等离子喷熔修形提高焊接接头疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
等离子喷熔修形(Modification of Plasma Spurt Spraying---MPSS)作为一种新的提高焊接接头疲劳强度的方法被提出,在焊缝表面覆盖一层完全冶金结合的高曲率半径且表面光滑的喷熔涂层,使其在焊趾处形成圆滑的过渡,降低了应力集中,从而显著提高焊接接头的疲劳性能。
     本文以Q235B钢十字焊接接头为研究对象,对比分析了TIG熔修接头、超声冲击处理接头、氧-乙炔火焰喷熔修形(Modification of Oxygen-acetylene SpurtSpraying---MOSS)接头和等离子喷熔修形接头的疲劳性能。观察了氧-乙炔火焰喷熔和等离子喷熔涂层的显微组织及涂层与焊缝的结合情况。采用纳米压痕技术分析了喷熔涂层及过渡区域材料的力学性能。研制了能够在接头表面形成残余压缩应力的低相变点等离子喷熔粉末。采用通用有限元分析软件ANSYS对原始焊态接头、常规粉末喷熔修形接头、低相变点合金粉末熔修接头及低相变点合金粉末喷熔修形接头进行了温度场和应力场的模拟。
     性能试验表明:正交试验设计获得了等离子喷熔修形的最优工艺参数,保证了等离子喷熔涂层与焊缝的冶金结合。Ni65Cr16B3.1Si4.5粉末等离子喷熔涂层中存在硬度高、韧性差的硬质相,硬质相上的纳米压痕点出现了裂纹,根据裂纹的尺寸确定了硬质相的断裂韧性值。同时,获得了等离子喷熔涂层与焊缝过渡区域材料的本构方程。
     高周疲劳试验表明:Ni65Cr16B3.1Si4.5粉末氧-乙炔火焰喷熔修形接头在2×10~6循环周次下的疲劳强度为217MPa,与原始焊态接头相比提高了60.7%。等离子喷熔修形接头在2×10~6循环周次下的疲劳强度为220MPa,与原始焊态接头相比提高了62.96%。低周疲劳试验表明:相同应力水平下,氧-乙炔火焰喷熔修形接头的低周疲劳寿命为1.0×10~4至1.3×10~4循环周次,等离子喷熔修形接头的低周疲劳寿命相比氧-乙炔火焰喷熔修形接头又有所提高,达到了1.5×10~4至1.7×10~4循环周次。
     通过对自制的三种低相变点等离子喷熔粉末喷熔层残余应力、冲击韧性、硬度、相组织的分析,获得了主要成分为5Cr-8Ni,同时外加Cu及稀土元素的低相变点合金系统。
     采用模拟焊接温度场及应力场的方法模拟了低相变点等离子喷熔修形接头的温度场和残余应力场分布。结果表明,低相变点等离子喷熔修形接头焊趾区存在一定范围的残余压缩应力,这一残余压缩应力的存在使得低相变点等离子喷熔修形接头的疲劳强度进一步提高,与疲劳测试结果相符合。
Modification of Plasma Spurt Spraying (MPSS), which is a new method, wasused to improve the fatigue strength of welded joint. The basic principle of MPSS isto spray fusing a complete metallurgical bonding layer of high curvature appearanceon the surface of the whole welded joint, which can greatly reduce the stressconcentration of welded joint. As a result, fatigue strength of welded joint will besubstantially improved.
     Take as-supplied, cross-shaped welded joints of Q235B steel as testing object.The comparative analysis of fatigue behavior for TIG-dressing joint, welded jointstreated by ultrasonic peening treatment (UPT) and spraying fused joint. The bondinglayer between coating and weld was studied by optical microscopy, scanning electronmicroscopy (SEM). Material properties of metallurgy bonding zone were performedat room temperature using a nano-indentation device equipped with a Berkovich tip.In order to gain compressive residual stress, the low transformation temperature (LTT)alloy powder was developed. The temperature field and stress field of spraying fusedjoint were simulated by ANSYS software.
     Performance tests show that: the orthogonal experiment design won the optimalparameters of MPSS. The hard phase exists in the coating spray fused byNi65Cr16B3.1Si4.5alloy powder. There is the existence of a crack in the hard phase,and the fracture toughness of hard phase was determined according to the size ofcrack. The constitutive equation of metallurgy bonding zone was founded accordingto Reverse Analysis Algorithms.
     High cycle fatigue test results indicate that fatigue strength of MOSS-joint andMPSS-joint corresponding to2×10~6cycles is217MPa and220MPa, respectively.Compared with as-welded joints, Fatigue strength increases by60.7%and62.96%,respectively. Low cycle fatigue test results show that fatigue life of MOSS-joint islower than MPSS-joint.
     Through the analysis of residual stress, impact toughness and hardness of plasmaspurt spraying coating, LTT alloy powder system of5Cr-8Ni was determined.
     The method of simulating welding was used to simulate temperature field andresidual stress field of joint spray fused by LTT powder. Results show that, thereexists a certain range of residual compression stress at weld toe of joint spray fused by LTT powder. The existence of residual compression stress will improve fatiguestrength of welded joint further.
引文
[1]徐国荣,焊接技术发展概述及展望,硅谷,2010,18
    [2][英]T.R.格尔内,焊接结构的疲劳(周殿群译),北京:机械工业出版社,1988,83~205
    [3]霍立兴,王东坡,王文先,提高焊接接头疲劳性能的研究进展和最新技术[J],焊接快讯,2004,86(10):146~158
    [4]赵少汴,王忠保,抗疲劳设计-方法与数据,北京:机械工业出版社,1995,248~251
    [5] Fisher, Fracture and Fatigue in Steel Bridges, Official Proceedings-InternationalBridge Conference,1984,10~21
    [6]霍立兴,焊接结构的断裂行为及评定,北京:机械工业出版社,2000,328~367
    [7]胡毓仁,船舶及海洋工程结构安全可靠性分析,北京:人民交通出版社,1996,1~2
    [8]周胜利,林亚潮,高速铁路钢桥的疲劳问题及构造处理,国外桥梁,1996,38~45
    [9]邓立,祈林祥,2TN型转向架严重裂纹问题及改进情况:兼论ORE标准的适应性,铁道车辆,1997,35(8):53~57
    [10] Ilkka Poutiainen, Gary Marquis, A fatigue assessment method based on weldstress, International Journal of Fatigue,2006,28(9):1037~1046
    [11] S. Ravi, V. Balasubramanian, S. Nemat Nasser, Influences of post weld heattreatment on fatigue life prediction of strength mis-matched HSLA steel welds,International Journal of Fatigue,2005,27(5):547~553
    [12] Genbao Zhang, Cetin Morris Sonsino, Ralph Sundermeier, Method of effectivestress for fatigue: Part II-Applications to V-notches and seam welds,International Journal of Fatigue,2012,37(4):24~40
    [13] N. Nanninga, C. White, O. Mills, J. Lukowski, Effect of specimen orientationand extrusion welds on the fatigue life of an AA6063alloy, International Journalof Fatigue,2010,32(2):238~246
    [14] T.A. Netto, M.I. Louren o, A. Botto, Fatigue performance of pre-strained pipeswith girth weld defects: Full-scale experiments and analyses, InternationalJournal of Fatigue,2008,30(5):767~778
    [15] Z. Barsoum, B. Jonsson, Influence of weld quality on the fatigue strength in seamwelds, Engineering Failure Analysis,2011,18(3):971~979
    [16] Yoshihiko Uematsu, Keiro Tokaji, et al. Fatigue behaviour of dissimilar frictionstir spot weld between A6061and SPCC welded by a scrolled groove shouldertool, Procedia Engineering,2010,2(1):193~201
    [17] Hong Tae Kang, Pingsha Dong, J.K. Hong, Fatigue analysis of spot welds using amesh-insensitive structural stress approach, International Journal of Fatigue,2007,29(8):1546~1553
    [18] Kari E. Lahti, Hannu H nninen, Erkki Niemi, Nominal stress range fatigue ofstainless steel fillet welds-the effect of weld size, Journal of Constructional SteelResearch,2000,54(1):161~172
    [19] R. Baptista, V. Infante, C.M. Branco, Study of the fatigue behavior in weldedjoints of stainless steels treated by weld toe grinding and subjected to salt watercorrosion, International Journal of Fatigue,2008,30(3):453~462
    [20]霍立兴,焊接结构工程强度,北京:机械工业出版社,1995,152~276
    [21]王文先,霍立兴,张玉凤等,利用低相变点焊条改善焊接接头的疲劳强度,焊接学报,2001,22(5):37~40
    [22] M.M. Kobin and L.I. Dekhtyar, Relationship of the fatigue strength of steel to it’sproperties and to the residual in deposited metal. Avt.Sv. No.91963. p19~25
    [23] A.Ohta, O.Watanabe, K.Matsuoka, Fatigue strength improvement by using newlydeveloped low transformation temperature welding material, Welding in theWorld,1999,43:38~42
    [24]张中平,改善焊接结构疲劳性能的等离子喷涂法研究,博士学位论文,天津:天津大学,2006
    [25] Manufacturing Processes for Engineering Materials,5th ed. Kalpakjian.Schmid
    [26] A.Ohta, Y.Maedaand, N.Suzuki, Effect of yield strength on the basic fatiguestrength of welded joints, Fatigue and Fracture of Engineering Materials&Structures,1993,16(5):473~479
    [27] D.拉达伊(Radaj, Dieter)著,焊接结构疲劳强度(郑朝云,张式程译),北京:机械工业出版社,1994,86~257
    [28]汤红卫,轩福贞,侯和涛等,未熔透尺寸对十字焊接接头疲劳性能影响规律试验研究,实验力学,1998,13(1):105~109
    [29] A.Ohta, Y.Maedaa, N.Suzuki, Effect of yield strength on the basic fatiguestrength of welded joints, Fatigue Fracture,1993,16(5):473~479
    [30] Ohta, Akihiko, Mawari, Fatigue strength of butt welded Al-Mg aluminumalloy-tests with maximum stress at yield strength, Fatigue and Fracture ofEngineering Materials&Structures,1990,13(1):53~58
    [31]王东坡,霍立兴,张玉凤, TIG熔修法改善含咬边缺陷焊接接头疲劳性能,天津大学学报,2004,37(7):570~574
    [32]贾宝春,李冬霞, TIG熔修提高焊接接头疲劳强度的研究,中原工学院学报,2003,14(1):8~10
    [33] Lixing Huo, Dongpo Wang, Yufeng Zhang, Investigation of the fatigue behaviourof the welded joints treated by TIG dressing and ultrasonic peening undervariable-amplitude load, International Journal of Fatigue,2005,27(1):95~101
    [34] T. Dahle, Design fatigue strength of TIG-dressed welded joints in high-strengthsteels subjected to spectrum loading, International Journal of Fatigue,1998,20(9):677~681
    [35] R. Baptista, V. Infante, C.M. Branco, Study of the fatigue behavior in weldedjoints of stainless steels treated by weld toe grinding and subjected to salt watercorrosion, International Journal of Fatigue,2008,30(3):453~462
    [36] L. Bertini, V. Fontanari, G. Straffelini, Influence of post weld treatments on thefatigue behavior of Al-alloy welded joints, International Journal of Fatigue,1996,20(10):749~755
    [37] S.J. Maddox, Improving the fatigue strength of welded joints by peening, MetalConstruction,1985,17(4):220~224
    [38] G.费尔, B.洛伯尔, R.B.瓦特毫斯,喷丸硬化产生的压应力在弯曲疲劳和接触疲劳状态下的稳定性,宇航材料工艺,1991,41(1):51~54
    [39] M. Kobayashi, T. Matsui, Y. Murakamit, Mechanism of creation of compressiveresidual stress by shot peening, International Journal of Fatigue,1998,20(5):351~357
    [40] Akinhiko ohta, Naoyuki Suzuki, Yoshio Maeda, Effective means for improvingthe fatigue strengths of welded structures, Welding in the world,1996,38(3):84~89
    [41] Sugata Roy. Experimental and analytical evaluation of enhancement in fatigueresistance of welded details subjected to post-weld ultrasonic impact treatment.University of Lehigh,2006
    [42]王东坡,改善焊接接头疲劳强度超声冲击方法的研究,博士学位论文,天津:天津大学,2000
    [43] Xiaohui Zhao, Dongpo Wang, Lixing Huo, Analysis of the S-N curves of Weldedjoints enhanced by ultrasonic peening treatment, Materials and Design,2011,32(1):88~96
    [44] F. Machida, T. Fujita, K.Yoshiie, T. Kubo, Improvement of Fatigue Strength ofBox Weld on Non-Quenched Steel by Using Low Transformation TemperatureWelding Material, IIW Doc. XIII-1771-1999:1~11
    [45]王文先,低相变点焊条及其在改善焊接接头疲劳性能中的应用研究,博士学位论文,天津:天津大学,2002
    [46] Ohta A, Shiga C, Maeda Y, Suzuki N, Watanabe O, Kubo T, et al. Fatiguestrength improvement of box-welded joints using low transformationtemperature welding material, Welding International,2000,14(10):801~85
    [47] Ohta A, Matsuoka K, Nguyen NT, Maeda Y, Suzuki N, Fatigue strengthimprovement of lap joints of thin steel plate using low-transformationtemperature welding wire, Welding Journal,2003,82(4):78S~83S
    [48] Eckerlid J, Nilsson T, Kalsson L, Fatigue properties of longitudinal attachmentswelded by low transformation temperature welding filler, Science andTechnology of Welding&Joining,2003,8(5):353~359(7)
    [49] Ohta A, Suzuki N, Maeda Y, Maddox SJ, Fatigue strength improvement of lapwelded joints by low transformation temperature welding wire-superiorimprovement with strength of steel, Welding in the World,2003,47(3/4):38~43
    [50] Ohta A, Shiga C, Maeda Y, Suzuki N, Watanabe O, Kubo T, et al. Fatiguestrength improvement of box-welded joints using low transformationtemperature welding material triple fatigue strength by pos weld heat treatment.Welding International,2002,16(1):44~47
    [51]孙志远,低相变点堆焊焊条的研制,硕士学位论文,天津:天津大学,2007
    [52] Karlsson L, Bruins W, Gillenius C, Rigdal S, Goldschmitz M, Matchingcomposition supermartensitic stainless steel welding consumables,Supermartensitic Stainless Steels99; Brussels; Belgium;27-28May1999. pp.172~179
    [53] H.K.D.H. Bhadeshia, Development in martensitic and bainitic steels: role of theshape deformation, Materials Science and Engineering: A,2004,378(1-2):34~39
    [54] Z. Barsoum, M. Gustafsson, Fatigue of high strength steel joints welded with lowtemperature transformation consumables, Engineering Failure Analysis,2009,16(7):2186~2194
    [55] Hobbacher A., Recommendation for fatigue design of welded joints andcomponents, International Institute of Welding, Document XIII-1965-03/XV-1127-03,2003
    [56] Chiu C-C, Case E D, Elastic modulus determination of coating layers as appliedto layered ceramic composites, Materials Science&Engineering A: StructuralMaterials: Properties, Microstructure and Processing,1991, A132(1-2):39~47
    [57] Rouzaud A, Barbier E, Ernoult J, et al. Method for elastic modulus measurementsof magnetron sputtered thin films dedicated to mechanical applications, ThinSolid Films,1995,270(1-2):270~274
    [58] Li H, Khor K A, Cheang P, Young's modulus and fracture toughnessdetermination of high velocity oxy-fuel-sprayed bioceramic coating, Surface andCoatings Technology,2002,155(1):21~32
    [59] Fatima M, Silva Vales, Hancock P, et al. An improved three-point bendingmethod by nanoindentation, Surface and Coating Technology,2003,169-170(1):748~752
    [60] Emmanuelle Harry, Andre Rouzaud, Michel Ignat et al. Mechanical properties ofW and W(C) thin films: Young's modulus, fracture toughness and adhesion, ThinSolid Films,1998,332(1-2):195~201
    [61] Nicholson E D, Field J E, Mechanical and thermal properties of thin films,Journal of Hard Materials,1994,5(3):89~132
    [62] Hardwick D A, The mechanical propertites of thin films: a review, Thin SolidFilms,1987,154:109~124
    [63] Spinner, S., Tefft, W.E., A method for determining mechanical resonancefrequencies and for calculating elastic moduli from These Frequencies, Proc.ASTM,61,1221,1961
    [64] Ollendorf H, Schwarz Th, et al. A comparative study of the mechanical propertiesof TiN coatings using the non-destructive surface acoustic wave method, scratchtest and four-point bending test, Surface and Coatings Technology,1996,84(1-3):458~464
    [65] Schneider Dieter, Schultrich Bernd, Elastic modulus: a suitable quantity forcharacterization of thin films, Surface and Coatings Technology,1998,98(1-3):962~970
    [66] M.D. Tran, J. Poublan, J.H. Dautzenberg, A practical method for thedetermination of the Young's modulus and residual stresses of PVD thin films,Thin Solid Films,1997,308-309:310~314
    [67] C633-79Standard Test Method for Adhesion of Cohesive Strength ofFlame-Sprayed Coatings, Annual Book of ASTM Standards, Vol.03.01,1993,P.665
    [68] Hainsworth S V, McGurk M R, Page T F, The effect of coating cracking on theindentation response of thin hard-coated systems, Surface and CoatingsTechnology,1998,102(1-2):97~107
    [69] Sanchez J M, EI-Mansy S, Sun B, et al. Cross-sectional nanoindentation: A newtechnique for thin film interfacial adhesion characterization Source, ActaMaterialia,1999,47(17):4405~4413
    [70] M.Dao, N.Chollacoop, K.J.VanVliet, T.A.Venkatesh, S.Suresh, Computationalmodeling of the forward and reverse problems in instrumented indentation, ActaMaterialia,2001,49(19):3899~3918
    [71] B.R. Lawn, A.G. Evans, D.B. Marshall, Elastic/plastic in-dentation damage inceramics: the median/radial crack system, Journal of the American CeramicSociety,1980,63,574~581
    [72]蒋刚,谭明华,王伟明,何闻,残余应力测量方法的研究现状,机床与液压,2007,35(6):213~220
    [73]宋天民,焊接残余应力的产生与消除,北京:中国石化出版社,2005,189~191
    [74] Lindgren L, Runnemalm H, et al. Simulation of multipass welding of a thickplate, International Journal for Numerical Methods in Engineering,1999,44(9):1301~1316
    [75] J.B. Roelens, Numerical Simulation of some Multipass Submerged ArcWelding-Determination of the Residual Stresses and Comparison withExperimental Measurements, Welding Research Abroad,1996:42(8-9):17~24
    [76] M. Mochizuki, N. Satiti, H. Vozumi, Study on Residual Stress at Butt-WeldedPipe Joints and Plate Joints Using Inherent Strain Analysis, Transactions of theJapan Society of Mechanical Engineers-Part A,1996,62(595):808~813
    [77] K Choi, S Im, Finite element simulation of welding processes using a solid-shellelement, Journal of Physics D: Applied Physics,2009,42(4):1~17
    [78] L.-E. Lindgren, Numerical modelling of welding, Computer Methods in AppliedMechanics and Engineering,2006,195(48/49):6710~6736
    [79] C. Carmignani, R. Mares, G. Toselli, Transient finite element analysis of deeppenetration laser welding process in a singlepass butt-welded thick steel plate,Computer Methods in Applied Mechanics and Engineering,1999,179(3/4):197~214
    [80] S.A.A. Akbari Mousavi, S.T.S. Al-Hassani, Finite element simulation ofexplosively-driven plate impact with application to explosive welding, Materialsand Design,2008,29(1):1~19
    [81] S.W. Wen, P. Hilton, D.C.J. Farrugia, Finite element modelling of a submergedarc welding process, Journal of Materials Processing Technology,2001,119(1-3):203~209
    [82]李晋梅,雷毅,许俊成,20钢中厚板焊接过程温度场的数值模拟,石油化工设备,2007,36(3):26~28
    [83] Komeil Kazemi, John A. Goldak, Numerical simulation of laser full penetrationwelding, Computational Materials Science,2009,44(3):841~849
    [84]陈楚,数值分析在焊接中的应用,上海:上海交通大学出版社,1985
    [85] John Goldak, Aditya Chakravarti, Malcolm Bibby, A New Finite Element Modelfor Welding Heat Sources, Metallurgical and materials transaction B,1984,15(2):299~305
    [86] J. Goldak, M. Bibby, J. Moore, R. House and B. Patel, Computer Modeling ofHeat Flow in Welding, Metallurgical and materials transaction B,1986,17(3):587~600
    [87] K. Masubuchi, Prediction and control of residual stresses and distortion inwelded structures, Transactions of JWRI,1996,25(2):53~67
    [88]汪建华,陈楚,丁凤鸣,考虑相变的焊接动态和残余应力的研究,第六届全国焊接学术会议论文集,第5册,1990,209~212
    [89] Dean Deng, FEM prediction of welding residual stress and distortion in carbonsteel considering phase transformation effects, Materials and Design,2009,30(2):359~366
    [90] Mohsen Haddad-Sabzevar, Ali Haerian, Hamed Seied-Hossein-Zadeh, Astochastic model for austenite phase formation during arc welding of a low alloysteel, Journal of Materials Processing Technology,2009,209(8):3798~3807
    [91] B. Chen, X.H. Peng, J.H. Fan, S.T. Sun, A viscous-elastoplastic constitutiveequation incorporating phase transformation with the application to the residualstress analysis for welding process, Journal of Materials Processing Technology,2008,205(1-3):316~321
    [92] R.G. Thiessen, I.M. Richardson, J. Sietsma, Physically based modelling of phasetransformations during welding of low-carbon steel, Materials Science andEngineering: A,2006,427(1-2):223~231
    [93] N. Siva Shanmugam, G. Buvanashekaran, K. Sankaranarayanasamy, Somestudies on weld bead geometries for laser spot welding process using finiteelement analysis, Materials&Design,2012,34(2):412~426
    [94] W Zhang, J.W Elmer, T DebRoy, Modeling and real time mapping of phasesduring GTA welding of1005steel, Materials Science and Engineering: A,2002,333(1-2):320~335
    [95] Dean Deng, Hidekazu Murakawa, Prediction of welding residual stress inmulti-pass butt-welded modified9Cr-1Mo steel pipe considering phasetransformation effects, Computational Materials Science,2006,37(3):209~219
    [96] Da Li, Bo Liao, et al. Process stress simulation of medium-high carbon steel afterhard-face-welding during martensite transformation, Computational MaterialsScience,2008,44(2):280~285
    [97] W.C. Jiang, B.Y. Wang, J.M. Gong, S.T. Tu, Finite element analysis of the effectof welding heat input and layer number on residual stress in repair welds for astainless steel clad plate, Materials and Design,2011,32(5):2851~2857
    [98] A.P. Mackwood, R.C. Crafer, Thermal modelling of laser welding and relatedprocesses: a literature review, Optics and Laser Technology,2005,37(2):99~115
    [99] Qing Xiang Yang, Mei Yao, Joongkeun Park, Numerical simulation on residualstress distribution of hard-face-welded steel specimens with martensitetransformation, Materials Science and Engineering: A,2004,364(1/2):244~248
    [100]陈礼顺,张斌,蔡元钢,热喷涂涂层在航空发动机上的应用及发展,航空制造技术,2011,(11):34~37
    [101]吕家舜,卫军强,李锋等,热喷涂技术在冶金行业的应用及其发展,鞍钢技术,2010,(6):9~14
    [102]王欣,于荣海,火焰喷涂Ni60和Ni60-WC涂层的组织结构分析,材料热处理技术,2009,38(22):108~110
    [103]郭文红,喷熔修形法改善焊接结构疲劳性能的研究,硕士学位论文,天津:天津大学,2007
    [104] Yan BAI, Hong-ming GAO, et al. Influence of plasma-MIG welding parameterson aluminum weld porosity by orthogonal test, Transactions of NonferrousMetals Society of China,2010,20(8):1392~1396
    [105] Dashan SUI, Zhenshan CUI, Application of orthogonal experimental design andTikhonov regularization method for the identification of parameters in thecasting solidification process, Acta Metallurgica Sinica (English Letters),2009,22(1):13~21
    [106] MI Guo-qiang, Automatic Surface Welding for Wear-resisting Layer ofContinuous-casting Roll Shell Φ150/Φ170, Mechanical Engineering andAutomation,2011,166(3):200~201
    [107] KANG Jiandong, SU Yunhai, Effect of Surfacing Current on Microstructure andProperties of Fe5Deposited Metal, Hot Working Technology,2011,40(9):120~121
    [108] LIU Zhengjun, LI Jin, SU Yunhai, Study on Hardness and Microstructure ofPlasma Surfacing Layer of Aluminum Bronze Powder, Hot WorkingTechnology,2011,40(7):149~153
    [109] W.C. Oliver, G.M. Pharr. An Improved Technique for Determining Hardness andElastic Modulus Using Load and Displacement Sensing IndentationExperiments. Journal of Materials Research,1992,7(6):1564~1583
    [110]徐祖耀,马氏体相变与马氏体(第二版),北京:科技出版社,1999,7~69
    [111]赵振业,合金钢设计,北京:国防工业出版社,1999,212~320
    [112]戴起勋,奥氏体钢马氏体相变点Ms, Mes,钢铁,1995,30(8):52~58
    [113] S. Zenitani, N. Hayakawa, et al. Development of new low transformationtemperature welding consumable to prevent cold cracking in high strength steelwelds, Science and Technology of Welding and Joining,2007,12(6):516~522
    [114]李少兵,张俊旭,铜在高强度合金钢及焊缝金属中的作用,材料开发与应用,2001,16(6):39~42
    [115]李娜,铜在钢中的作用综述,辽宁科技大学学报,2011,34(2):157~162
    [116] Denis Thibault, Philippe Bocher, et al. Residual stress characterization in lowtransformation temperature13%Cr-4%Ni stainless steel weld by neutrondiffraction and the contour method, Materials Science and Engineering: A,2010,527(23):6205~6210
    [117] Z. Barsoum, M. Gustafsson, Fatigue of high strength steel joints welded withlow temperature transformation consumables, Engineering Failure Analysis,2009,16(7):2186~2194
    [118] D.P. Koistinen, R.E. Marburger, A general equation prescribing the extent of theaustenite-martensite transformation in pure iron-carbon alloys and plain carbonsteels, Acta Metall.,1959,7:59~60
    [119]武传松,焊接热过程数值分析,哈尔滨:哈尔滨工业大学出版社,1990
    [120]尹丹青,改善焊接接头性能的超声冲击方法若干问题的研究,博士学位论文,天津:天津大学,2010
    [121] Ansys, Ansys theory reference: ANSYS, Inc.,2007
    [122]孙盼,李文,姬庆玲, Q235钢焊接温度场的数值模拟,中国水运,2010,10(7):235~236
    [123]冯兆龙,姚润钢,王明林,低相变点焊条焊接接头残余应力场的数值模拟,2007,37(9):52~55
    [124]王怡然,低相变点焊条的焊接残余应力数值模拟,硕士学位论文,天津天津大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700