高频医学超声成像系统的研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
医学超声诊断设备,由于其具有无创、无痛、方便有效、显示直观、成本低廉等优点,被广泛的使用于医学诊断的各个领域。频率大于20 MHz的高频超声,能够提供更高的图像分辨率,因此特别适用于显示精细的结构,可用于探测人体的眼睛、皮肤和血管等器官,也可用于对小动物如老鼠、斑马鱼等的成像。当前,研究和制作性能良好的高频超声传感器和高频超声成像系统仍是一项非常重要的、具有挑战性的工作。
     本文首先设计和制作了两种不同类别的35 MHz高频超声传感器。其中用新的铌酸铅铟-铌镁酸铅-钛酸铅(PIN-PMN-PT)材料制作的PIN-PMN-PT超声单阵元传感器具有比传统铌镁酸铅-钛酸铅(PMN-PT)超声传感器更高的温度稳定性,并且可以在更高的电压下工作。用PMN-PT\Epoxy 1-3复合材料制作的PMN-PT\Epoxy 1-3复合超声单阵元传感器具有比传统铌镁酸铅-钛酸铅(PMN-PT)超声传感器更高的机电耦合系统和更低的声阻抗特性。
     其次,本文设计和制作了用于高频超声传感器阵列的高频医学超声成像系统。该系统具有64个通道,采用了多个高速A/D转换芯片,能实现64通道12位精度超声接收数据的高速采集(160MSPS)。系统中设有多个强大的现场可编程门阵列(FPGA)芯片和一个大规模并行数字信号处理器阵列(MPPA),可以完成数据的缓存、系统的控制,并实现高速的数字信号处理。系统中还使用了GPIO接口和PCI EXPRESS接口,实现了高速的数据传输(200MBPS以上)。此外,本文还对系统的软件进行了开发。整个系统采用了模块化的结构,因此具有良好的灵活性和适应性,可以便利的实现系统的调整和升级。
     再次,本文研究了超声波波束形成技术,讨论了超声波波束发射和接收算法和延迟技术。在单片FPGA中实现了64通道的数字式超声发射,并提出了三种基于本文硬件系统的超声波波束接收算法的实现方案。其中FPGA+MPPA的实现方案可实现数据的高效处理,结合使用FIR插值滤波的方法可将接收延迟精度提高到1 ns以内。
     最后,本文对设计和制作的高频超声传感器以及高频医学超声成像系统进行了测试。对PIN-PMN-PT超声传感器和PMN-PT\Epoxy 1-3复合超声传感器的测试结果表明,这两种传感器的性能良好,工作频率均在30 MHz以上,插入损耗在20db一下,可以用于高频超声成像。对高频医学超声成像系统的测试结果表明,该系统硬件部分能够完成64通道超声信号的发射、接收和数据采集,利用MPPA-Am2045芯片可以实现高精度的数据延迟,实现了高频医学超声成像系统的基本功能。
Medical ultrasound diagnostic instruments, because of its noninvasive, efficacy and low cost, are widely used in clinic. High-frequency (>20 MHz) ultrasound has demonstrated high spatial resolution on the submillimeter level, and can be applied to ophthalmology, dermatology, small animal imaging, and intravascular imaging. However, to get a high quality imaging, the development of high-frequency ultrasound transducers and high-frequency ultrasound imaging system is essential and challenging.
     In this thesis, two different types of high-frequency ultrasound single-element transducer:PIN-PMN-PT single-element transducer and PMN-PT\Epoxy 1-3 composite single-element transducer, are designed and fabricated. While the PIN-PMN-PT transducer reveals better thermal stability than PMN-PT transducer, the PMN-PT\Epoxy 1-3 composite transducer has lower acoustic impedance and higher electromechanical coupling coefficient.
     A high-frequency medical ultrasound imaging system for high-frequency ultrasonic arrays has been developed. The system can handle up to 64-element array transducers and excite 64 channels and receive simultaneously at 160 MHz sampling frequency with 12-bit precision. Field programmable gate array (FPGA) and massively parallel processor array (MPPA) are used for high-speed digital signal parallely processing. GPIO and PCI EXPRESS physical interface are used for high-speed data transfer. In addition, the frame of software system is built. By using modular structure, the system has highly flexibility and adaptability, can be easily extended and upgraded.
     Furthermore, the ultrasound beamforming technique is studied; the arithmetic for ultrasound transmition and receiving is discussed. Multi-channel digital ultrasound transmit is implemented in a Field programmable gate array (FPGA), and three proposal for the implementation of ultrasound receive beamforming are put forward. Among the three proposals, the architecture based on FPGA and MPPA reveals good performance, the delay can be reduced under 1 ns by using a FIR interpolation filter.
     Finally the testing results of the fabricated ultrasound transducers and imaging system are given. Results show that both the PIN-PMN-PT transducer and PMN-PT\Epoxy 1-3 composite transducer have superior performance and can be used for high-frequency ultrasound imaging. Results also show that the imaging system can successfully realize the multi-channel ultrasound transmit, receiving and signal acquisition, and the digital beamforming can achieve a high-speed fine delay.
引文
[1]Tomas L Szabo. Diagnostic Ultrasound Imaging:Inside Out. Elsevier Academic Press.2004.
    [2]Kremkau, Frederick W. Ph.D. W. B.Diagnostic Ultrasound:Principles and Instruments. Ultrasound Quarterly. Spring 1994;12:65-66
    [3]Carol M. Rumack, Stephanie R. Wilson, Jo-Ann Johnson, J. William Charboneau. Diagnostic Ultrasound. Elsevier Science.2004.
    [4]G.C. Edwards, S.H. Choy, H.L.W. Chan, D.A. Scott and A. Batten. Lead-free transducer for non-destructive evaluation. Applied Physics A:Materials Science & Processing.2007;7:209-215.
    [5]Lukacs, M. Sayer, M. Foster, S. Single element and linear array PZT ultrasound biomicroscopytransducers. Ultrasonics Symposium,1997. Proceedings., 1997;2:1709-1712.
    [6]T.R.Shrout, Z.P.Chang, N.Kim, et al., Dielectric behavior of single (1-x)Pb (Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary, Ferro.lett.1990; 12:63-69.
    [7]J.Kuwata,K.Uchino,S.Nomura,Phase transitions in the Pb(Zn 1/3Nb2/3)03-PbTiO3 system. Ferroelectrics,1981; 37:579-582.
    [8]应崇福等.超声原理及其应用.科学普及出版社.1959.
    [9]Dennis A. Sarti.Diagnostic ultrasound:text and cases.Year Book Medical Publishers.1987.
    [10]郭万学,周永昌.超声学.科学技术文献出版社,2006.
    [11]Wave Front Dynamic Properties with Conventional Transducers. http://www. olympus-ims. com/en/ndt-tutorials/transducers/wave-front
    [12]D.J. Jones, S.E. Prasad, J.B. Wallace. Piezoelectric Materials and their Applications. Key Engineering Materials.1996;(122-124).
    [13]Chilowsky, C. and Langevin, P. Improvements in and Connected with the Production of Submarine Signals and the Location of Submarine Objects,1919, UK patent 125,122.
    [14]Payne-Scott, R.The Visibility of Small Echoes on Radar PPI Displays. Proceedings of the IRE.1948;36(2):180-196..
    [15]Frederick W. Kremkau.Cancer therapy with ultrasound:A historical review Journal of Clinical Ultrasound.2005;7(4):287-300.
    [16]Firestone, F. A. The supersonic reflectoscope for interior inspection. Metal Prog. 1945;48:505-512..
    [17]HOWRY DH, STOTT DA, BLISS WR. The ultrasonic visualization of carcinoma of the breast and other soft-tissue structures.Cancer.1954 Mar;7(2):354-8.
    [18]Reid, J. M., and Wild, J. J. Current developments in ultrasonic equipment for medical diagnosis. Proc. Nat. Electron. Conf.1958;12:1002-1015.
    [19]Kratochwil A. The state of ultrasound diagnosis in perinatal medicine. J Perinat Med. 1975;3(2):75-88.
    [20]Edler,I.Early echocardiography. Ultrasound in Med.& Biol.1991; 17:425-431.
    [21]Stig Falk, Carl Hellmuth Hertz, Hemming I Virgin. On the Relation between Turgor Pressure and Tissue Rigidity. Physiologia Plantarum 1958;11(4):802-817.
    [22]Satomura, S. Ultrasonic Doppler method for the inspecion of cardiac function. J. Acoust. Soc. Am.1957;29:1181-1185.
    [23]Franklin, Dean L,Schlegel, William,Rushmer, Robert F. Blood Flow Measured by Doppler Frequency Shift of Back-Scattered Ultrasound. Science, 1961;134(3478):564-565
    [24]GJ Perry, F Helmcke, NC Nanda, C Byard, and B Soto. Evaluation of aortic insufficiency by Doppler color flow mapping. J Am Coll Cardiol,1987; 9:952-959
    [25]F Helmcke, NC Nanda, MC Hsiung, B Soto, CK Adey, RG Goyal and RP Gatewood Jr. Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation.1987;75:175-183.
    [26]林铁翰,陈思平.医学超声影像技术及展望.医疗装备.2006;19(6):13-15.
    [27]李延斌.超声诊断技术的进展和临床应用.世界最新医学信息文摘.2004;3(1):971-975.
    [28]冯若,刘忠齐,姚锦钟,关立勋,超声诊断设备与设计.中国医药科技出版社.1993
    [29]B. Jaffe, R.S. Roth and S. Marzullo. J. Res. Nat. Bur. Std.1955;55:239.
    [30]Zhou Q F, Chan W H L and Choy C L, PZT ceramic/ceramic 0-3 nanocomposite films for ultrasonic transducer applications. Thin Solid Films,2000,375:95-99.
    [31]Wu D W, Zhou Q F, Shung K K, Bharadwaja S N., Zhang D S and Zheng H X. Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios, J. Am. Ceram. Soc.2009;92:1276-1279.
    [32]T.A.Ritter,X.Geng,K.K.Shung,P.D.Lopath,S.E.Park,and T.R. Shrout. Single crystal PZN-PT polymer composite for ultrasound transducer applications.IEEE Trans. Ultrason.,Ferroelect., Freq. Contr.2000;47:792-800.
    [33]H. Kawai, J. Appl. Phys.,1969; 8:975
    [34]M. L. Mulvihill, S. E. Park, G Risch, et al. The role of processing variables in the flux growth of lead zinc niobate-lead titanate relaxor ferroelectric single crystals. Jpn. J. Apl.Phys.1996;35(7):3984-3990.
    [35]汤四媛.基于脉冲反相技术的医用高频超声组织谐波信息提取技术的研究.生物医学工程研究所硕士学位论文.2005.
    [36]曾锦晖,杨军,王延群.超声换能器在医学成像中的发展.国外医学生物医学工程分册.2005;28(5):310-313.
    [37]C Kakai, K Namekawa, A Koyano, AND R Omoto.Real-Time Two-Dimensional Blood Flow Imaging Using an Autocorrelation Technique. IEEE TRANSACTIONS ON SONUILCTSR ANSODN ICS.1985;32(3):458-463.
    [38]O'Donnell.Efficient parallel receive beam forming for phased array imagingusing phase rotation. Ultrasonics Symposium,1990.1990;3:1495-1498.
    [39]Karaman M,et al.A VLSI receiver Beamformer for Digital Ultrasound Imaging.1992 IEEE International Conference on Acoustics,Speech,and Signal Processing.1992 March; 1(5):657-660.
    [40]B.R.Mahafza,D.L.Knight,M.W.Suits.Dynamic real-time focusing of ultrasonic transducer arrays in sequential mode.IEEE Aerospace Applications Conference Proceedings.1995;2:1-9.
    [41]Thanassis X. Misaridis, and Jorgen A. Jensen.Space-time encoding for high frame rate ultrasound imaging. Ultrasonics.2002 May;40(1-8):593-597.
    [42]F. S. Foster, C. J. Pavlin, G. R. Lockwood, L. K. Ryan, K. A.Harasiewicz, L. Berube, and A. M. Rauth. Principles and applicationof ultrasound backscatter microscopy. IEEE Trans.Ultrason., Ferroelect., Freq. Contr.,1993;40:608-616.
    [43]G. R. Lockwood, D. H. Turnbull, D. A. Christopher, and F. S.Foster.Beyond 30 MHz:Applications of high frequency ultrasound imaging. IEEE Eng. Med. Biol.,1996; 15:60-71.
    [44]R. H. Silverman, D. Z. Reinstein, T. Raevsky, and D. J. Coleman.Improved system for sonographic imaging and biometry of the cornea. J. Ultrason. Med.1995; 16:117-124.
    [45]D. H. Turnbull, B. G. Starkoski, K. A. Harasiewicz, J. L. Semple,L. From, A. K. Gupta, D. N. Sauder, and F. S. Foster.A 40-100 MHz B-scan ultrasound backscatter microscopy for skin imaging. Ultrasound Med. Biol.,1995;21:79-88.
    [46]C. Passmann, H. Ermert, T. Auer, K. Kaspar, S. el-Gammal,and P. Altmeyer.In vivo ultrasound biomicroscopy. in Proc.IEEE Ultrason. Symp.,1993:1015-1018.
    [47]C. Passmann and H. Ermert. A 100 MHz ultrasound imaging system for dermatologic and ophthalmologic diagnostics. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.1996; 43(4):545-552.
    [48]Y. Saijo and A. F. W. van der Steen, Vascular Ultrasound. Tokyo:Springer,2003.
    [49]D. H. Turnbull, T. S. Bloomfield, F. S. Foster, and A. L. Joyner.ltrasound backscatter microscope analysis of early mouse embryonic brain development. in Proc. Natl. Acad. Sci.1995; 92(6):2239-2243.
    [50]D. H. Turnbull.In utero ultrasound backscatter microscopy of early stage mouse embryos. Comput. Med. Imaging Graphics,1999;23(1):25-31.
    [51]F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G Liu, J. Mehi, E.Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A.Knapik, and S. L. Adamson.A new ultrasound instrument for in vivo microimaging of mice.Ultrasound Med. Biol.2002; 28(9):1165-1172.
    [52]DA Christopher, PN Burns, BG Starkoski. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation Ultrasound in Medicine & Biology.1997; 23(7):997-1015.
    [53]J. M. Cannata, T. A. Ritter, W. H. Chen, R. H. Silverman and K. K. Shung. Design of efficient, broadband single-element (20-80 MHz) ultrasound transducers for medical imaging applications. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.2--3;50(11):1548-1557.
    [54]Q. Zhou, X. Xu, E. J. Gottlieb, L. Sun, J. M. Cannata, H. Ameri,M. S. Humayun, P. Han, and K. K. Shung,.PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsedwave Doppler application. IEEE Trans. Ultrason., Ferroelect.,Freq. Contr.2007;54(3):668-675.
    [55]Qifa Zhou, Dawei Wu, Jing Jin, Chang-hong Hu,Xiaochen Xu, Jay Williams,Jonathan M. Cannata, Leongchew Lim,and K. Kirk Shung.Design and Fabrication of PZN-7%PT Single Crystal High Frequency Angled Needle Ultrasound Transducers. Ultrason., Ferroelect.,Freq. Contr.2008; 55(6):1394-1399.
    [56]D.W. Wu, R.M. Chen, Q.F. Zhou, K.K. Shung, D.M. Lin, H.L.W. ChanLead-free KNLNT piezoelectric ceramics for high-frequency ultrasonic transducer application. Ultrasonics 2009;49(3):395-398.
    [57]K. K. Shung, M. Smith, and B. Tsui. Principles of Medical Imaging.San Diego, CA: Academic,1992.
    [58]T. A. Ritter, T. R. Shrout, R. Tutwiler, and K. K. Shung.A 30-MHz piezo-composite ultrasound array for medical imaging applications. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,2002;49:217-230.
    [59]J. M. Cannata.High frequency (>20 MHz) ultrasonic arrays for medical imaging applications. Ph.D. dissertation, Pennsylvania State University, University Park, PA, Aug.2004.
    [60]P. A. Payne, Q. X. Chen, H. El-Sayed, and Y. Yerima.High frequency, high resolution ultrasound techniques inmedicine. IEEE Colloquium on Medical Scanning and Imaging Techniques of Value in Non-Destructive Testing.1989;84:211-214.
    [61]M. O'Donnell, W. E. Engeler, J. T. Pedicone, A. M. Itani, S. E.Noujaim, R. J. Dunki-Jacobs, W. M. Leue, C. L. Chalek, L. S.Smith, J. E. Piel, R. L. Harris, K. B. Welles, and W. L. Hinrichs.Real-time phased array imaging using digital beam forming and autonomous channel control. in Proc. IEEE Ultrason. Symp.,1990; 1499-1502.
    [62]P. A. Payne, J. V. Hatfield, A. D. Armitage, Q. X. Chen, P. J. Hicks, and N. Scales,.Integrated ultrasound transducers. in Proc. IEEE Ultrason. Symp.1994: 1523-1526.
    [63]J. A. Jensen, O. Holm, L. J. Jensen, H. Bendsen, H. M. Pedersen,K. Salomonsen, J. Hansen, and S. Nikolov.Experimental ultrasound system for real-time synthetic imaging. in Proc.IEEE Ultrason. Symp.1999; 1595-1599.
    [64]M. O'Donnell, M. J. Eberle, D. N. Stephens, J. L. Litzza, B. M.Shapo, J. R. Crowe, C. D. Choi, J. J. Chen, D. W. M. Muller,J. A. Kovach, R. J. Lederman, R. C. Ziegenbein, K. San Vicente,and D. Bleam.Catheter arrays:Can intravascular ultrasound make a difference in managing coronary artery disease?.in Proc. IEEE Ultrason. Symp. 1997;1251-1254.
    [65]J. Schulze-Clewing, M. J. Eberle, and D. N. Stephens.Miniaturized circular array.in Proc. IEEE Ultrason. Symp.2000; 1253-1254.
    [66]J. P. Stitt, R. L. Tutwiler, and K. K. Shung.An improved fourfocal zone high-frequency ultrasound analog beamformer. in Proc. IEEE Ultrason. Symp.,2002; 617-620.
    [67]Chang-Hong Hu, Xiao-Chen Xu, Jonathan M. Cannata, Jesse T. Yen, and K. Kirk Shung.Development of a Real-Time, High-Frequency Ultrasound Digital Beamformer for High-Frequency Linear Array Transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,2006;53(2):317-321.
    [68]林书玉.超声换能器的原理及设计.科学出版社.2004.
    [69]陈桂生.超声换能器设计.海洋出版社.1984.
    [70]2.1 Peter Dargie, Russell Sion, John Atkinson, Neil White.An investigation of the effect of poling conditions on the characteristics of screen-printed piezoceramics. Microelectronics International.1998: 5 (2):6-10.
    [71]P. Sun,Q. F. Zhou,B. P. Zhu, D. Wu,C. H. Hu,J. M. Cannata,J. Tian,P. D. Han, G.F Wang and K. K. Shung. Design and Fabrication of PIN-PMN-PT Single Crystal High Frequency Ultrasound Transducers. IEEE Trans. Ultrason., Ferroelect., Freq. Contr. (Accept 2009 Sep).
    [72]J. Chen and R. Panda.Review:Commercialization of piezoelectric single crystals for medical imaging applications, in Proc.IEEE Ultrason. Symp2005; 235-240.
    [73]Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose.Growth of Single Crystals of High-Curie-Temperature Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3-PbTiO3 Ternary Systems near Morphotropic Phase Boundary. Jpn. J.Appl. Phys.2003;42(1):5681-5686.
    [74]T. Karaki, M. Nakamoto, Y. Sumiyoshi, M. Adachi, Y. Hosono, and Y. Yamashita.Top-seeded solution growth of Pb[(In1/2Nb1/2),(Mg1/3Nb2/3),Ti]O3 single crystals. Jpn. J. Appl. Phys.2003;42(1):6059-6061.
    [75]Z J. Tian, P. Han, X. Huang, and H. Pan, J. F. Carroll III and D. A. Payne. Improved stability for piezoelectric crystals grown in the lead indium niobate-lead magnesium niobate-lead titanate system. Appl. Phys. Lett.2007;91(22):903-905.
    [76]A. R. Selfridge.The design and fabrication of ultrasonic transducers and transducer arrays.Ph.D. dissertation, Department of Electrical Engineering, Stanford University, Stanford, CA.July 1983.
    [77]Ping Sun, Gaofeng Wang, Dawei Wu, Benpeng Zhu, Changhong Hu, Changgeng Liu, Frank T. Djuth, Qifa Zhou2,K.K Shungo High Frequency PMN-PT\Epoxy 1-3 Composite Transducer for Ultrasonic Imaging Application. Ferroelectrics. (Accept 2009 Sep).
    [78]NewnhamRE, SkinnerDP, CrossLE. Conneetivity-pyroelectric composi MaterResBull.1978;13(7):525-536.
    [79]AuldBA, KunkelHA, ShuiYA. Ultrasonic Symposium.America:proc. IEEE, 1983:554-562.
    [80]W.A.Smith, A.Shaulov and B.A.Auld:Tailoring the Properties of Composite Piezo-electrical Materials for Medical Ultrasonic Transducers. Proceedings of the 195 IEEE Ultrasonic Symposium; 1985:642-647.
    [81]李云松.Xilinx FPGA设计基础:VHDL版.西安电子科技大学出版社.2008.
    [82]闫胜利,蒲海岩,庞伟.Altium Designer实用宝典:FPGA设计.电子工业出版社.2008.
    [83]Xilinx ISE 10.1 Software Manuals. Xilinx Inc.2008.
    [84]aDesignerTM Reference.Amric, Inc.2008.
    [85]aDesignerTM User's Guide. Amric, Inc.2008.
    [86]Am2045 Data Book. Amric, Inc.2008.
    [87]Am2000 Family Architecture Reference. Amric, Inc.2008
    [88]Am2045Tm Integrated Development Board Reference. Amric, Inc.2008.
    [89]鲍晓宇.相控阵超声检测系统及其关键技术的研究.清华大学机械工程系博士论文.2003.
    [90]Kai E.Thomenius.Evolution of Ultrasound Beamformers.In:Proceedings of 1996 IEEE Ultrasonics Symposium.1996; 1615~1620.
    [91]何正权,刘志宏,袁勤.数字多声束形成技术的研究及其意义.中国超声医学杂志年1997;3(8):14-16.
    [92]Mark L.Palmeri. Ultrasound beamforming and image formation. RSNA 2007.
    [93]Receivebeamforming. http://ultimedical.com/receivebeamforming.htm.
    [94]Stephen Brown, Zvonko Vranesic.数字逻辑与VHDL设计(中译本).清华大学出版社.2005.
    [95]张凯,林伟.VHDL实例剖析.国防工业出版社.2004.
    [96]CIC Compiler v3.0. Product Specification. Xilinx Inc.2007.
    [97]程佩青.数字信号处理教程.清华大学出版社.2001.
    [98JFIR Compiler v3.2. Product Specification. Xilinx Inc.2007.
    [99]姚利锋.一种基于并行流水线的滤波器设计方案.
    [100]王成,侯卫华,刘明峰,于宗光.采用多级子并行滤波器级联结构的并行FIR滤波器.中国电子科学研究院学报.2008;3(1):92-96.
    [101]卢山,田野,郭黎利.利用DSP技术实现FIR滤波器.应用科技.2002;29(11):19-21.
    [102]郑君里,应启珩,杨为理.信号与系统(第2版).高等教育出版社,2000.
    [103]吴嘉慧,韩韬,施文康.无线声表面波传感器信号的数字正交检波处理.测控技术.2002;21(3):4-6.
    [104]黄文梅等.信号分析与处理—MATLAB语言及应用.国防科技大学出版社,2000.
    [105]Standard methods for testing single—element pulse-echo ultrasonic transducers, J. Ultrasound Med.1 (September) (1982).
    [106]K.A. Snook, J.Z. Zhao, C.F. Alves, J.M. Cannata, W.H. Chen, R.J. Meyer, T.A. Ritter, K.K. Shung:Design, fabrication, and evaluation of high frequency, single element transducers incorporating different materials. IEEE Trans. Ultrason., Ferroelect., Freq. Contr,2002;49(2):169-176.
    [107JIEEE Standard on Piezoelectricity, ANSI/IEEE Std.176-1987.New York:IEEE, 1987.
    [108]B.P. Zhu. PZT压电厚膜改性与高频超声传感器应用研究.武汉大学博士毕业论文.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700