。
     第一章阐述了论文的研究意义和研究内容。首先,分析了残余应力的产生模型和分类方法,指出了残余应力的危害及消除残余应力的重要意义;其次,评述了残余应力的消除技术和测量方法的国内外研究现状;再次,分析了电脉冲处理技术的国内外研究现状;最后,提出了一种采用电脉冲时效技术消除残余应力的新方法,并概括了论文的主要研究内容。
     第二章研究了基于电致位错动力学的电脉冲法消除残余应力的微观机理。首先,通过分析位错的基本组态模型以及位错对残余应力的影响,计算了受阻位错塞积群开通所需克服的微观阻力,并推导了材料强化的流变应力;其次,计算了高能电脉冲对位错产生作用的瞬时热压应力和电子风力等作用力;最后,从电致位错动力学出发,提出了电脉冲法消除残余应力的微观作用条件。
     第三章研究了小孔法中校准系数的有限元数值标定技术和逐层钻孔构建非均匀残余应力的测量技术。首先,用有限元数值分析的方法模拟力学拉伸实验的校准过程,在ANSYS中构造试件和应变花粘合的三维模型,分析了试件贴片平面的边长、试样的厚度、钻孔直径和钻孔深度对校准系数α和b的影响规律;其次,采用逐层钻孔的小孔法测量构建非均匀的残余应力,用分层加载的方法标定出分步逐层钻孔所需的校准系数矩阵αni和bni,建立了一种实用的五步逐层钻孔的应力测试技术;最后,用直接钻孔的小孔法和五步逐层钻孔测量技术,实验对比测试Cr12MoV淬火件的残余应力。
     第四章研制了适用于电脉冲法消除残余应力的电脉冲发生装置。首先,建立了电容放电回路的RLC等效电路模型,分析了脉冲电流的产生条件以及回路中各参数对脉冲电流特性的影响;其次,采用单片机开发了用于控制充放电开关自动工作的主控单元,并组建了电脉冲发生装置;最后,对该电脉冲发生装置产生的脉冲电流进行了测试分析。
     第五章对电脉冲法消除残余应力进行了实验研究。首先,利用研制成功的电脉冲发生装置组建了实验系统,以小孔法定量测试技术为评定标准,实验研究了电流峰值Im、脉冲宽度τ、脉冲重复频率f和电脉冲时效次数p等四个电参数对电脉冲时效效果的作用规律;然后,结合金相分析和显微硬度测试等手段,研究了电脉冲法对试样的微细观组织形态的影响;最后,研究了电脉冲时效过程中试样的温升情况和脉冲电流的变化。
     第六章研究了基于电参数法的电脉冲时效的定量评价技术。基于多元函数逼近模型,建立了同时考虑电流峰值Im、脉冲宽度τ、脉冲重复频率f和电脉冲时效次数p的效果定量评价模型X(Im,τ,f,p);然后,从构建的评价模型出发,研究了各电参数单独或复合作用下残余应力的消除效果。
     第七章总结了本论文的研究成果,并展望了今后需进一步开展的研究工作。
Considering the limitation of traditional residual stress relief technologies, a method based on electropulsing stress relief was presented in this dissertation, and its theory and several key technologies were investigated.
     In chapter 1, the research significance and contents of this dissertation were presented. First, the generating model and categorizing method of residual stress were analyzed, and the hazard of residual stress and the significance of eliminating residual stress were pointed out. Secondly, the present research status of residual stress relief technologies and measurement methods at home and abroad was reviewed, as well as the electropulsing treatment technology. Finally, a new method was advanced which used electropulsing treatment to remove residual stress, and the primary contents of this dissertation were generalized.
     In chapter 2, the microscopic mechanism of the electropulsing stress relief method was researched based on electro-dislocation dynamics. First, the microscopic resistance force to actuate baffled dislocation was calculated by analyzing the basic configuration of dislocation and its influence on residual stress; in addition, the flow stress of material strengthening was derived. Secondly, the instantaneous thermocompression stress and the electron wind force of high-energy electropulse which drove dislocation were obtained. Finally, the microscopic acting condition of electropulsing stress relief method was established based on electro-dislocation dynamics.
     In chapter 3, the finite element numerical calibration technique for the calibration constants in the hole-drilling method and the measurement technique of the incremental hole-drilling method for constructing non-uniform residual stress were researched. First, the calibration process of mechanical tensile test was simulated with the finite element numerical analysis technique; and an agglutinate 3-D model of a workpiece and a strain rosette was built up in ANSYS; furthermore, the influence parameters on the calibration constants a and-b was analyzed, including the specimen's pasting-plane side length, the workpiece thickness, the hole diameter and the drilling depth. Secondly, the incremental hole-drilling method was used to measure non-uniform residual stress, and the calibration constants matrix ani, and-bni were calculated by a dividing-layer loading method; moreover, a practical measurement technology of five-step incremental hole-drilling method was established. Finally, the residual stress in Cr12MoV quenching specimens was measured contrastively by the direct hole-drilling method and five-step incremental hole-drilling technology.
     In chapter 4, an electrical pulse generating device was developed for electropulsing stress relief method. First, the RLC equivalent circuit of the capacitor discharge loop was established, and the generating condition of pulse current was analyzed, as well as the influence of each circuit parameter on characteristic of the pulse current. Secondly, the master control unit was developed based on MCU which controlled the charge and discharge switches for automatic operation, then the electrical pulse generating device was built up. Finally, the pulse current produced by the electrical pulse generating device was tested.
     In chapter 5, experiments were carried out to study the electropulsing stress relief method. First, the experimental system was constructed with the developed electrical pulse generating device, and the hole-drilling method was used as quantitative evaluation standard; furthermore, experiments were carried out to study the influence of four electrical parameters on residual stress relief effect, including the peak of pulse current Im, the pulse widthτ, the pulse recurrence frequency f and the electropulsing stress relieving times p. Secondly, based on the metallographic analysis and microhardness testing techniques, the impact of the electropulsing method on the micro structure configuration of the specimen was investigated. Finally, the temperature rise of the specimen and the change of pulse current were investigated during the process of electropulsing stress relief.
     In chapter 6, the quantitative evaluation technique of electropulsing stress relief method was investigated based on electrical-parameter rule. Based on the multivariate function approximation model, the quantitative evaluation model X(Im,τ,f,p) was established considering the current peak Im, the pulse widthτ, the pulse recurrence frequency f, and the electropulsing stress relieving times p. According to the constructed evaluation model, the impact of each electrical parameter or their combination on the residual stress relieving effect was investigated.
     In chapter 7, the achivements of this dissertation were summarized, and future research work for further study was prospected.
引文
[1](日)米谷茂.残余应力的产生和对策[M].北京:机械工业出版社,1983:1-3,16,308-312,329,335,341-342.
    [2]WITHERS P J, BHADESHIA H K D H. Residual stress:Part 1-Measurement techniques[J]. Materials Science and Technology,2001,17(4):355-365.
    [3]WITHERS P J, BHADESHIA H K D H. Residual stress:Part 2-Nature and origins [J]. Materials Science and Technology,2001,17(4):366-375.
    [4]WITHERS P J. Residual stress and its role in failure [J]. Reports on Progress in Physics,2007,70 (12):2211-2264.
    [5]CHABAUD-REYTIER M, ALLAIS L, CAES C, et al. Mechanisms of stress relief cracking in titanium stabilized austenitic stainless steel [J]. Journal of Nuclear Materials,2003,323(1):123-137.
    [6]SHIM Dong-jin, SUN Hong-wei, VENGALLATORE S T, et al. Damage and failure in silicon-glass-metal microfluidic joints for high-pressure MEMS devices [J]. Journal of Microelectromechanical Systems,2006,15(1):246-258.
    [7]方博武.金属冷加工的残余应力[M].北京:高等教育出版社,1991:19-37.
    [8]周爱军,孙东立,杨德庄.2091铝锂合金的自然时效特性[J].机械工程材料,1996,20(5):24-26.
    [9]刘宏,赵刚,刘春明,等.自然时效及预时效6000系合金人工时效析出行为[J].材料热处理学报,2008,29(4):74-78.
    [10]成大先.机械设计手册,第1卷[M].北京:化学工业出版社,2010:1-390-1-472.
    [11]中国机械工程学会热处理学会.热处理手册:工艺基础[M].北京:机械工业出版社,2008.
    [12]BERGLUND D, ALB ERG H, RUNNEMALM H. Simulation of welding and stress relief heat treatment of an aero engine component [J]. Finite Elements in Analysis and Design,2003,39: 865-881.
    [13]YANG Y P. Understanding of vibration stress relief with computation modeling [J]. Journal of Materials Engineering and Performance,2009,18(7):856-862.
    [14]SUN M C, SUN Y H, WANG R K. The vibratory stress relief of a marine shafting of 35# bar steel[J]. Materials Letters,2004,58(3-4):29-303.
    [15]SUN M C, SUN Y H, WANG R K. Vibratory stress relieving of welded sheet steels of low alloy high strength steel [J]. Materials Letters,2004,58(7-8):1396-1399.
    [16]GNIRSS G. Vibration and vibratory stress relief:Historical development,theory and practical application [J]. Welding in the World,1988,26(11-12),284-291.
    [17]MUNSI A S M Y, WADDELL A J, WALKER C A. Vibratory stress relief-massage for your workpieces [J]. Journal of Strain Analysis,2001,36(5):453-464.
    [18]KWOFIE S. Plasticity model for simulation, description and evaluation of vibratory stress relief[J]. Materials Science and Engineering A,2009,512(1-2):154-161.
    [19]房德馨.金属的残余应力与振动处理技术[M].大连:大连理工大学出版社,1989:73-78.
    [20]房德馨,姚培勤.用振动消除金属构件残余应力的原理和应用[J].大连理工学院学报,1983,22(3):77-80.
    [21]RAO De-lin, GE Jing-guo, CHEN Li-gong. Vibratory Stress Relief in Manufacturing the Rails of a Maglev System [J]. Journal of Manufacturing Science and Engineering,2004,126(2):388- 391.
    [22]饶德林,朱政强,葛景园,等.振动时效消除拼焊不锈钢版的残余应力[J].振动与冲击,2005,24(2):140-143.
    [23]卢庆华,饶德林,陈立功,等.振动时效技术在能源工程中的应用[J].上海交通大学学报,2007,41(4):578-581.
    [24]马振宇,芦亚萍,贾叔仕,等.振动时效微观机理研究[J].机械工程师,2003,20(7):30-33.
    [25]HE Wen, REN Yao-xin, CHEN Cai-jin, et al. Analysis on Technology of High Frequency Vibration Stress Relief [C]//Proceedings of the 7th Annual Conference of ASME Power. Chicago:Illinois USA,2005:119-122.
    [26]芦亚萍,何闻.振动时效机理及其对疲劳寿命的影响分析[J].农业机械学报,2006,37(12):197-200.
    [27]蒋刚,何闻,郑建毅.高频振动时效的机理与实验研究[J].浙江大学学报(工学版),2009,43(7):1269-1272.
    [28]任耀新.高频振动时效装置的研究[D].杭州:浙江大学,2006.
    [29]蒋刚.高频振动时效消除焊接残余应力的仿真及实验研究[D].杭州:浙江大学,2007.
    [30]胡晓东. 利用频谱分析对工件进行全自动振动处理的方法[P]:中国,ZL200510092985.6.2009-05-06.
    [31]赵长喜.频谱谐波振动时效消除应力技术的应用研究[J].铸造技术,2010,31(4):511-514.
    [32]LI Q B. The report on vibratory stress relieving process of casting iron blanks of machine [C]// Proceedings of the 1st North China Conference on VSR Process,1986:11-17.
    [33]SEDEK P, BROZDA J, WANG L, et al. Residual stress relief in MAG welded joints of dissimilar steels[J]. International Journal of Pressure Vessels and Piping,2003,80:705-713.
    [34]ZHANG Jing-xiang, LIU Kai-shin, ZHAO Kai, et al. A study on the relief of residual stresses in weldments with explosive treatment [J]. International Journal of Solids and Structures,2005,42 (13):3794-3806.
    [35]赵福兴,赖英瑞,姚尧.用爆炸法消除焊接残余应力的试验研究[J].机械强度,1985,1:60-65.
    [36]陈殿生,王立威,刘雅梅,等.静态作用应力法消除铸件残余应力的研究[J].机床与液压,2005,5:30-31.
    [37]姬书得,张利国,方洪渊,等.局部捶击法对水轮机转轮焊接残余应力场的影响[J].焊接学报,2007,28(1):81-84.
    [38]夏丕旭,董亚辉,董增田.锤击法提高焊接接头疲劳强度新技术途径探讨[J].焊接,1991,12:2-6.
    [39]PAUL C M. Look at magnetic treatment of tools and wear surface [J]. Tooling and Production,1990, 55 (12):100-103.
    [40]LU A L, TANG F, LUOXJ, et al. Research on residual stress reduction by strong pulsed magnetic treatment [J]. Journal of Materials Processing Technology,1998,74:259-262.
    [41]TANG F, LU A L, MEI J F, et al. Research on residual stress reduction by a low frequency alternating magnetic field [J]. Journal of Materials Processing Technology,1998,74:255-258.
    [42]KLAMECKI B E. Residual stress reduction by pulsed magnetic treatment [J]. Journal of Materials Processing Technology,2003,141:385-394.
    [43]蒋刚,谭明华,王伟明,等.残余应力测量方法的研究现状[J].机床与液压,2007,35(6):213-220.
    [44]袁发荣,伍尚礼.残余应力测试与计算[M].长沙:湖南大学出版社,1987:35-240.
    [45]WITHERS P J, TURSKI M, EDWARDS L, et al. Recent advances in residual stress measurement [J]. International Journal of Pressure Vessels and Piping,2008,85(3):118-127.
    [46]RENDLER N J, VIGNESS I. Hole-drilling strain-gage method of measuring residual stresses[J]. Experimental Mechanics,1966,6(12):577-586.
    [47]SCHAJER G S. Hole-drilling residual stress measurements at 75:origins, advances, opportunities [J]. Experimental Mechanics,2009,50(2):245-253.
    [48]SCHAJER G S. Advances in hole-drilling residual stress measurements [J]. Experimental Mechanics,2009,50(2):159-168.
    [49]NELSON D V, MAKINO A, SCHMIDT T. Residual stress determination using hole drilling and 3D image correlation [J]. Experimental Mechanics,2006,46(1):31-38.
    [50]American Society for Testing and Materials. E837-08 Standard test method for determining residual stresses by the hole-drilling strain-gage method [S]. Pennsylvania: ASTM International,2008.
    [51]SEITH W, WEVER U H. A new effect in the electrolytic transfer in solid alloys [J]. Z. Elektrochem, 1953,57:891.
    [52]FIKS V B. Mechanism of ion mobility in metals [J]. Soviet Physics-Solid State,1959,1:14-28.
    [53]HUNTINGTON H B, GRONE A R. Current-induced marker motion in gold wires[J]. Physics and Chemistry Solids,1961,20:76-87.
    [54]沈以赴,郭晓楠,张坤,等.脉冲电流对金属材料的作用及其研究进展[J].材料科学与工程,1998,16(3):4-7,33.
    [55]杨丽红,黄金亮,殷镖.电脉冲在现代材料制备与研究中的应用[J].热加工工艺,2003,2:51-53.
    [56]吕然超,袁守谦,曹余良,等.金属材料应用电脉冲处理技术的研究现状[J].材料热处理技术,2009,38(6):52-56.
    [57]姚可夫,王沛玉.脉冲电流对金属材料塑性变形和组织结构与性能的影响[J].2003,25(3):340-342.
    [58]郭宝会,刘新才,潘晶.脉冲电流对合金凝固行为、组织和性能影响研究的进展[J].2004,2:55-57.
    [59]郭晓楠,沈以赴,周亦胄,等.高密度单脉冲电流对H62铜带力学性能的影响[J].材料研究学报,1999,13(1):73-75.
    [60]TROITSKII O A. The electroplastic effect in metals [J]. Strength of Materials,1984,16(2):277-281.
    [61]KOPANEV A A. The nature of the electroplastic effect in metals [J]. Strength of Materials,1991, 23 (1):47-51.
    [62]CONRAD H. Effects of electric current on solid state phase transformations in metals [J]. Materials Science and Engineering A,2000,287(2):227-237.
    [63]ZHENG M, LU X P, CONRAD H. Influence of an external electric field during quenching on the hardenability of steel [J]. Scripta Materialia,2001,44(2):381-385.
    [64]XU Zhou-hui, TANG Guo-yi, TIAN Shao-quan, et al. Research of electroplastic rolling of AZ31 Mg alloy strip [J]. Journal of Materials Processing Technology,2007,182(1-3):128-133.
    [65]KLIMOV K M, SHNYREV G D, NOVIKOV I I. Electro-plasticity of metals [J]. Doklady Akademii Nauk SSSR,1974,219(2):323-324.
    [66]MISRA A K. A novel solidification technique of metals and alloys:under the influence of applied potential [J]. Metallurgical and Materials Transactions A,1985,16(7):1354-1355.
    [67]NAKADA M, SHIOHARA Y, FLEMINGS M C. Modification of solidification struture by pulse electric discharging [J]. ISIF International,1990,30(1):27-33.
    [68]L I J M, LISL, LI J, et al. Modification of solidification structure [J]. Scr. Metall. Mater,1994, 31 (12):1691-1694.
    [69]BARNAK J P, SPRECHER A F, CONRAD H. Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing [J]. Scr. Metall. Mater,1995,32(6):879-884.
    [70]CONRAD H. Influence of an electric or magnetic field on the liquid-solid transformation in materials and on the microstructure of the solid [J]. Materials Science and Engineering A,2000,287(2): 205-212.
    [71]鄢红春,何冠虎,周本濂,等.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33(4):352-358.
    [72]秦荣山,鄢红春,何冠虎,等.直接晶化法制备块状纳米材料的探索:Ⅰ脉冲电流下无序金属介质的成核理论[J].材料研究学报,1995,9(3):219-221.
    [73]王建中,苍大强,唐勇,等.电脉冲孕育对A1-5.0%Cu合金凝固结构的影响[J].铸造,1999,48(5):4-7.
    [74]唐勇,王建中,苍大强.电脉冲对高碳钢凝固组织的影响[J].钢铁研究学报,1999,11(4):44-47.
    [75]唐勇,王建中,苍大强,等.电脉冲作用下T8钢凝固组织的改变[J].北京科技大学学报,2000,22(4):307-311.
    [76]陈庆福,王建中,蔡伟,等.电脉冲孕育细化CuAINi合金的宏观组织与铸态形状记忆效应[J].材料科学与工艺,2001,9(3):240-242.
    [77]曹丽云,王建中,曹力生,等.电脉冲孕育(EPM)处理对ZL101合金凝固组织和力学性能的影响[J].铸造,2001,50(10):590-593.
    [78]YAO Ke-fu, WANG Jun, ZHENG Ming-xin, et al. A research on electroplastic effects in wire-drawing process of an austenitic stainless steel [J]. Scripta Metallurgica,2001,45(5):533-539.
    [79]TANG Guo-yi, ZHANG Jin, YAN Yun-jie, et al. The engineering application of the electroplastic effect in the cold-drawing of stainless steel wire [J]. Journal of Materials Processing Technology, 2003,137 (1-3):96-99.
    [80]TROITSKII O A, LIKHTMAN V I. The joint effect of mercury and irradiation on the mechanical properties of Zinc single crystals [J]. Doklady Akademii Nauk SSSR,1963,149,1115-1118.
    [81]TROITSKII O A. Radiation-induced changes in the strength and plasticity of Zinc single crystals [J]. U. S. S. R,1968.
    [82]SPRECHER A F, MANN AN S L, CONRAD H. On the mechanisms for the electroplastic effect In Metals [J]. Acta Metall,1986:34(7):1145-1162.
    [83]KRAVCHENKO V Y. Journal of Experimental and Theoretical Physics USSR,1966,51:1976.
    [84]KLIMOV K M, SHNYREV G O, NOVIKOV I I. The electroplastic rolling of wires into strips of micron section from tungsten and its alloy with rhenium [J]. Soviet Physics Doklady,1975,19:787.
    [85]ROSHCHUPKIN A M, MILOSHENKO V E, KALININ V E. Soviet Physics Solid St,1979,21 (3):909-910.
    [86]VARMA S K, CORNWELL L R. A reply to comments on the electroplastic effect in aluminum [J]. Scripta Metallurgica,1980,14(9):1035-1036.
    [87]GOLDMAN P D, MOTOWIDLO L R, GALLIGAN J M. The absence of an electroplastic effect in lead at 4.2K [J]. Scripta Metallurgica,1981,15 (4):353-356.
    [88]OKAZAKI K, KAGAWA M, CONRAD H. A study of the electroplastic effect in metals[J]. Scripta Metallurgica,1978,12(11):1063-1068.
    [89]OKAZAKI K, KAGAWA M, CONRAD H. An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium [J]. Materials Science and Engineering,1980, 45 (2):109-116.
    [90]CONRAD H, YANG D, BECHER P. Effect of an applied electric field on the flow stress of ultrafine-grained 2.5Y-TZP at high temperatures [J]. Materials Science and Engineering A,2008, 477 (1-2):358-365.
    [91]CONRAD H, JUNG K. Effect of grain size from mm to nm on the flow stress and plastic deformation kinetics of Au at low homologous temperatures [J]. Materials Science and Engineering A,2005, 406 (1-2),78-85.
    [92]CONRAD H, YANG D. Effect of an electric field on the plastic deformation kinetics of electrodeposited Cu at low and intermediate temperatures [J]. Acta Materialia,2002,50(11):2851-2866.
    [93]YANG D, CONRAD H. Exploratory study into the effects of an electric field and of high current density electropulsing on the plastic deformation of TiAl [J]. Intermetallics,2001,9(10-11):943-947.
    [94]CONRAD H. Electroplasticity in metals and ceramics [J]. Materials Science and Engineering A, 2000,287 (2):276-287.
    [95]刘志义,崔建忠.脉冲电流对2091A1-Li合金超塑性及断裂行为的影响[J].金属学报,1993,29(2):89-92.
    [96]刘志义,刘冰,邓小铁,等.脉冲电流对2091A1-Li合金超塑变形机理的影响[J].金属学报,2000,36(9):944-951.
    [97]刘志义,刘冰,邓小铁,等.脉冲电流对2091铝锂合金再结晶动力学的影响[J].中国有色金属学报,10(6):837-842.
    [98]刘志义,王引真.脉中电流对2091铝锂合金动态再结晶动力学的影响[J].材料研究学报,2001,15(3):358-366.
    [99]李尧,杨贤镛,陈洪,等.脉冲电流对Zn-22A1合金超塑性力学行为的影响[J].湖北工学院学报,1995,10(1):1-3.
    [100]董晓华,李尧.金属的电致塑性和电致超塑性效应[J].湖北工学院学报,1996,11(4):1-6.
    [101]候东芳,李尧.电流对金属超塑性变化中晶内位错形态的影响[J].三峡大学学报(自然科学版),2002,24(4):348-350.
    [102]董晓华,候东芳,李尧.直流脉冲电流对7475铝合金超塑性变形中位错运动的影响[J].机械工程材料,2005,29(2):17-20.
    [103]李尧,董晓华.Zn-22%A1合金电致塑性效应中位错激活的动力学分析[J].江汉大学学报(自然科学版),2007,35(3):39-41.
    [104]周细枝,夏露,陈洪,等.脉冲电流对7475铝合金再结晶的影响[J].湖北工业大学学报,2007,22(4):6-8.
    [105]李尧,王少愚.铝合金电致塑性效应的人工神经网络模型仿真[J].江汉大学学报(自然科学版),2009,37(1):48-51.
    [106]周亦胄,肖素红,甘阳,等.脉冲电流作用下碳钢淬火裂纹的愈合[J].金属学报,2000,36(1):43-45.
    [107]周亦胄,罗申,贲昊玺,等.在脉冲电流作用下钢中裂纹的愈合[J].材料研究学报,2003,17(2):169-172.
    [108]周亦胄,周本濂,郭晓楠,等.脉冲电流对45钢损伤的恢复作用[J].材料研究学报,2000,14 (1):29-36.
    [109]周亦胄,郭敬东,单以印,等.脉冲电流对低碳微合金钢力学性能的影响[J].材料研究学报,2002,16(3):243-246.
    [110]张伟,随曼龄,周亦胄,等.高密度电脉冲下材料微观结构的演变[J].金属学报,2003,39(10):1009-1018.
    [111]ZALUSKA A, MATYJA H. Structural changes and physical properties of Fe-Ni-based metallic glasses rapidly heated by pulsed electrical currents [J]. J Mater Res,1991,6(5):1028-1034.
    [112]HUANG D R, LI J C M. Stress relief of amorphous Fe78B13Si9 ribbon by rapid joule heating[J]. Scripta Metallurgica et Materialia,1990,24(6):1137-1142.
    [113]MIZUBAYASHIA H, TAKEMOTO R. Effect of passing electric current on the elastic property of amorphous alloys [J]. Journal of Alloys and Compounds,211-212:340-343.
    [114]TAKEMOTO R, NAGATA M, MIZUBAYASHI H. Effects of passing electric current on the elastic property of amorphous Cu50Zr50 and Cu50Ti50[J]. Acta Materialia,1996,44(7):2787-2795.
    [115]MIZUBAYASHI H, TAKEMOTO R. Effects of passing electric current on structural relaxation, crystallization and elastic property in amorphous Cu5oTi5o[J]. Acta Metall. Mater,1995,43(4): 1495-1504.
    [116]MIZUBAYASHI H, TAKEMOTO R, SEKI Y. Collective motion of many atoms in amorphous alloys induced under passing electric current [J]. Materials Science and Engineering A,1996,217-218: 384-387.
    [117]张伟,隋曼龄,郭晓楠,等.脉冲电流处理后H62黄铜中的局域纳米结构[J].材料研究学报,2000,14(3):239-243.
    [118]肖素红,郭敬东,李守新.用脉冲电流处理后疲劳铜单晶的位错行为[J].材料研究学报,2003,3(17):225-229.
    [119]冯端.金属物理学[M].北京:科学出版社,1987:248-329.
    [120]杨德庄.位错与金属强化机制[M].哈尔滨:哈尔滨工业大学出版社,1991:107-133.
    [121](法)FRIEDEL J位错[M].增订版.王煜,译.北京:科学出版社,1984:46-61,283-287.
    [122]哈宽富.金属力学性质的微观理论[M].北京:科学出版社,1983:226-264.
    [123]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1988:35-58,184-209.
    [124]CHAKRABARTY J. Theory of Plasticity[M]. USA:McGraw-Hill Inc.1987.
    [125]CONRAD H, KANG J. Effect of grain size from millimeters to nanometers on the flow stress and deformation kinetics of Ag [J]. Materials Science and Engineering A,2005,391 (1-2):272-284.
    [126]CONRAD H, YANG D. Effect of DC electric field on the tensile deformation of ultrafine-grained 3Y-TZP at 1450-1600 ℃[J]. Acta Materialia,2007,55(20):6789-6797.
    [127]LI Da-long, YU En-lin. Computation method of metal's flow stress for electroplastic effect[J]. Materials Science and Engineering A,2009,505(1-2):62-64.
    [128]YANG D, CONRAD H. Influence of an electric field on the plastic deformation of polycrystalline NaCl at elevated temperatures [J]. Acta Materialia,1998,46(6):1963-1968,1998.
    [129]ZUEV L B, GROMOV V E, KURILOV V F, et al. Dislocation mobility in Zn single crystals under current pulses [J]. Doklady Akademii Nauk SSSR,1978,84:239-243.
    [130]TANG D W, ZHOU B L, CAO H, et al. Thermal stress relaxation behavior in thin films under transient laser-pulse heating [J]. Journal of Applied Physics,1993,73 (8):3749-3752.
    [131]CONRAD H. Thermally activated plastic flow of metals and ceramics with an electric field or current[J]. Materials Science and Engineering A,2002,322(1-2):100-107.
    [132]LIVESEY S J, DUAN X, PRIESTNER R, et al. An electroplastic effect in 3 1/4% silicon steel[J]. Scripta Metallurgica,2001,44(5):803-809.
    [133]訾炳涛,巴启先,崔建中.高密度脉冲电流作用下LY12铝合金的凝固组织[J].特种铸造及有色合金,2000,4:4-6.
    [134]MOLOTSKII M I. Theoretical basis for electro- and magnetoplasticity [J]. Materials Science and Engineering A,2000,287(2):248-258.
    [135]张明.脉冲电流处理铁基合金的凝固组织特性研究[D].秦皇岛:燕山大学,20005.
    [136]刘兵.静电场对铝合金的作用效应与机制[D].西安:西北工业大学,2002.
    [137]刑书明,徐亚荣,胡汉起,等.电场和磁场作用下的金属凝固[J].特种铸造及有色合金,1998,6:37-40.
    [138]宋辉.脉冲电流处理对钛合金板材组织和性能影响的研究[D].哈尔滨:哈尔滨工业大学,2009.
    [139]SCHAJER G S. Application of finite element calculations to residual stress measurements [J]. Journal of Engineering Materials and Technology,1981,103(2):157-163.
    [140]张晓宏,赵海燕,蔡志鹏,等.小孔法测量残余应力时孔边塑性应变的有限元分析及修正[J].机械工程学报,2005,41(3):193-200.
    [141]SCHAJER G S. Measurement of non-uniform residual stresses using the hole-drilling method:Part Ⅰ-Stress calculation procedures [J]. Journal of Engineering Materials and Technology,1988,110 (4):338-343.
    [142]SCHAJER G S. Measurement of non-uniform residual stresses using the hole-drilling method:Part II-Practical application of the integral method [J]. Journal of Engineering Materials and Technology,1988,110(4):344-349.
    [143]AOH Jong-ning, WEI Chung-sheng. On the improvement of calibration coefficients for hole-drilling integral method:Part Ⅰ-Analysis of calibration coefficients obtained by a 3-D FEM model [J]. Journal of Engineering Materials and Technology,2003,124 (2):250-258.
    [144]SCHAJER G S. Hole-drilling residual stress profiling with automated smoothing [J]. Journal of Engineering Materials and Technology,2007,129(3):440-445.
    [145]SICOT O, GONG X L, CHEROUAT A, et al. Influence of experimental parameters on determination of residual stress using the incremental hole-drilling method [J]. Composites Science and Technology,2004,64(2):171-180.
    [146]NIKU-LARI A, LU J, FLAVENOT J F. Measurement of residual-stress distribution by the incremental hole-drilling method [J]. Journal of Mechanical Working Technology,1985,11(2):167-188.
    [147]STEFANESCU D, TRUMAN C E, SMITH D J, et al. Improvements in residual stress measurement by the incremental centre hole drilling technique [J]. Experimental Mechanics,2006,46(4):417-427.
    [148]SCHAJER G S. Measurement of non-uniform residual stresses using the hole-drilling method:Part Ⅰ-Stress calculation procedures [J]. Journal of Engineering Materials and Technology,1988,110 (4):338-343.
    [149]SCHAJER G S. Measurement of non-uniform residual stresses using the hole-drilling method:Part II-Practical application of the integral method [J]. Journal of Engineering Materials and Technology,1988,110(4):344-349.
    [150]徐颖强,李剑锋,汪震隆.逐层钻孔法测试多层材料残余应力数值研究[J].西北工业大学学报,2009,27(1):39-42.
    [151]陈景亮,姚学玲,孙伟.脉冲电流技术[M].西安:西安交通大学出版社,2008:3-12,22-24,104,166-167.
    [152]王莹.高功率脉冲电源[M].北京:原子能出版社,1991:1,7-12.
    [153]施彦彬.电击法消除残余应力相关问题的研究[D].杭州:浙江大学,2010:47.
    [154]万福君,潘松峰,等.单片机原理系统设计与应用[M].合肥:中国科学技术大学出版社,2006:227-239.
    [155]王仁宏,梁学章.多元函数逼近[M].北京:科学出版社,1988:36-74.
    [156](美)David Kincaid, Ward Cheney数值分析[M].王国荣,俞耀明,徐兆亮,译.北京:机械工业出版社,2005:245-253.
    [157]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社,2008:22-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700