BTi-62421S合金高温变形行为及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用一种新型近α高温钛合金,通过热模拟压缩试验、平面应变压缩试验,借助现代冶金分析技术,研究了BTi-62421S合金的高温变形力学行为、形变强化行为以及微观组织变化;采用数值模拟和试验研究等手段,系统分析了钛合金复杂结构件多向加载整体成形理论及可行性;丰富了钛合金塑性加工和挤压成形理论,对提高我国武器装备制造水平有着重要的意义。主要研究内容和结果如下:
     (1)利用Gleeble-3800型热模拟试验机进行了等温恒应变速率压缩试验。分析了变形程度为70%时,变形温度、应变速率对BTi-62421S合金高温流动行为及组织演变的影响,通过变形激活能的计算和组织观察,揭示了其动态变形机制,并建立了该合金在(α+β)两相区的热变形本构方程,为设备吨位选择及有限元数值模拟提供了理论依据。
     (2)采用平面应变压缩试验,研究了热加工工艺参数对BTi-62421S合金力学性能的影响,研究发现:在(α+β)两相区,采用等效应变大于等于0.80的变形可以明显提高合金的抗拉强度;在(α+β)两相区,等效应变小于0.8或者在β单相区变形都不利于提高抗拉强度。同时发现,变形后的合金硬度均比原始铸态提高。
     (3)观察了热模拟压缩试验和平面应变压缩试验变形后的微观组织,分析了高温变形工艺参数对微观组织演变的影响,为控制零件的内部组织进而提高其机械性能奠定了基础。研究发现:在(α+β)相区变形时,片层组织主要发生等轴化演变,对BTi-62421S合金而言,片层组织的弯曲推进了片层组织等轴化,同时发现片层组织的等轴化需要在一定的变形量和变形温度条件下才会发生。片层组织等轴化的临界温度为900℃,临界等效应变为0.8。若考虑获得细小均匀的等轴组织,应该选择在(α+β)相区较高温度,较大变形量。
     (4)结合热模拟压缩试样开裂状态,建立了“铸态BTi-62421S合金压缩变形-T-开裂关系图”。根据平面应变压缩试验结果,建立了“BTi-62421S合金变形温度-变形量-抗拉强度关系图”,为使合金在成形时,提高工件性能,保证工件质量。
     (5)针对某产品的端框件,设计了合理的毛坯形状与尺寸,提出了三种多向加载整体成形工艺方案,采用数值模拟技术对不同方案的成形过程进行对比,得出:先轴向挤压后侧向挤压方案较其它方案成形载荷少,最大载荷的持续时间短,对模具寿命影响小,金属变形比较均匀,挤压终了损伤值最小,出现裂纹可能性最低。
     (6)采用BTi-62421S合金,对钛合金端框件整体成形进行了模具设计和试验研究。试验样件内腔各凸台充填饱满,未产生折叠、撕裂等缺陷,形状尺寸精度满足技术要求,表明:钛合金复杂构件“预制铸坯—加热—多向等温加载整体成形”工艺方案是可行的。同时,由铸造坯料直接成形、材料利用率可达83.4%,成形力的减小,力学性能的提高,最大可能地降低了生产成本,解决了钛合金复杂端框件整体成形的关键技术问题,丰富了钛合金成形理论,为钛合金端框件工程化应用奠定基础。
The high temperature mechanical behavior, strain hardening behavior andmicrostructures of a new near α high temperature titanium alloy BTi-62421S were studied byhot compression simulation, plane strain compression tests. For the titanium complexstructure, the theory of integral forming process with multi-direction loading was analyzedusing numerical simulation, moreover practical processing was performed to veitify thefeasibility. The research has important significances on both enriching the plastic processingtheory of titanium alloy and improving the manufacturing level of weapons equipment. Themain research contents and conclusions are the following:
     (1) In this investigation, isothermal compression tests were carried out on Gleeble-3800system at constant strain rate with the deformation of70%. The influences of deformationtemperature and strain rate on the high temperature flow stress and microstructure ofBTi-62421S alloy were analyzed. The dynamic deformation mechanisms were revealedthrough deformation activation energy calculation and microstructure observation. Theconstitutive equation of this alloy in (α+β) two-phase region during hot deformation wasestablished, which can provides a theoretical basis for equipment selection and finite elementsimulation.
     (2) The influences of thermal processing parameters on the mechanical properties ofBTi-62421S alloys were studied by plane strain compression tests. The results showed that, inthe (α+β) two phase region, the tensile strength can be significantly improved by thedeformation with equivalent strain greater than or equal to0.80; while the tensile strengthwas decreased in β single-phase region or in the (α+β) two phase region with the equivalentstrain less than0.8. At the same time, it was also found that the hardness of the deformedalloys was higher than the as-cast one.
     (3) The microstructures of specimens after hot compression simulation experiments andplane strain compression test were observed, and the influences of thermal processingparameters on the evolution of microstructure were also analyzed. The results can establishthe foundation for controlling the microstructures of the components for further improvementtheir mechanical properties. When deformed in the (α+β) phase region, the lamellarstructure were mainly equiaxed evolved, for BTi-62421S alloy, the kinking of lamellarstructure promoted equiaxed processes. Meanwhile it was found that the globularization oflamellar structure need a certain deformation degree and deformation temperature, the criticalequivalent strain was0.8and the critical temperature was900℃. For obtaining uniform fineequiaxed microstructures, the deformation process should be held at higher temperature in the(α+β) phase region with larger deformation degree.
     (4)“theε&-T-cracking figure of compress deformed BTi-62421S alloy” was establishtedwith the combination of the crack specimens after hot compression simulation. According tothe results of plane strain compression tests,“the relationship among the deformation temperature–deformation degree-tensile strength of BTi-62421S Alloy” was establishted,In order to improve the performance and ensure the quality of the formed workpiece.
     (5) For a kind of monolithic component, in this study, rational shape and size ofroughcast were designed and three schemes of integral forming process with multi-directionloading were proposed. With the help of numerical simulation, a conclusion was drawn that,compared with other schemes, the forming process with first axial compression then lateralextrusion was the best for less loading, short duration of maximum load, little influences ondie life, uniform deformation, smallest injury and least likely of crack.
     (6) The die was designed for the monolithic component, and the forming process wascarried out in this work. The monolithic component made by BTi-62421S alloy was full filledwith no folding, tearing and other defects, besides the accuracy of shape and size can meetthe technical requirements.more results indicate that the forming process of “precast-heating-isothermal integral forming process with multi-direction loading” was feasible for titaniumcomplex components. Furthermore, material utilization through direct forming is morethen80%, together the cost of production is reduced for the decreasing of forming load and theimprovement of mechanical properties.Through the research, the key technical issues oftitanium complex monolithic component were solved, the forming theory for the titaniumalloy was enriched, witch lay the foundation for the engineering applications of titaniummonolithic component.
引文
[1]彭瑾,徐兴柱,蓝仁恩.巡航导弹中金属结构材料的应用[J].飞航导弹,2008,(3):54-58
    [2]高娃,张存信.低成本钛合金制备技术及其军事应用[J].钛工业进展,2008,25(3):6-10
    [3]李曙光.国外高超音速飞行器现状及有关工艺技术研究[J].航天制造技术,2007(6):3-6
    [4]赵树萍等.钛合金在航空航天领域中的应用[J].钛工业进展,2002(6):18-21
    [5]聂小武.航空航天用钛合金的铸造工艺及发展[J].金属加工,2010,13:26-30
    [6]岳强,刘玉芹,王鼎春等.高强高韧钛合金Ti-63饼材组织与性能研究[J].稀有金属,2008,32(6):789-792
    [7]曲恒磊,周廉,周义刚等.高强韧钛合金评述[J].稀有金属快报,2004,23(10):5-9
    [8]徐晓飞.飞机结构多裂纹损伤容限研究综述[J].红都科技,2002,(1):14-19
    [9] Rodney Boyer, Gerhard Welsch, Collings E W. Materials Properties Handbook: Titanium Alloys
    [M]. USA: ASM International Press,1994.726.
    [10] Wood J R, RussoPA, WelterMF, Crist EM.Themomechanical processing and heat treatment ofTi-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications [J]. Materials Science and Engineering,1998,A243:109.
    [11]惠松骁,王希哲,张翥,李宗科,高博.热机械处理对Ti-6-22-22S合金组织与性能的影响[J].金属学报,2002,38(增刊):84.
    [12]张旺峰,李兴无,马济民等.钛合金强韧化新技术-BTMP工艺[J].轻金属,2005,(1):39-43
    [13]赵永庆.高温钛合金的研究[J].钛工业进展,2001,18(1):33-39.
    [14]魏寿庸,贾栓孝,王鼎春等.550℃高温钛合金的性能[J].钛工业进展,2000,2:25-29
    [15] Eyloy D. Issues in the development of beta t itanium alloys[J]. JOM,1994(6):14-15
    [16] Russo P A. Enhanced Ho t Wo rkability of A lloy C by U se of P lasma Sp rayed Coat ings. Titanium’95: Science and Techno logy. B lenk insop P A ed. The Inst itute of M aterials, The University P ress,1995.675—682
    [17]赵永庆,周廉,邓炬.Ti-40阻燃钛合金铸态的高温变形机制[J].机械工程材料,1999,23(1):9-12
    [18]雷力明,黄旭,王宝等.阻燃钛合金的研究和发展[J].材料导报,2003,17(5):21-25.
    [19]赵永庆,赵香苗,朱康英等.阻燃钛合金[J].稀有金属材料与工程,1996(5):1-6
    [20] Zhanglong Zhao,Hongzhen Guo,Xiaochen Wang,ZekunYao. Deformation behavior of isothermallyforged Ti-5Al-2Sn-2Zr-4Mo powder compact[J]. Journal of Materials Processing Technology,2009,209:5509-5513.
    [21]张学秋,航空发动机整体叶盘焊接变形的理论研究与虚拟优化[D].哈尔滨工业大学,2009年9月,15
    [22] M.C. Somani, R. Sundaresan, O.A. Kaibyshev. Deformation Processing in SuperplasticityRegime-production of Aircraft Engine Compressor Discs out of Titanium Alloys[J].MaterialsScience and Engineering.1998:134–139
    [23] S.K.Bhaumik. Failure of Turbine Rotor Blisk of an Aircraft Engine[J]. Eng FailureAnal.2002,9:287–301
    [24] M.Goulette. Materials Technology for Aero Gas Turbines[J]. World Aerospace TechnologyInternational.1995:74–78
    [25] H.Kaya. New Technology of Ceramic Gas Turbine.(1) Ceramic Matrix Composites[J]. Gas TurbineSoc Jpn.1997,25(98):43–47
    [26] T.Kashiwgi, Y.Ohmori, M.Yamamoto.Research of New Functional Materials Flame Holder[J].21st Conference of the Gas Turbine Society of Japan.1993:25–30(inJapanese)
    [27] S.W.Kandebo. General Elective Tests Forward Swept Fan Technology[J]. Aviation Week&SpaceTechnology.1996(5):16–25
    [28] M.Naeem, R. Singh, D.Probert. Implication of Engine Deterioration for a High Pressure TurbineBlades Low-cycle Fatigue (LCF) Life—consumption[J]. International Journal of Fatigue,1999,21:831–847
    [29] R.D.Southwick, G.W. Gallops, L.J.Kerr, et al. High Stability Engine Control (HISTEC) Flight TestResults[J]. AIAA journal.1998:3757–3759
    [30] D.L. Sondak. Application of Wall Functions to Generalized Nonorthogonal Curvilinear CoordinateSystems[J].AIAA Journal,1995,33(1):33–41
    [31]陈济轮.激光快速制造技术在我国航天制造领域的应用展望[J].航天制造技术,2010,(6):1-3
    [32]周建华,庞克昌,王晓英。航天用钛合金等温锻件的研制[J].上海航天,2003,(6):54-58
    [33] He G, Eckert J, Loser W, Schultz L. Nat Mater.2003,2:33
    [34]李隆盛主编.铸造合金及其熔炼[M].北京:机械工业出版社.1989
    [35] Ο Ⅱ索朗宁娜著(张志方,葛志明译).热强钛合金[M].北京:第三机械工业不第六二一研究所.
    [36]吕炎等编著.锻件组织性能控制[M].北京:国防工业出版社.1988.
    [37]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,32(6):774-780
    [38] Harry Chandler.Heat treaters’s guide: Praetiees and Proeedures for nonferrous alloys[J]. ASMIntemational,1996:511
    [39] BANIA P J. An advaneed alloy for elevated temPerature[J].Joumal of Metals,1988,(3):20-22
    [40] Tetykhin V, Levin l, Ilyenko V, etal. Heat resistant titanium alloys with enhaneed, heat resistanee,thennal stability. Titanium,95[M]:Seienee and Technoisy,Blenkinsop P A, Evans W J,Flower H M,ed.UK,Cambridge: The University Press,1996,2430-2437
    [41]洪权,张振棋,杨冠军等.Ti600合金的热机械加工工艺与组织性能[J].金属学报,2002,38:135
    [42] Cui W F,Liu C M,Zhou L,etal.Charaeteristies of mierostruetures and seeond-Phase Particles inY-bearing Ti-1100alloy[J].Mater.Sci and Eng.A,2002,A323:192-197
    [43]高敬,姚丽.国内外钛合金研究发展动态[J].世界有色金属,2001,(2):4-7
    [44]郭鸿镇.合金钢与有色合金锻造[M].西北工业大学出版社.1999:54-64.
    [45]布兰·加瓦尔.钛及钛合金材料的锻造与模锻[M].车乐庭译.金重科技,1991:102-103
    [46]糜丹青.钛的锻造[J].钛工业进展.1996(6):14-17.
    [47] D. G. Robertson, H. B. Mc Shane. Isothermal Hot Deformation Behaviour of Metastable BetaTitanium Alloy Ti-10V-2Fe-3Al[J].Materials Science and Technology.1997,13(7):575-583.
    [48] T. Seshacharyulu, S. C. Medeiros, W. G. Frazier et al. Hot Working of Commercial Ti-6Al-4V with anEquiaxed Alpha-beta Microstructure: Materials Modeling Considerations[J]. Materials Science andEngineering.2000,284A:184-194.
    [49] H. Conrad. Effect of Interstitial Solutes on the Strength and Ductility of Titanium[J]. Prog. Mater.Sci.1981,(26):123.
    [50] D. R. Chichili, K. T. Ramesh, K. J. Hemker. The High-strain rate Response ofAlpha-titanium-experiments, Deformation Mechanisms and Modeling[J]. Acta Mat.1998(46):1025-1043.
    [51]熊爱明,陈胜晖等.TC6钛合金的高温变形行为及组织演变[J].稀有金属材料与工程.2003,32(6):447-450.
    [52]崔文芳,洪权等.Ti-1100/0.1Y高温钛合金等温热压缩变形行为[J].东北大学学报.2003,24(6):572-575
    [53]吴静,鲁世强.TC11钛合金的热态变形行为研究[J].南昌航空工业学院学报(自然科学版).2006,20(2):29-33.
    [54]陈慧琴,林好转等.TC11钛合金高温流变行为及组织演变[J].航空材料学报.2007,27(3):1-5.
    [55]赵张龙,郭鸿镇等.应变速率对TC21钛合金超塑性拉伸微观组织的影响[J].热加工工艺.2005,36(8):28-30.
    [56]雷力明,黄旭等.Ti-25V-15Cr-2Al-0.2C合金的组织、性能及其变形机制[J].中国有色金属学报.2003,13(4):939-942.
    [57] SEM IATIN S L,SEELHARAMAN V,WEISS I. Hotworking of titanium alloys an overview [A].WEISS I. Advances in the science and technology of titanium alloy p rocessing [C]. Newyork,1997:3-37.
    [58] SESHACHARYULU T, MEDEIROS S C, FRAZIERW G,etal. Microstructural mechanism during hotworking of commercial grade Ti26Al24V with lamellar starting structure[J]. Materials Science andEngineering.2002,(A)325:112-125.
    [59] SESHACHARYULU T,MEDEIROS S C,FRAZIERW G.Hotworking of commercial Ti-6Al-4V withAn equiaxedα-β microstructure: materials modeling consideration[J].Materials Science andEngineering (A),284,2000,184-194.
    [60] PRASAD YV R K,SESHACHARYULU T,MEDEIROS S C,etal. Effect of preform microstructure onthe hotworkingmechanism in ELI grade Ti-6Al-4V: transformed βVS.equiaxed (α+β)[J]. MaterialsScience and Technology.2000,16(5):511-516.
    [61] H. J. Frost, M. F. Asbby. Deformation Mechanism maps[M]. New York:Pergamon Press,1982
    [62] S. B. Brown, K. H. Kim, L. Anand. An Internal Variable Constitutive Model for Hot Working ofMetals[J]. International Journal of Plasticity.1989,5:95-130
    [63] C. S. Dedai, D. R. Curran. Constitutive laws for engineering materials:theory and application[M].North Holland: Elsevier Science Publishing Co Inc,1987
    [64]鲍俊瑶,徐超.TC11钛合金高温塑性本构方程研究[J].安徽建筑工业学院学报(自然科学版).1999,7(4):41-45
    [65]王少林,阮雪榆,俞新陆等.金属高温塑性本构方程的研究[J].上海交通大学学报.1996,30(8):20-24
    [66]周计明,齐乐华,陈国定.热成形中金属本构关系建模方法综述.机械科学与技术.2005,24(2):212-216
    [67]刘雪峰.1420铝铿合金高温力学行为的研究.重庆:重庆大学博士学位论文,2001
    [68] Sellars C M and Tegart. On the meehanism of deformation. Aeta Metall urgiea,1966,14:1136-1138
    [69]李雪松,陈军,张鸿冰.6082铝合金热变形的本构模型[J].中国有色金属学报,2008,18(10):1769-1774
    [70]王忠堂,张士宏,齐广霞等. AZ31镁合金热变形本构方程[J].中国有色金属学报,2008,18(11):1976-1982
    [71]罗皎,李淼泉,李宏等. TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报,2008,18(8):1395-1401
    [72]赵为纲,李鑫等.TC11钛合金高温变形本构关系研究[J].塑性工程学报.2008,15(3):123-127.
    [73] T.Seshacharyulu, S.C.Medeiros, W.G.Frazier, Y.V.R.K.Prasad. Microstructural mechanisms during hotworking of commercial grade Ti-6Al-4V with lamellar starting structure[J]. Materials Science andEngineeringA,325(2002)112-125
    [74] YongNiu, HongliangHou, MiaoquanLi, ZhiqiangLi. High temperature deformation behavior of a nearalpha Ti600titanium alloy[J]. Materials Science and EngineeringA,492(2008)24-28.
    [75] P.Wanjara, M.Jahazi, H.Monajati, S.Yue, J.-P.Immarigeon. Hot working behavior of near-αalloyIMI834[J]. Materials Science and EngineeringA,396(2005)50-60.
    [76] LiuYong, ZhuJingchuan, WangYang, ZhanJiajun. Hot compressive deformation behavior andmicrostructure evolution of Ti-6Al-2Zr-1Mo-1V alloy at1073K[J]. Materials Science andEngineeringA,490(2008)113-116
    [77]周彦邦.钛合金铸造[M].西安:西北工业大学出版社,1998
    [78]王芝英等.钛合金等温锻造进展[J].锻压技术,1997,22(1):16~22
    [79]冯朝辉等.钛合金锻造工艺的现状与发展[J].金属成形工艺,1998,16(3):27~32
    [80]潘兴波等.钛及其合金的应用前景[J].黑龙江电力,2000,22(1).
    [81]杨冠军.钛合金研究和加工技术的新进展[J].钛工业进展,2001(3):32~36
    [82]谢成木.钛及钛合金铸造[M].北京:机械工业出版社,2004.
    [83]王强,张治民,张星等. ZTC4钛合金温变形力学行为研究[J].稀有金属材料与工程.2007,36(增刊3):616-619.
    [84]张治民,张星,王强等.ZTC4的变形组织及力学性能研究[J].塑性工程学报,2004,11(1):6-9
    [85] T.Seshachayrulu,S.C.Medeiros,W.G.Frazier.Hot Working of Commercial Ti-6AI-4V with anEquixaedα-βMicrosturcutre:Materials Modeling Considerations[J]. Materials ScienceandEngineeringA.2003,284:184-194.
    [86] Y.Prasad,T.Seshachayrulu.Processing MaPs for Hot Working of Titanium Alloys[J]. MaterialsScienceand EngineeringA.1998,243:82~88.
    [87] S.L.Semiatin, V.Seetharaman, I.Weiss. Hot Workbaility of Titanium AluminideAlloy[J].MaterialsScienceandEngineeringA.2002,243:l-24.
    [88]赖运金,曾卫东等.Ti-17合金高温变形中的不连续屈服与流变软化研究[J].材料科学与技术.2007,26(9):1183-1186.
    [89]戚运莲.Ti600高温钛合金的热变形行为及加工图研究.西北工业大学硕士学位论文.2007:21-23.
    [90] I. PhiliPPart, H.J. Rack. High Temperature Dynamic Yielding in MetastableTi-6.8Mo-4.5Fe-l.5Al[J].Materials Science and Engineering.1998,243A:196-200.
    [91] D.G. Robertson,H.B. Mcshane. Isothermal Hot Deformation Behaviour of (α+β)Titanium AlloyTi-4AI-4Mo-2Sn-0.5Si (IMI550)[J].Materials Science and Technology.1997,3(7):459-468.
    [92] R. Srinivasan,I.Weiss. High Temperature Deformation of the Near β Ti-15V-3Cr-3Sn-3Al Alloy[A],in: D. Eylon,R.R. Boyer,D.A. Koss(Eds.),βTitanium Alloys in the1990s[M].The Minerals,Metalsand Materials Society, Warrendale. PA,1993:283-295.
    [93] I. Weiss,S.L. Semiatin. Thermomechanical Processing of Beta Titanium Alloys-an Overview[J].Materials Science and Engineering.1998,A243:46-65.
    [94] M. Long,H.J. Rack.High Temperature Discontinuous Yielding in β-Phase Ti3AI(Nb,Mo)Alloys.in:P.A. Blenkinsop,W.J. Evans,H.M. Flower(Eds.),Titanium1995,Science and Technology[M].TheInstitute of Materials,London UK,1996:316-323.
    [95]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1982:32-42.
    [96]刘东,罗子健.以Zener-Hollomon参数表示GH169合金的本构关系[J].塑性工程学报.1995,2(1):15-19.
    [97] McQeen H J,Belling J. Constitutive Constant s for Hot Working of A124.5Mg20.35Mn[J].Canadian Metallurgical Quarterly.2000,39(4):483-492.
    [98] Rao K P,Hawbolt E B. Development of constitutive relationship using compression testing of amedium carborn steel[J]. Engineering Materials and Technology,1992.(114):116-123.
    [99] Imbert C,Ryan N D,McQeen H J. Hot workability of three grade of tool steel[J]. Metall TransA.1984,15(10):1855-1864.
    [100] Milovic C,Manojlovic D,Andjelic M,et al. Hot work ability of M2type high-speed steel[J]. SteelResearch.1992,63(2):78-84.
    [101]戚运连,曾卫东等.Ti600合金的高温本构方程[J].热加工工艺.2006,35(17):5-8.
    [102]徐文臣,单德彬等.TA15钛合金的动态热压缩行为及其机理研究[J].航空材料学报.2005,25(4):10-15.
    [103] HUANG Lujun, GENG Lin, LI Aibin, WANG Guisong, SHI Lei. Constitutive equation and hotdeformation characteristic of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy with equiaxed microstructure[J].Rare Metals,2007,26(8):88-93.
    [104] L.X. Li, Y. Lou, L.B. Yang, D.S. Peng, K.P. Rao. Flow stress behavior and deformationcharacteristics of Ti-3Al-5V-5Mo compressed at elevated temperatures[J]. Materials&Design,2002,23(5):451-457.
    [105]屠世润,高越.金相原理与实践[M].北京机械工业出版社.1986:52-63.
    [106]武宏让.航空用钛合金[J].钛工业进展.2000(2):30-32.
    [107][苏]E.A.鲍利索娃等著.陈石卿译.钛合金金相学[M].国防工业出版社.1986.
    [108] C.莱茵斯,M.皮特尔斯编,陈振华等译.钛与钛合金[M].材料科学与工程出版中心.2005.
    [109] Wang Shaolin. Study on TC11Titanium Alloy Disk Forging Quality Control and NumericalSimulation Journal of Tsinghua University.1992.
    [110]谢建新,刘静安等著.金属挤压理论与技术[M].北京:冶金工业出版社,2001(5):168-169.
    [111]《锻压技术手册》编委会.锻压技术手册(上册)[M].国防工业出版社.1989:244.
    [112]孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究[D].北京:清华大学博士学位论文,1999
    [113] O.A.Kaibyshev,R.Y.Lutfullin,G.A.Salishchev.Influence of Superplastic Deformation Conditions onTransformation of Platelike Microstructure in Titanium Alloy VT9[J].Fiz.Met.Metall.1988,66(6):109-117.
    [114]王金友,葛志明,周邦彦.航空用钛合金[J].北京:国防工业出版社,1986,200-207
    [115]《有色金属及其热处理》编写组.有色金属及其热处理[M].国防工业出版社.1981.
    [116]张宝昌等.有色金属及热处理[M].西安:西北工业大学出版社.1993,10.
    [117]汪大年.金属塑性成形原理[M].北京:机械工业出版社,1985
    [118] A.A.Salem,S.L.Semiatin. Anisotropy of the hot plastic deformation of Ti-6Al-4V single-colonysampl[J]. Materials Science and Engineering A,508(2009)114-120.
    [119]周军,曾卫东,舒滢等.热变形参数对Ti217合金的片状β球化过程的影响[J].热加工工艺,2005,35(2):16-18.
    [120] S. Mironov,M. Murzinova, S. Zherebtsov,G.A. Salishchev,S.L.Semiatin. Microstructure evolutionduring warm working of Ti–6Al–4V with a colony-a microstructure[J]. Acta Materialia,2009,57:2470–2481
    [121] T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad. Microstructural mechanismsduring hot working of commercial grade Ti–6Al–4V with lamellar starting structure[J]. MaterialsScience and Engineering A325,2002:112–125
    [122] SALISHCHEV G A, ZEREBTSOV S V, M IRONOV S Y,et al. Formation of grainboundarymis2orientation spectrum in alpha2beta titanium alloys with lamellar structure under warmand hotworking[J]. Materials Science Forum2004,467~470:501-506.
    [123] SEMIATIN S L, SEETHARAMAN V, WEISS I. Flow behavior and globularization kinetics duringhotworking of Ti-6Al-4V with a colony alpha microstructure[J]. Materials Science andEngineering,1999,263:257-271.
    [124] S. L. SEMIATIN and T. R. BIELER. The effect of alpha platelet thickness on plastic flow during hotworking of Ti-6Al-4V with a transformed microstructure [J]. Acta mater,2001,49:3565-3573.
    [125] S. L. Semiatin, J. F. Thomas, J. P. Dadras. Processing Microstructure Relationships forTi-6Al-2Sn-4Zr-2Mo-0.1Si[J]. Metall. Trans. A.1983,14:2363-2374.
    [126] E. B. Shell, S. L. Semiatin. Effect of Initial Microstructure on Plastic Flow and DynamicGlobularization during Hot Working of Ti-6Al-4V[J]. Metall.Mater. Trans. A.1999,30:3219-3229
    [127] N. Stefansson, S. L. Semiatin. Mechanisms of Globularization of Ti-6Al-4V during Static HeatTreatment[J]. Mater. Trans. A.2002,34:691-698
    [128] N. Stefansson, S. L. Semiatin, D. Eylon. The Kinetics of Static Globularization of Ti-6Al-4V[J].Metall. Mater. Trans. A.2002,33:3527-3534
    [129]周军,曾卫东,舒滢,等.应用热加工图研究TC17合金片状组织球化规律[J].稀有金属材料与工程,2006,(1):265-268.[8]
    [130]陈慧琴,郭灵,曹春晓. TC11钛合金片层组织热变形行为及组织演变[J].航空材料学报,2008,28(1):18-22.
    [131]陈慧琴,曹春晓,郭灵等. TC11钛合金片层组织热变形球化动力学过程[J].航空材料学报,2009,29(1):37-42.
    [132]史科,TC11钛合金叶轮类复杂构件等温成形规律与数值模拟[D],哈尔滨工业大学,博士学位论文,2008年10月.
    [133]姚泽坤,苏华,苏祖武等.热加工工艺参数对TC11钛合金叶片显微组织细化、球化的影响[J].热加工工艺,1995,(1):6-10
    [134] I. Weiss, F. H. Froes, D. Eylon, G. E. Welsch. Modification of Alpha Morphology in Ti-6Al-4V byThermomechnical Processing[J]. Metall. Trans. A.1986,17:1935-1947
    [135] T. Seshacharyulu, S. C. Medeiros, J. T. Morgan, J. C. Malas, W. G. Frazier,Y. V. R. K. Prasad. HotDeformation Mechanisms in ELI Grade Ti-6Al-4V[J].Scripta Materialia.1999,41(3):283-288
    [136]闰世成.Ti-1023合金复杂结构件等温锻造过程的数值模拟[D].西北工业大学硕士毕业论文.2005.
    [137]赵新海,赵国群,王广春.金属体积成形预成形设计的现状及发展[J].塑性工程学报.2000,7(3):1-6.
    [138]张敏.支撑轴挤压模具有限元分析及组合凹模优化[D].山东:山东大学,2007.
    [139]崔金栋.7050铝合金大锻件锻造工艺仿真与再结晶组织模拟[D].湖南:中南大学,2006.
    [140]虞松,冯维明,王戎.金属韧性断裂准则的试验研究[J].锻压技术,2010,35(1):121-124
    [141]陈劼实,周贤宾.成形极限预测韧性断裂准则及屈服准则的影响[J].北京航空航天大学学报,2006,32(8):969-973
    [142]蒲思洪,温彤,吴维等.韧性断裂准则与阀值选取的理论及试验研究[J].金属铸锻焊技术,2009(2):18-21
    [143]陈学文,王进,陈军等.基于最小损伤值的齿轮毛坯锻造成形过程工艺参数优化设计[J].上海交通大学学报,2005,39(7):1070-1072
    [144]陈劼实,周贤宾.板料成形极限的理论预测与数值模拟研究[J].塑性工程学报,2004,11(1):13-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700