新型金属玻璃及薄膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大块金属玻璃具有高硬度、高弹极限等特性,显示出广泛的应用前景。强玻璃形成能力的合金体系的开发成为金属玻璃研究的核心内容之一,这不仅关系着金属玻璃能否得到广泛的商业应用,还直接影响人们对于金属玻璃形成机理的认识。
     本论文在LaAlCu合金体系基础上,通过加入与主元具有类似化学性质或相近原子尺寸的化学元素Ag、Ni、Co元素,通过成分优化,开发出一系列临界尺寸在20~30 mm的La-Al-(Cu, Ag)-(Ni, Co)大块金属玻璃。最强的玻璃形成能力组分为La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10,其临界尺寸超过35mm,是目前世界上尺寸最大的稀土基金属玻璃。从结构、热力学、动力学因素角度研究发现La-Al-(Cu, Ag)-(Ni,Co)合金晶相和过冷液相之间较小的吉布斯自由能差是其强玻璃形成能力的关键因素。
     通过高温原位X射线衍射研究La62A114Cu11.7Ag2.3Ni5Co5在玻璃态、过冷液态及液态的局域原子结构差异。发现其最近邻壳层的配位数为15.1±0.1,并且不依赖于温度而变化,而合金La62A114Cu24和La62A114Cu20Ag4的配位数却随着温度上升略有下降。
     研究La基金属玻璃的室温纳米压痕变形行为时发现,在室温时其变形模式的转变趋势如下:首先从极低加载速率时的Homo-Ⅰ变形模式转变到中度加载速率时的Inhomo变形,然后再到高加载速率时的Homo-Ⅱ变形模式,基于剪切转变区模型(STZ)提出了加载速率对La基大块金属玻璃的塑性变形模式的影响机制。
     发现离子注入技术在不影响玻璃形成能力的同时可以作为提高金属玻璃耐腐蚀性的一种有效途径,并在La基金属玻璃上进行了验证。合金耐腐蚀性的提高主要可归因于含Nb(约100 nm)表面层的强钝化能力。
     针对La基合金力学性能及热稳定性较差的弱点,尝试开发了一种具有优异综合力学性能且具有强玻璃形成能力的体系。选择CuZr基合金,在ZrCuAl合金基础上,采用加入与主元具有类似化学性质的Ag元素,并通过成分优化,成功开发出一系列临界尺寸超过20mm的Zr-(Cu,Ag)-Al金属玻璃,发现其在很大的成分范围内可直接熔炼成约25g左右的非晶锭子。从结构、热力学、动力学角度研究发现Ag元素添加后,局域原子更紧密的堆垛以及晶态相与过冷液相之间更小的吉布斯自由能差成为其具有强玻璃形成能力的关键因素。
     最后,采用原位TEM技术在NiNb金属玻璃非晶薄膜中首次发现了6.6%弹性极限及40%的拉伸超塑性变形的存在,基于热膨胀、自由体积模型、杨氏模量、尺寸效应、外部约束(confinement)等因素考虑,对其弹性及塑性变形机理进行了分析。
Bulk metallic glasses (BMGs) have excellent properties, such as high hardness, high elastic strain limit, etc., which make them, promising for industrial applications. Hence, searching BMG compositions with high glass forming ability (GFA) is one of the most important issues of BMGs since it is not only closely related to their pratical applications but also the understanding of the mechanism for their high GFA.
     In this thesis, starting from ternary LaAlCu alloy system, we developed a series of La-Al-(Cu, Ag)-(Ni, Co) BMGs with critical sizes over 20-30 mm, in which the best glass former is La65Al14(Cu5/6Ag1/6)11(Ni1/2Co1/2)10 with critical size over 35mm by optimizing the compositions with elements of Ag, Ni and Co that have similar chemical properties and atomic radius to the main component. So far, it is still the largest Re-based BMG reported in the world. From the structure, thermodynamics and kinetics consideration, it was found that the crucial factor contributing to the high GFA is the lower Gibbs free energy difference between the crystalline and the supercooled liquid phase.
     The local structure difference in the glassy, the supercooled liquid and the liquid state of La62Al14Cu11.7Ag2.3Ni5Co5 BMG was studied by using in situ high temperature X-ray diffraction. It was found that the coordination number is of about 15.1±0.1, being independent on the temperature, while it slightly decreases for La62Al14Cu24 and La62Al14Cu2oAg4 BMGs with temperature uprising.
     Room temperature deformation behavior of the La62Al14(Cu5/6Ag1/6)14(Ni0.5Co0.5)10 BMG was studied using nanoindentation at different loading rates. A trend for the deformation mode variation was suggestioned to be:from homogeneous deformation I region at extremely low loading rates to inhomogeneous deformation at middle loading rates and finally to homogeneous deformation II at extremely high loading rates. The mechanism of loading-rate dependent plastic deformation behavior for La-based BMGs was proposed based on the shear transformation zone (STZ) model.
     Subsequently, we discovered that the ion-implantation technique can be applied to improve the corrosion resistance of BMGs without damage to their GFA. This idea was proven to be true on the La62Al14(Cu5/6Ag1/6)14(Ni0.5Co0.5)10 BMG. BMG. The improvement of corrosion resistance for the implanted alloys is attributed to the high passivating ability of the Nb-containing surface layer (about 100 nm thick).
     To overcome the poor mechanical properties and thermal stability of La-based BMGs, we attempted to develop an alloy system simultaneously exhibiting excellent mechanical properties and GFA. Here, selecting CuZr-based alloy and adding Ag in ZrCuAl ternary alloys, fully BMGs with at least 20 mm in diameter and some even about 25 gram amorphous metallic ingots can be prepared in a wide Zr-(Cu,Ag)-Al composition range The origin of high GFA in the studied system is attributed to the denser local atomic packing and the smaller difference in Gibbs free energy between supercooled liquid and crystalline phases after Ag addition. (for Zr46(Cu4.5/5.5Ag1/5.5)46Al8,⊿Gtl-s=1.5 kJ/mol).
     Last but not least, we experimentally revealed 6.6% elastic strain limit and 40% tensile plasticity for monolithic NiNb metallic glass films confined by frames by in situ high resolution transimission electron microscopy (HRTEM) observations. The origin of the high tensile elastic limit and plasticity was analyzed from the factors of thermal expansion, free volume model, Young's modulus, size effect and frame confinement, etc.
引文
1. A. Inoue, High-Strength Bulk Amorphous-Alloys with Low Critical Cooling Rates. Materials Transactions Jim,1995,36(7):866-875.
    2. A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000,48(1):279-306.
    3. W.L. Johnson, Thermodynamic and Kinetic Aspects of the Crystal to Glass Transformation in Metallic Materials. Progress in Materials Science,1986,30(2):81-134.
    4. W.L. Johnson, Bulk glass-forming metallic alloys:Science and technology. MRS Bulletin, 1999,24(10):42-56.
    5. J.F. Loffler, Bulk metallic glasses. Intermetallics,2003,11(6):529-540.
    6. W.H. Wang, C. Dong, and C.H. Shek, Bulk metallic glasses. Materials Science & Engineering R-Reports,2004,44(2-3):45-89.
    7. C.A. Angell, Formation of Glasses from Liquids and Biopolymers. Science,1995,267(5206): 1924-1935.
    8. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, and S.W. Martin, Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics,2000,88(6): 3113-3157.
    9. K.M. Flores, D. Suh, R.H. Dauskardt, P. Asoka-Kumar, P.A. Sterne, and R.H. Howell, Characterization of free volume in a bulk metallic glass using positron annihilation spectroscopy. Journal of Materials Research,2002,17(5):1153-1161.
    10. P. Murah, and U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-T-g annealing.Acta Materialia,2005,53(5):1467-1478.
    11. C. Nagel, K. Ratzke, E. Schmidtke, and F. Faupel, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65A17.5Ni10Cu17.5 during structural relaxation and at the glass transition. Physical Review B,1999,60(13):9212-9215.
    12. A. Slipenyuk and J. Eckert, Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30A110Ni5 metallic glass. Scripta Materialia,2004, 50(1):39-44.
    13. F. Spaepen, Homogeneous flow of metallic glasses:A free volume perspective. Scripta Materialia,2006,54(3):363-367.
    14. A.R. Yavari,A. Le Moulec,A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, and A. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction. Acta Materialia,2005,53(6):1611-1619.
    15. G. Kumar, H.X. Tang, and J. Schroers, Nanomoulding with amorphous metals. Nature,2009. 457(7231):868.
    16. W. Klement, R. H. Willens and P. Duwez, Non-crystalline structure in solidified goldSilicon alloys,Nature,1960,187:869-870.
    17. D. Turnbull, Under what conditions can a glass be formed. Contemporary Physics,1969, 10(5):473
    18. Z.P. Lu, Y. Li, and S.C. Ng, Reduced glass transition temperature and glass forming ability of bulk glass forming alloys. Journal of Non-Crystalline Solids,2000.270(1-3):103-114.
    19. Z.P. Lu, H. Tan, Y. Li, and S.C. Ng, The correlation between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Materialia,2000.42(7): 667-673.
    20. A. Inoue, T. Zhang, and T. Masumoto, Zr-Al-Ni amorphous-alloys with high glass-transition temperature and significant supercooled liquid region. Materials Transactions Jim,1990. 31(3):177-183.
    21. A. Inoue and T. Zhang, Stabilization of supercooled liquid and bulk glassy alloys in ferrous and non-ferrous systems, Journal of Non-Crystalline Solids,1999,250-252:552-559.
    22. Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, and T. T. Goh, Glass forming ability of bulk glass forming alloys, Scripta. Materialia,1997,36:783-787.
    23. G. Kumar, H.X. Tang, and J. Schroers, Nanomoulding with amorphous metals. Nature,2009. 457(7231):868-U128.
    24. Z.P. Lu and C.T. Liu, A new glass-forming ability criterion for bulk metallic glasses. Acta Materialia,2002,50(13):3501-3512.
    25. Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems. Physical Review Letters,2003,91:115505.
    26. G.L. Chen, X.D. Hui, G. He, and Z. Bian, Multicomponent chemical short range order undercooling and the formation of bulk metallic glasses. Materials Transactions,2001,42(6): 1095-1102.
    27. D. Ma, H. Tan, D. Wang, Y. Li, and E. Ma, Strategy for pinpointing the best glass-forming alloys. Applied Physics Letters,2005,86(19):191906.
    28. Y.M. Wang, J.B. Qiang, C.H. Wong, C.H. Shek, and C. Dong. Composition rule of bulk metallic glasses and quasicrystals using electron concentration criterion. Journal of Materials Research,2003,18(3):642-648.
    29. Y.M. Wang, C.H. Shek, J.B. Qiang, C.H. Wong, Q. Wang, X.F. Zhang, and C. Dong, The e/a criterion for the largest glass-forming abilities of the Zr-Al-Ni(Co) alloys. Materials Transactions,2004,45(4):1180-1183.
    30. D.B. Miracle, The efficient cluster packing model-An atomic structural model for metallic glasses. Acta Materialia,2006.54(16):p.4317-4336.
    31. D.B. Miracle, A structural model for metallic glasses. Nature Materials,2004,3(10): 697-702.
    32. D.B. Miracle and O.N. Senkov, A geometric model for atomic configurations in amorphous Al alloys. Journal of Non-Crystalline Solids,2003,319(1-2):174-191.
    33. D.B. Miracle and O.N. Senkov. Topological criterion for metallic glass formation. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2003,347(1-2):50-58.
    34. D.B. Miracle, O.N. Senkov, W.S. Sanders, and K.L. Kendig, Structure-forming principles for amorphous metals. in 11th International Conference on Rapidly Quenched and Metastable Materials. Oxford, ENGLAND,2002.
    35. O.N. Senkov and D.B. Miracle, A topological model for metallic glass formation. in Annual Meeting of The-Minerals-Metals-and-Materials-Society. Seattle, Washington,2002.
    36. O.N. Senkov, D.B. Miracle, and H.M. Mullens, Topological criteria for amorphization based on a thermodynamic approach. Journal of Applied Physics,2005,97(10):103502.
    37. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature,2006,439(7075):419-425.
    38. J. D. Bernal, A geometrical approach to the structure of liquids, Nature,1959,183:141-147.
    39. Barker and M. R. Hoare, Relaxation of the Bernal model, Nature,1975,12:120-122. P.
    40. H. Gaskell, A new structural model for transition metal-metalloid glasses, Nature,1978, 276:484-485.
    41. L. Bragg and J. F. Nye. A dynamical model of a crystal structure. Proceedings of the Royal Society A 1947,190:474-481.
    42. W.H. Wang, E.Wu, R.H. Wang and A.J. Studer, Phase transformation in a Zr41Ti14Cu12.5Ni10Be22.5 bulk amorphous alloy upon crystallization, Physical Review B,2002, 39:114205.
    43. T. Waniuk, K. Schroers and W. L. Johnson, Timescales of crystallization and viscous flow of the bulk glass-forming Zr-Ti-Ni-Cu-Be alloys, Physical Review B,2002,39:184203.
    44. J. Saida, E. Matsusbara and A. Inoue, Nanoquasicrystalline in metallic glasses, Materials. Transactions. JIM,2003,44:1971-1977.
    45. D. B. Miracle, W. S.Sanders and O. N. Senkov, The influence of efficient atomic packing on the constitution of metallic glasses. Philosophical Magazine,2003,83:2409-2428.
    46. D. Ma, A.D. Stoica, and X.L. Wang, Power-law scaling and fractal nature of medium-range order in metallic glasses. Nature Materials,2009.8(1):30-34.
    47. T. Burgess and M. Ferry, Nanoindentation of metallic glasses. Materials Today,2009. 12(1-2):24-32.
    48. B.L. Shen, A. Inoue, and C.T. Chang, Superhigh strength and good soft-magnetic properties of (Fe, Co)-B-Si-Nb bulk glassy alloys with high glass-forming ability. Applied Physics Letters,2004,85(21):4911-4913.
    49. J.M. Borrego, A. Conde, S. Roth, and J. Eckert, Glass-forming ability and soft magnetic properties of FeCoSiAlGaPCB amorphous alloys. Journal of Applied Physics,2002,92(4): 2073-2078.
    50. H.W. Chang, Y.C. Huang, C.W. Chang, C.C. Hsieh, and W.C. Chang, Soft magnetic properties and glass formability of Y-Fe-B-M bulk metals (M=Al, Hf, Nb, Ta, and Ti). Journal of Alloys and Compounds,2009,472(1-2):166-170.
    51. A. Inoue, B.L. Shen, H. Koshiba, H. Kato, and A.R. Yavari, Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Materialia, 2004.52(6):1631-1637.
    52. T. Itoi, T. Takamizawa, Y. Kawamura, and A. Inoue, Fabrication of Co40Fe22Nb8B30 bulk metallic glasses by consolidation of gas-atomized powders and their soft-magnetic properties. Scripta Materialia,2001,45(10):1131-1137.
    53. T.D. Shen, U. Harms, and R.B. Schwarz, Bulk Fe-Based metallic glass with extremely soft ferromagnetic properties. in International Symposium on Metastable. Mechanically Alloyed and Nanocrystalline Materials,Ann Arbor, Michigan,2001
    54. T.D. Shen and R.B. Schwarz, Bulk ferromagnetic glasses in the Fe-Ni-P-B system. Acta Materialia,2001,49(5):837-847.
    55. W.H. Wang, M.X. Pan, D.Q. Zhao, Y. Hu, and H.Y. Bai, Enhancement of the soft magnetic properties of FeCoZrMoWB bulk metallic glass by microalloying. Journal of Physics-Condensed Matter,2004.16(21):p.3719-3723.
    56. M.D. Demetriou, C. Veazey, J. Schroers, J.C. Hanan, and W.L. Johnson. Thermo-plastic expansion of amorphous metallic foam. in 12th International Symposium on Metastable and Nano-Materials (ISMANAM-2005). Paris, FRANCE,2005.
    57. G. Kumar, and J. Schroers, Write and erase mechanisms for bulk metallic glass. Applied Physics Letters,2008,92(3):031901.
    58. R. Martinez, G. Kumar, and J. Schroers, Hot rolling of bulk metallic glass in its supercooled liquid region. Scripta Materialia,2008.59(2):p.187-190.
    59. J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state. Acta Materialia,2008,56(3):471-478.
    60. J. Schroers, T. Nguyen, and A. Desai, Superplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication. in 19th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2006), Istanbul, TURKEY,2006..
    61. J. Schroers, T. Nguyen, S. O'Keeffe, and A. Desai, Thermoplastic forming of bulk metallic glass-Applications for MEMS and microstructure fabrication. in 12th International Conference on Rapidly Quenched and Metastable Materials.. Jeju Isl, SOUTH KOREA, 2005.
    62. J. Schroers, Q. Pham, and A. Desai, Thermoplastic forming of bulk metallic glass-A technology for MEMS and microstructure fabrication. Journal of Microelectromechanical Systems,2007,16(2):240-247.
    63. J. Schroers, Q. Pham, A. Peker, N. Paton, and R.V. Curtis. Blow molding of bulk metallic glass. Scripta Materialia,2007.57(4):341-344.
    64. A. Inoue, N. Nishiyama, and T. Matsuda, Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Materials Transactions Jim,1996.37(2): 181-184.
    65. Y. He, R.B. Schwarz, and J.I. Archuleta, Bulk glass formation in the Pd-Ni-P system. Applied Physics Letters,1996,69(13):1861-1863.
    66. T.D. Shen and R.B. Schwarz, Bulk ferromagnetic glasses prepared by flux melting and water quenching. Applied Physics Letters,1999,75(1):49-51.
    67. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang. Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Applied Physics Letters,2005,86(15):151907.
    68. A. Peker and W.L. Johnson. A highly processable metallic-glass-Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Applied Physics Letters,1993.63(17):2342-2344.
    69. H. Ma, L.L. Shi, J. Xu, Y. Li, and E. Ma, Discovering inch-diameter metallic glasses in three-dimensional composition space. Applied Physics Letters.2005.87(18):181915.
    70. A. Inoue, N. Nishiyama, and H. Kimura, Preparation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72 mm in diameter. Materials Transactions Jim,1997, 38(2):179-183.
    71. E.S. Park, D.H. Kim, Effect of atomic configuration and liquid stability on the glass-forming ability of Ca-based metallic glasses. Applied Physics Letters.2005,86(20):201912-201914.
    72. Y. Zhang, H. Tan, Y. Li, Bulk Glass Formation of 12 mm Rod in La-Cu-Ni-Al Alloys. Materials Science and Engineering:A,2004.375:436-439.
    73. F.Q. Guo, S.J. Poon, G.J. Shiflet, Metallic glass ingots based on yttrium. Applied Physics Letters,2003.83:2675-2677.
    74. Q. K. Jiang, G. Q. Zhang, L. Y. Chen, J. Z. Jiang, Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. Journal of Alloys and Compounds 2006,424:179-182.
    75. X. H. Lin, W. L. Johnson, and W. K. Rhim, Effects of oxygen impurities on crystallization on undercooled bulk glass forming alloys. Materials Transactions, JIM,1997,38:473-477.
    76. D.H. Xu, G. Duan, W.L. Johnson, Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper. Physical Review Letters 2004,92:245504.
    77. C.L. Dai, G. Hua, S. Yong, Y. Li, E. Ma. J. Xu, A new centimeter-diameter Cu-based bulk metallic glass. Scripta Materialia,2006,54:1403-1408.
    78. Y.C. Kim, W.T. Kim, and D.H. Kim, A development of Ti-based bulk metallic glass. in 11th International Conference on Rapidly Quenched and Metastable Materials. Oxford, ENGLAND,2002.
    79. X.H. Lin and W.L. Johnson:Formation of Ti-Zr-Cu-Ni Bulk Metallic Glasses. Journal of Applied Physics,1995,78:6514-6519.
    80. D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, and C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series-Cu100-xZrx (x=34,36 38.2,40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Materialia,2004.52 (9):pp.2621-2624.
    81. B. Yang, Y. Du, and Y. Liu, Recent progress in criterions for glass forming ability. Transactions of Nonferrous Metals Society of China 2009,19(1):78-84.
    82. S. Yi, T.G. Park, and D.H. Kim, Ni-based bulk amorphous alloys in the Ni-Ti-Zr-(Si,Sn) system. Journal of Materials Research 2000,15:2425-2430.
    83. P. Yu, H.Y. Bai, M.B. Tang, and W.L. Wang, Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids 2005,351(14-15):1328-1332.
    84. B. Zhang, M.X. Pan, D.Q. Zhao, and W.H. Wang, "Soft" bulk metallic glasses based on cerium. Applied Physics Letters 2004,85(1):61-63.
    85. Q.S. Zhang, H.F. Zhang, Y.F. Deng, B.Z. Ding, and Z.Q. Hu, Bulk metallic glass formation of Cu-Zr-Ti-Sn alloys. Scripta Materialia 2003,49(4):273-279.
    86. A. Inoue, T. Nakamura, T. Sugita, T. Zhang, and T. Masumoto, Bulky La-Al-Tm (Tm= Transition-Metal) Amorphous-Alloys with High-Tensile Strength Produced by a High-Pressure Die-Casting Method. Materials Transactions Jim 1993,34(4):351-358.
    87. R. Li, S.J. Pang, H. Men, C.L. Ma, and T. Zhang, Formation and mechanical properties of (Ce-La-Pr-Nd)-Co-Al bulk glassy alloys with superior glass-forming ability. Scripta Materialia 2006,54(6):1123-1126.
    88. H. Tan, Z.P. Lu, H.B. Yao. B. Yao, Y.P. Feng, and Y. Li, Glass forming ability of La-rich La-Al-Cu ternary alloys. Materials Transactions 2001.42(4):551-555.
    89. B. Zhang, D.Q. Zhao. M.X. Pan, W.H. Wang, and A.L. Greer. Amorphous metallic plastic. Physical Review Letters,2005,94:205502-205505.
    90. A. Inoue and W. Zhang:Formation, thermal stability and mechanical properties of Cu-Zr and Cu-Hf binary glassy alloy rods. Materials Transactions JIM 2004,45(2):584-587.
    91. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, and E. Ma, Bulk metallic glass formation in the binary Cu-Zr system. Applied Physics Letters,2004.84(20):4029-4031.
    92. D. Wang, H. Tan, and Y. Li, Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Al alloy system-A metallographic way to pinpoint the best glass forming alloys. Acta Materialia,2005,53(10):2969-2979.
    93. G.Q. Zhang, Q.K. Jiang, L.Y. Chen, M. Shao. J.F. Liu. and J.Z. Jiang, Synthesis of centimeter-size Ag-doped Zr-Cu-Al metallic glasses with large plasticity. Journal of Alloys and Compounds,2006,424(1-2):176-178.
    94. Q.S. Zhang, W. Zhang, and A. Inoue. New Cu-Zr-based bulk metallic glasses with large diameters of up to 1.5 cm. Scripta Materialia,2006,55(8):711-713.
    95. F. Spaepen, Microscopic Mechanism for Steady-State Inhomogeneous Flow in Metallic Glasses. Acta Metallurgica,1977.25(4):407-415.
    96. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Overview No.144-Mechanical behavior of amorphous alloys. Acta Materialia,2007.55(12):4067-4109.
    97. Q. K. Li and M. Li, Molecular Dynamics Simulation of Intrinsic and Extrinsic Mechanical Properties of Metallic Glasses. Intermetallics,2006.14:1005-1010.
    98. H. Guo, P.F. Yan. Y.B. Wang, J. Tan, Z.F. Zhang, M.L. Sui, and E. Ma, Tensile ductility and necking of metallic glass. Nature Materials,2007.6(10):735-739.
    99. C.A. Volkert, A. Donohue, and F. Spaepen, Effect of sample size on deformation in amorphous metals. Journal of Applied Physics,2008.103(8):083539,1-6.
    100. D. C. Jang and J. R. Greer, Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nature Materials,2010.9:215-219.
    101. J. H. Luo, F. F. Wu, J. Y. Huang, J. Q. Wang, and S. X. Mao, Superelongation and Atomic Chain Formation in Nanosized Metallic Glass. Physical Review Letters,2010. 104:215503(4).
    102. B. E. Schuster, Q. Wei, T. C. Hufnagel, K. T. Ramesh. Size-independent Strength and Deformation Mode in Compression of a Pd-based Metallic Glass. Acta Materialia, 2008.56:5091.
    103. Z. W. Shan, J. Li, Y. Q. Cheng, A. M. Minor, S. A. Syed Asif, O. L. Warren, and E. Ma. Plastic flow and failure resistance of metallic glass:Insight from in situ compression of nanopillars. Physical Review B,2008,77:155419(6).
    104. X. L. Wu, Y. Z. Guo, Q. Wei, W. H. Wang. Prevalence of Shear Banding in Compression of Zr41Ti14Cu12.5Ni10Be22.5 Pillars as Small as 150 nm in Diameter. Acta Materialia.2009, 57:3562:35671(2009).
    105. A. Dubach, R. Raghavan, J.F. Loffler. J. Michler, U. Ramamurty. Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Materialia,2009,60(7): 567-570.
    106. C. Q. Chen, Y. T. Pei, and J. T. M. De Hosson. Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments. Acta Materialia 2010.58:189-200.
    107. A. Bharathula, S.W. Lee, W. J. Wright, and K. M. Flores. Compression testing of metallic glass at small length scales:Effects on deformation mode and stability. Acta Materialia,2010, 58:5789-5796.
    108. A.Yavari, K. Georgarakis, W. Botta, A. Inoue and G. Vaughan. Homogenization of plastic deformation in metallic glass foils less than one micrometer thick. Physical Reviews B,2010, 82:172202.
    109. A. Donohue, F. Spaepen, R. G. Hoagland, A. Misra. Suppression of the shear band instability during plastic flow of nanometer-scale confined metallic glasses. Applied Physics Letters, 2007.91:241905(3)
    110. Y. M. Wang, J. Li, A.V. Hamza and T. W. Jr. Barbee. Ductile crystalline-amorphous nanolaminates. Proceedings of the National Academy of Sciences,2007,104:11155-11160.
    111. J. R. Greer, D.C. Jang, J.Y. Kim, and M.J. Burek, Emergence of New Mechanical Functionality in Materials via Size Reduction. Advanced Functional Materials,2009.19(18): 2880-2886.
    112. O.V. Kuzmin, Y.T. Pei, C.Q. Chen, J.T.M. De Hosson, Intrinsic and extrinsic size effect in the deformation of metallic glass nanopillars. Acta Materialia,2012.60:889-898.
    113. A.S. Argon, Plastic-Deformation in Metallic Glasses. Acta Metallurgica, 1979.27(1):47-58.
    114. M. Heggen, F. Spaepen, and M. Feuerbacher. Evolution of the free volume during homogeneous flow of a metallic glass. in Symposium on Amorphous and Nanocrystalline Metals held at the 2003 MRS Fall Meeting. Boston, MA,2003.
    115. M. Heggen, F. Spaepen, and M. Feuerbacher, Creation and annihilation of free volume during homogeneous flow of a metallic glass. Journal of Applied Physics,2005.97(3):p. 033506,1-8.
    116. F. Spaepen, Microscopic Mechanism for Steady-State Inhomogeneous Flow in Metallic Glasses. Acta Metallurgica 1977.25(4):p.407-415.
    117. P.S. Steif, F. Spaepen, and J.W. Hutchinson. Strain Localization in Amorphous Metals. Acta Metallurgica,1982.30(2):p.447-455.
    118. A. I. Taub and F. Spaepen.Ideal Elastic, Anelastic and Viscoelastic Deformation of a Metallic-Glass. Journal of Materials Science,1981.16(11):p.3087-3092.
    119. Y. He. C. E. Price. S.J. Poon and G. J. Shiflet, Formation of bulk metallic glasses in neodymium-based alloys. Philosophical Magazine Letters.1994.70:371-377.
    120. Z.F. Zhao, Z. Zhang. P. Wen, M. X. Pan. D. Q. Zhao, Z. Zhang, W. H. Wang, Highly glass forming alloy with very low glass transition temperature. Applied Physics Letters,2003,82: 4699-4701.
    121. Q.K. Jiang, G.Q. Zhang. L.Y. Chen. Q.S. Zeng and J.Z. Jiang. Centimeter-Sized (La0.5Ce0.5)-based Bulk Metallic Glasses. J. Alloys and Compounds,2006,424:179-182.
    122. Q.S. Zeng, J.F. Liu, G.Q. Zhang, L.N. Wang, J.Z. Jiang, Synthesis of LaCe-based bulk metallic glasses with low glass transition temperature. Intermetallics,2007,15:753-756.
    123. A. Inoue, H. Yamaguchi, T. Zhang and T. Masumoto, Al-La-Cu Amorphous Alloys with a Wide Supercooled Liquid Region. Materials Transactions JIM,1990,31(2):104-109.
    124. H. Tan, Z. P. Lu, H.B. Yao, B. Yao, Y.P. Feng and Yi Li, Glass Forming Ability of La-rich La-Al-Cu Ternary Alloys. Materials Transactions JIM.2001.42(4):551-555.
    125. H. Tan, Y. Zhang, D. Ma, Y. P. Feng, Y. Li. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu,Ni) pseudo ternary system. Acta Materialia,2003,51(15):4551-4561.
    126. R. Bouchard, D. Hupfeld, T. Lippmann, J. Neuefeind, H. B. Neumann, H. F. Poulsen, A Triple-Crystal Diffractometer for High-Energy Synchrotron Radiation at the HASYLAB High-Field Wiggler Beamline BW5 Journal of Synchrotron Radiation.1998,5:90-101.
    127. A. P. Hammersley, S. O. Svensson. M. Hanfland, A. N. Fitch, and D. Hausermann, Two-dimensional detector software:From real detector to idealised image or two-theta scan. High Press Research 1996,14:235-248.
    128. B. Zhang, R. J. Wang, D. Q. Zhao, M. X. Pan, and W. H. Wang, Superior glass-forming ability through microalloying in cerium-based alloys. Physical Review B,2006,73(9): 092201-092204.
    129. D. Schreiber, Elastic Constants and Measurement. New York:Mc-Graw-Hill.1973.
    130. S. Li, X.K. Xi, Y.X. Wei, Q. Luo, Y.T. Wang, M.B. Tang, B. Zhang, Z.F. Zhao, R. J. Wang, M.X. Pan, D.Q. Zhao, W. H. Wang, Formation and properties of new heavy rare-earth-based bulk metallic glasses. Science and Technology of Advanced Materials 2005.6:823-827.
    131. H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry,1957,29:1702-1706.
    132. N. Mitrovic, S. Roth, and J. Eckert. Kinetics of the glass-transition and crystallization process of Fe72-xNbxA15Ga2P11C6B4 (x=0,2) metallic glasses. Applied Physics Letters,2001,78: 2145-2147.
    133. Z. Li, H. Yang, M. X. Pan, D. Q. Zhao, W. L. Wang and W. H. Wang, Formation, properties, thermal characteristics, and crystallization of hard magnetic Pr-Al-Fe-Cu bulk metallic glasses Journal of Materials Research,2003,18:2208-2213.
    134. N. Nishiyama, A. Inoue. Supercooling investigation and critical cooling rate for glass formation in Pd-Cu-Ni-P alloy. Acta Materialia,1999,47(5):1487-1495.
    135. R. Busch, Y. J. Kim, W. L. Johnson. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr441.2Ti13.8Cu12.5Ni10.0Be22.5 alloy. Journal of Applied Physics. 1995,77:4039-4043.
    136. S. C. Glade, R. Busch, D. S. Lee, W. L. Johnson, R. K. Wunderlich, and H. J. Fecht. Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. Journal of Applied Physics,2000,87:7242-7248.
    137. S. Mukherjee, J. Schroers, Z. Zhou, W. L. Johnson, W.-K. Rhim. Viscosity and specific volume of bulk metallic glass-forming alloys and their correlation with glass forming ability. Acta Materialia,2004,52(2):3689-3695.
    138. S. Mukherjee, J. Schroers, W. L. Johnson, and W.-K. Rhim. Influence of Kinetic and Thermodynamic Factors on the Glass-Forming Ability of Zirconium-Based Bulk Amorphous Alloys. Physical Review Letters,2005,94(24):245501-245504.
    139. L Benjamin A. Legg, Jan Schroers, Ralf Busch. Thermodynamics, kinetics, and crystallization of Pt57.3Cu14.6Ni5.3P22.8 bulk metallic glass Acta Materialia,2007,55(3): 1109-1116.
    140. G. J. Fan, J. F. Loffler, R. K. Wunderlich. H.-J. Fecht. Thermodynamics, enthalpy relaxation and fragility of the bulk metallic glass-forming liquid Pd43Ni10Cu27P20.Acta Materialia,2004, 52(3):667-674.
    141. R. Bohmer and C. A. Angell. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Physical Review B,1992.45(17):10091-10094.
    142. R. Bruning and K. Samwer. Glass transition on long time scales. Physical Review B.1992. 46(18):11318-11322.
    143. R. Bohmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, Nonexponential relaxations in strong and fragile glass formers. The Journal of Chemical Physics,1993,99(5):4201-4209.
    144. Z. P. Lu, Y. Li, and C. T. Liu. Glass-forming tendency of bulk La-Al-Ni-Cu-(Co) metallic glass-forming liquids. Journal of Applied Physics,2003.93(1):286-290.
    145. A. Inoue. Bulk Amorphous Alloys, Practical Characteristics and Applications, Materials Science Foundation. Zurich:Trans Tech Publications,1999.
    146. H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma. Atomic packing and short-to-medium-range order in metallic glasses.Nature,2006.439(7075):415-429.
    147. Boerde FR, Boom R, Matterns WCM, Miedema AR, Niessen AK.Cohesion in Metals. Amsterdam:North-Holland,1998.
    148. Q.K. Jiang, G.Q. Zhang, L. Yang, X.D. Wang, K. Saksl, H. Franz, R. Wunderlich, H. Fecht, and J.Z. Jiang, La-based bulk metallic glasses with critical diameter up to 30 mm. Acta Materialia,2007,55:4409-4018.
    149. Q.K. Jiang, X.P. Nie, Y.G. Li, Y. Jin, Z.Y. Chang, X.M. Huang, and J.Z. Jiang. Ni-free Zr-based bulk metallic glasses with critical diameter above 20 mm. Journal of Alloy and Compounds,2007,443:191-194.
    150. N. Mattern, H. Hermann, S. Roth. J. Sakowski, M.P. Macht, P. Jovari, and J.Z. Jiang, Structural behavior of Pd40Cu30Ni10P20 bulk metallic glass below and above the glass transition. Applied Physics Letters 2003,82(16):2589-2591.
    151. H. Schumacher, U. Herr, D. Oelgeschlager, A. Traverse, and K. Samwer, Structural changes of the metallic glass Zr65A17.5Cu27.5 during glass transition and in the undercooled liquid region. Journal of Applied Physics,1997,82(1):155-162
    152. K. Hajlaoui, T. Benameur, G. Vaughan, and A.R. Yavari. Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation. Scripta Materialia,2004,51(9):843-48.
    153.D.V. Louzguine. A.R. Yavari. K. Ota, G. Vaughan. and A. Inoue. Synchrotron X-ray radiation diffraction studies of thermal expansion, free volume change and glass transition phenomenon in Cu-based glassy and nanocomposite alloys on heating. Journal of Non-Crystalline Solids,2005,351:1639-1645.
    154. S. Ansell. A. Krishnan. J.J. Felten, and D. Price. Structure of supercooled liquid silicon. Journal of Physics:Condensed Matter,1998,10(5):L73-L78.
    155. N. Jakse. L. Hennet, and D.L. Price. Structural changes on supercooling liquid silicon. Applied Physics Letters.2003,83:4734-36.
    156. T.H. Kim, G.W. Lee, B. Sieve, A.K. Gangopadhyay, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, K.F. Kelton, and A.I. Goldman, In situ High-Energy X-Ray Diffraction Study of the Local Structure of Supercooled Liquid Si. Physical Review Letters,2005,95: 085501-085504.
    157. Q.K. Jiang, G.Q. Zhang, L.Y. Chen, J.Z. Wu, H.G. Zhang, and J.Z. Jiang:Glass formability, thermal stability and mechanical properties of La-based bulk metallic glasses. Journal of Alloy and Compounds,2006,424:183-186.
    158. J.Z. Jiang, W. Roseker, M. Sikorski, Q.P. Cao, and F. Xu Pressure effect of glass transition temperature in Zr46.8Ti8.2Cu7.5Ni10Be27.5 bulk metallic glass. Applied Physics Letters,2004, 84:1871-1873.
    159. R.K. Kirby, R.G. Lerner, and G.L. Trigg, Encyclopedia of Physics Thermal Expansion,2nd ed., VCH, New York, NY,1990.
    160. B. Zhang, R.J. Wang, D.Q. Zhao, M.X. Pan, and W.H. Wang. Properties of Ce-based bulk metallic glass-forming alloys. Physical Review B,2004,70:224208-1-224208-7.
    161. L.A. Davis, S. Kavesh, Deformation and fracture of an amorphous metallic alloy at high pressure Journal of Materials Science,1975,10 (3):453-459.
    162. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension, Scripta Materialia,2002,46 (1):43-47.
    163. G. Subhash, R.J. Dowding, L.J. Kecskes, Characterization of uniaxial compressive response of bulk amorphous Zr-Ti-Cu-Ni-Be alloy. Materials Science and Engineering:A,2000, 334(1-2):33-40.
    164. J. Li, F. Spaepen, T.C. Hufnagel, Nanometre-scale defects in shear bands in a metallic glass. Philosophical Magazine A,2002,82:2623-2630.
    165. J. Li, L. Wang, T.C. Hufnagel, Characterization of nanometer-scale defects in metallic glasses by quantitative high resolution transmission electron microscopy, Physical Review B, 2002,65:144201-144206.
    166. W.J. Wright, T.C. Hufnagel, W.D. Nix, Free volume coalescence and void formation in shear bands in metallic glass. Journal of Applied Physics,2003.93:1432-1437.
    167. H. Kimura, T. Masumoto, A model of the mechanics of serrated flow in an amorphous alloy Acta Metallurgica,1983:231-240.
    168. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics,2002,10(11-12): 1071-1077
    169. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa, A.I. Tyurin, Serrated plastic flow during nanoindentation of a bulk metallic glass. Scripta Materialia,2001,45(8):947-952.
    170. C.A. Schuh, T.G. Nieh, New regime of homogeneous flow in the deformation map of metallic glasses:elevated temperature nanoindentation experiments and mechanistic modeling. Acta Materialia,2004,52(20):5879-5891.
    171. C.A. Schuh, A.S. Argon, T.G. Nieh, J. Wadsworth, The transition from localized to homogeneous plasticity during nanoindentation of an amorphous metal. Philosophical Magazine A,2003,83 (22):2585-2597.
    172. C.A. Schuh, T.G. Nieh, Y. Kawamura, Rate Dependence of Serrated Flow During Nanoindentation of a Bulk Metallic Glass. Journal of Materials Research,2002.17: 1651-1654.
    173. C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses Acta Materialia,2003,51(1):87-99.
    174. A.L. Greer, A. Castellero, S.V. Madge, I.T. Walker, J.R. Wilde. Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys. Materials Science and Engineering A,2004,375-377:1182-1185.
    175. B. Yang, T.G. Nieh, Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass Acta Materialia,2007,55(1):295-300.
    176. L.C. Zhang, B.C. Wei, D.M. Xing, T.H. Zhang, W.H. Li. Y. Liu, The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation. Materials Science and Engineering:A,2008,478(1-2):371-375.
    177. T.G. Nieh, C. Schuh, J. Wadsworth, Y. Li, Strain rate-dependent deformation in bulk metallic glasses. Intermetallics,2002,10(11-12):1177-1182.
    178. W.H. Jiang, M. Atzmon, Rate dependence of serrated flow in a metallic glass. Journal of Materials Research,2003,18(4):755-757.
    179. B. Moser, J.F. Loffler, J. Michler, Discrete deformation in amorphous metals:an in situ SEM indentation study. Philosophical Magazine,2006,86(33-35):5715-5728.
    180. W.H. Li, B.C. Wei, T.H. Zhang, D.M. Xing, L.C. Zhang, Y.R. Wang, Study of serrated flow and plastic deformation in metallic glasses through instrumented indentation. Intermetallics, 2007,15(5-6):706-710.
    181. B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang, A.L. Greer, Amorphous Metallic Plastic. Physical Review Letters,94 (2005) 205502.
    182. A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Bulky La-Al-TM (TM= transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Materials Transactions JIM,1993.34(4):351-358.
    183. J. Schroers, B. Lohwongwatana, W.L. Johnson, A. Peker, Gold based bulk metallic glass Applied Physics Letters,2005,87:061912-061914.
    184. W.C. Oliver, and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research,1992.7:1564-1583.
    185. P.L. Larsson, A.E. Giannakopoulos, E. Soderlund, D.J. Rowcliffe, and R. Vestergaardh. Analysis of Berkovich indentation International Journal of Solids and Structures,1996,33 (2):p.221-248.
    186. S. Suresh. J. Alcala, and A.E. Giannakopoulos. Depth sensing indentation and methodology for mechanical property measurements. U.S. Patent No.6,134,954.2000-10-24.
    187. H. Bei, Z.P. Lu, E.P. George. Theoretical Strength and the Onset of Plasticity in Bulk Metallic Glasses Investigated by Nanoindentation with a Spherical Indenter. Physical Review Letters,2004,93:125504.
    188. Gouldstone, H.J. Koh. K.Y. Zeng. A.E. Giannakopoulos, and S. Suresh. Discrete and continuous deformation during nanoindentation of thin films. Acta Materialia,2000,48(9):p. 2277-2295.
    189. C.L. Qin, K. Asami. T. Zhang, W. Zhang, and A. Inoue. Corrosion behavior of Cu-Zr-Ti-Nb bulk glassy alloys. Materials Transactions JIM.2003,44(4):p.749-753.
    190. J.R. Tesmer. and M. Nastasi (Eds.), Handbook of Modern Ion Beam Materials Analysis, Materials Research Society. Pittsburgh,1995,37-81.
    191. C.T. Liu. M.F. Chisholm, and M.K. Miller. Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics,2002,10 (11-12):1105-1112.
    192. A. Castellero. S. Bossuyt, M. Stoica. S. Deledda, J. Eckert, and G.Z. Chen, Improvement of the glass-forming ability of Zr55Cu30Al10Ni5 and Cu47Ti34Zr11Ni8 alloys by electro-deoxidation of the melts. Scripta Materialia,2006,55(1):87-90.
    193. J.C. Oh. T. Ohkubo. Y.C. Kim, E. Fleury and K. Hono, Phase separation in Cu43r43Al7Ag7 bulk metallic glass. Scripta Materialia,2005,53(2):165-169.
    194. X. Wang, Q.P. Cao Y.M. Chen, K. Hono, C. Zhong, Q.K. Jiang.X.P. Nie, L.Y. Chen, X.D. Wang,J.Z. Jiang. A plastic Zr-Cu-Ag-Al bulk metallic glass. Acta Materialia, 2011,59(3):1037-1047.
    195. S.W. Lee, M.Y. Huh, E. Fleury, and J.C. Lee. Crystallization-induced plasticity of Cu-Zr containing bulk amorphous alloys. Acta Materialia,2006,54(2):349-355.
    196. G.J. Fan, M. Freels, H. Choo, P.K. Liaw, J.J.Z. Li and W.K. Rhim. Thermophysical and elastic properties of Cu5oZr5o and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys. Applied Physics Letters,2006,89:2408634-2408636.
    197. L. Liu, C.L. Qiu, H. Zou, and K.C. Chan, The effect of the microalloying of Hf on the corrosion behavior of ZrCuNiAl bulk metallic glass. Journal of Alloys and Compounds,2005, 399(1-2):144-148.
    198. C.L. Qin, W. Zhang, K. Asami, H. Kimura, X.M. Wang, and A. lnoue, A novel Cu-based BMG composite with high corrosion resistance and excellent mechanical properties. Acta Materialia,2006,54(14):3713-3719.
    199. H. Tanaka. Relation between Thermodynamics and Kinetics of Glass-Forming Liquids. Physical Review Letters,2003,90:055701-055704.
    200. R. Busch, J. Schroers and W. H. Wang. Thermodynamics and Kinetics of Bulk Metallic Glass. MRS Bulletin,2007,32(08):620-623.
    201. R. Bruning, and K. Samwer, Glass transition on long time scales. Physical Review B,1992, 46:11318-11322.
    202. M. W. Chen. Mechanical Behavior of Metallic Glasses:Microscopic Understanding of Strength and Ductility Annual Review of Materials Research.2008.38:445-469.
    203. C. C. Hays, C. P. Kim, and W. L. Johnson. Microstructure Controlled Shear Band Pattern Formation and Enhanced Plasticity of Bulk Metallic Glasses Containing in situ Formed Ductile Phase Dendrite Dispersions Physical Review Letters,2000.84:2901-2904.
    204. D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M. L. Lind, M. D. Demetriou. and W. L. Johnson. Designing metallic glass matrix composites with high toughness and tensile ductility. Nature,2008,451:1085-1089.
    205. Y. Yokoyama. Ductility improvement of Zr-Cu-Ni-AI glassy alloy. Journal of Non-Crystalline Solids,2003,316:104-113.
    206. L. He, M.B. Zhong, Z. H. Han, Q. Zhao. F. Jiang. J. Sun. Orientation effect of pre-introduced shear bands in a bulk-metallic glass on its "work-ductilising". Mater ials Science and Engineering:A,2008,496:285-290.
    207. Y. Zhang, W. H. Wang, and A. L. Greer. Making metallic glasses plastic by control of residual stress. Nature Materials,2006,5:857-860.
    208. R. Raghavan, R. Ayer, H. W. Jin,C.N. Marzinsky, and U. Ramamurty. Effect of shot peening on the fatigue life of a Zr-bulk metallic glass. Scripta Materialia,2008,59:167-170.
    209. Q. S. Deng, Y. Q. Cheng, Y. H. Yue, L. Zhang, Z. Zhang, X. D. Han, and E. Ma, Uniform tensile elongation in framed submicron metallic glass specimen in the limit of suppressed shear banding Acta Materialia,2011,59:6511-6518.
    210. Z. Han, W. F. Wu, Y. Li, Y. J. Wei, and H. J. Gao. Effect of frame stiffness on the deformation behavior of bulk metallic glass. Journal of Materials Research,2010, 25:1958-1962.
    211.K. Hajlaoui, T. Benameur, G. Vaughan, and A. R. Yavari. Thermal expansion and indentation-induced free volume in Zr-based metallic glasses measured by real-time diffraction using synchrotron radiation. Scripta Materialia,2004,51:843-848.
    212. S. W. Lee, M. Y. Huh, E. Fleury, and J. C. Lee. Crystallization-induced plasticity of Cr-Zr amorphous alloys. Acta Materialia,2006,54:349-355.
    213. Y. Ma, Q. P. Cao, S. X. Qu, X. D. Wang, and J. Z. Jiang. Acta Materialia,2012 doi:10.1016/j.actamat.2012.03.014
    214. L. Y. Chen, Z. D. Fu, W. Zeng, G. Q. Zhang, Y. W. Zeng, and G. L. Xu. Ultrahigh strength binary Ni-Nb bulk glassy alloy composite with good ductility. Journal of Alloys and Compounds,2007,443:105-108.
    215. L. H. Wang, X. D. Han, P. Liu, Y. H. Yue, Z. Zhang and E. Ma. In Situ Observation of Dislocation Behavior in Nanometer Grains. Physical Review Letters,2010,105:135501.
    216. P. Liu, S.C. Mao, L. H. Wang, X.D. Han, and Z. Zhang. Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline. textured, columnar-structured thin gold films. Scripta Materials,2011,64:343-346.
    217. W.H. Wang, Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics,2006,99:093506.
    218. W. L. Johnson, and K. Samwer. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Dependence. Physical Review Letters,2005,95: 195501.
    219. L. Tian, Y. Q. Cheng, Z. W. Shan. J. Li. C. C. Wang, X. D. Han. and E. Ma. Approaching the ideal elastic limit of metallic glasses. Nature Communications,2012,3:609-614.
    220. L.Y. Chen, Z.D. Fu, W. Zeng, G.Q. Zhang, Y.W. Zeng, G. L. Xu, S. L. Zhang, and J.Z. Jiang, Ultrahigh strength binary Ni-Nb bulk glassy alloy composite with good ductility. Journal of Alloys and Compounds 2007,443:105-108.
    221. T. H. Coutney., Mechanical Behavior of Materials. New York:McGraw-Hill; 1990.
    222. J. Frenkel., Zur theorie der elastizit. atsgrenze und der festigkeit kristallinischer korper, Z. fur Phys.1926,37:572-609.
    223. H. Kato, H.S. Chen, and A. Inoue. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses. Scripta Materialia,2008,58:1106-1109.
    224. C. Meade, R. J. Hemley, and H. K. Mao. High-pressure x-ray diffraction of SiO2 glass. Physical Review Letters.1992,69:1387-1390.
    225. M. Guthrie, C. A. Tulk, C. J. Benmore, J. Xu. J. L. Yarger, D. D. Klug, J. S. Tse, H. K. Mao and R. J. Hemley. Formation and Structure of a Dense Octahedral Glass. Physical Review Letters,2004,93:115502.
    226. J.C.Ye, J. Lu, C. T. Liu, Q. Wang and Y. Yang. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nature Material,2010.9:619-623.
    227. S. S. Brenner. Tensile Strength of Whiskers. Journal of Applied Physics,1956,27: 1484-1491.
    228. C. Nagel. K. Ratzke, E. Schmidtke, J. Wolff, U. Geyer, and F. Faupel. Free-volume changes in the bulk metallic glass Zr46.7Ti8.3Cu7.5Ni10Be27.5 and the undercooled liquid. Physical Review B.1998.57:10224-10227.
    229. D. G. Deng, and B. H. Lu. Density change of glassy Pd77Si16.5Cu6.5 alloy during cold drawing. Scripta Metallurgica,1983,17:515-518.
    230. R. W. Cahn, N. A. Pratten, M. G. Scott. H. R. Sinning, L. Leonardsson. Studies of Relaxation of Metallic Glasses by Dilatometry and Density Measurements. Materials Research Society Proceeding,1984,28:241-252.
    231. T. Nasu, K. Nagaoka, F.ltoh, K. Suzuki. Positron Annihilation in Plastically Deformed Ni-P Amorphous Alloy. Journal of the Physical Society of Japan,1989,58:894-897.
    232. Y. Li, Q. Guo, J. A. Kalb, and C. V. Thompson. Matching Glass-Forming Ability with the Density of the Amorphous Phase. Science,2008,322:1816-1819.
    233. T. Wu, F. Spaepen, The relation between embrittlement and structural relaxation of an amorphous metal. Philosophical Magazine B,1990,61:739-750.
    234. P. Murali, U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-Tg annealing. Acta Materialia,2005,53:1467-1478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700