柔性结构弹塑性碰撞动态子结构方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业所要求的高速、高精度、高性能柔性结构系统的应用已经越来越普及,柔性系统间发生的弹塑性碰撞所造成的结构损伤和系统性能的劣化日益受到工程界的关注。柔性结构弹塑性碰撞动力学分析是一个涉及材料动态特性、碰撞接触变形、碰撞瞬态波传播、碰撞接触与分离状态频繁切换等强非线性问题,理论分析十分困难。因此,发展准确、高效的数值分析方法显得十分重要。本文结合有限元理论和固定界面模态综合方法,提出了柔性结构弹塑性碰撞动态子结构方法和柔性结构弹粘塑性碰撞动态子结构方法,对柔性杆和柔性梁的弹塑性和弹粘塑性碰撞问题进行了数值分析,并通过三维非线性有限元方法和实验方法,对提出的动态子结构法进行了验证。主要研究工作如下:
     (1)针对柔性结构的弹塑性碰撞问题,忽略材料应变率效应,采用弹塑性有限元理论和固定界面模态综合方法,推导了模态坐标下的弹塑性碰撞动力学控制方程,理论证明了主模态的存在性和模态截断的收敛性,建立了柔性结构弹塑性碰撞动态子结构方法的基本理论,简称为"DSPI方法’
     (2)运用DSPI方法研究了刚性质量纵向碰撞弹塑性悬臂直杆问题,采用粘结接触模型处理刚性质量与杆的碰撞约束,讨论了方法的数值收敛性。计算了碰撞弹塑性波的传播、弹塑性杆的碰撞动态响应和二次碰撞现象,计算结果与三维非线性动力有限元的计算结果相吻合。
     (3)运用DSPI方法研究了钝圆柱头质量横向碰撞简支直梁问题,采用修正的单轴压缩局部接触模型处理钝圆柱头质量与简支梁的碰撞约束,讨论了方法的数值收敛性。计算了碰撞弹塑性波传播、波弥散效应、弹塑性梁的碰撞动态响应和碰撞过程中的多次的接触分离现象,计算结果与三维非线性动力有限元的计算结果相吻合,并与实验结果相符合。
     (4)针对柔性结构的弹粘塑性碰撞问题,考虑材料应变率效应,采用弹粘塑性有限元理论和固定界面模态综合方法,推导了模态坐标下的弹粘塑性碰撞动力学控制方程,理论证明了主模态的存在性和模态截断的收敛性,建立了柔性结构弹粘塑性碰撞动态子结构方法的基本理论,简称为‘'DSVI方法”
     (5)运用DSVI方法研究了刚性质量纵向碰撞线性强化弹粘塑性杆和钝圆柱头质量横向碰撞理想弹粘塑性直梁问题,讨论了方法的数值收敛性,计算了碰撞弹粘塑性波传播和碰撞弹粘塑性动态响应,计算结果与三维非线性动力有限元的计算结果相吻合。
     以上的研究表明,DSPI方法和DSVI方法可以分别作为柔性结构弹塑性和弹粘塑性碰撞行为分析的有效的数值计算手段,为进一步将动态子结构方法运用于复杂柔性结构系统的弹塑性和弹粘塑性碰撞动力学行为研究打下了一定的基础。
In modern industry field, complicated flexible mechanical systems with high speed, high precision and high performance have been applied widely. The problems of structure failure and worsening of working capability resulted from elastic-plastic impacts between colliding bodies have increasingly attracted the concern of scientists. Since elastic-plastic impact dynamics is a strongly nonlinear problem which is related to material dynamic properties, the transient wave propagation, the contact deformation, the repeated switch of contact-separation state and etc, it is hard to solve this problem by analytical methodology. Hence, to develop an accurate and efficient numerical method becomes more important and necessary. In this thesis, a dynamic substructure method for elastic-plastic impact and a dynamic substructure method for elastic-viscoplastic impact of flexible structure are developed through incorporating elastic-plastic finite element theory with fixed-interface modal synthesis method. By the application of the present method, the elastic-plastic impact problem and elastic-viscoplastic impact problem of the flexible systems constituted of flexible rods or beams are analyzed numerically. The feasibility of the dynamic substructure method is validated by comparing the computation results with those obtained by three-dimensional dynamic finite element method (FEM) and experiment method. The main researches of this thesis are shown as follows:
     (1) A complete foundation theory of dynamic substructure method for elastic-plastic impact problem of flexible structure is developed. Neglecting strain-rate effect, the governing equations expressed by modal coordinate are derived by using of the elastic-plastic finite element theory and fixed-interface modal synthesis technique. The existence of normal modes and the convergence of mode truncation are proved theoretically. The solving procedure for the nonlinear governing equations is given. This procedure is referred to as 'DSPI method'.
     (2) The'DSPI method'method is applied to investigate a flexible uniform elastic-plastic bar longitudinally struck by a rigid block. To treat contact constrains between the rigid block and the bar, an adhesive contact model is adapted. The numerical convergence of the method is discussed systematically. The propagation of transient waves, the impact responses and the second impact phenomenon are calculated. The DSPI numerical solutions agree with the FEM solutions excellently.
     (3) The' DSPI method' is adopted to study an impact problem of a simply supported uniform beam transversely struck by a round-nosed rigid mass.A modified uniaxial compression contact model is used to treat the contact constrains, and the numerical convergence of the method is discussed systematically. The dynamic characteristics such as propagation of transient waves, dispersion of flexural waves, dynamic responses of the elastic-plastic beam and the phenomenon of multiple contacts and separations are all simulated. The DSPI numerical solutions agree with the FEM solutions and experiment datas excellently.
     (4) A complete foundation theory of dynamic substructure method for elastic-viscoplastic impact problem of flexible structure is developed. For an elastic-viscoplastic impact problem, the strain-rate effect of material is taken into account. The governing equations expressed by modal coordinates are derived by using of the elastic-viscoplastic finite element theory and the fixed-interface modal synthesis technique. The existence of normal modes and the convergence of mode truncation are proved theoretically. This method is referred to as the'DSVI method'
     (5) By the application of the'DSVI method', a linear harding elastic-viscoplastic rod longitudinally struck by a rigid block and an ideal elastic-viscoplastic beam transversely struck by a round-nosed rigid mass are investigated. Systematical discussions on the numerical convergence are done. The elastic-viscoplastic waves and elastic-viscoplastic transient responses are calculated. The DSVI solutions agree with the FEM solutions excellently.
     The above investigations show that DSPI method and DSVI method are an effective numerical tools to analyze elastic-plastic impact and elastic-viscoplastic impact of flexible structure, respectively. The investigations in this thesis establish a foundation for applying the DSPI method and the DSVI method to calculate the elastic-plastic impact responses and elastic-viscoplastic impact responses of more complicated structure system.
引文
[1]Goldsmith W. Impact:TheTtheory and Physical Behaviour of Colliding solids [M]. London:Edward. Arnold Ltd.,1960.
    [2]Lou L, Zerva A. Effects of spatially variable ground motions on the seismic response of a skewed, multi-span, RC highway bridge [J]. Soil Dynamics and Earthquake Engineering, 2005,25(7-10):729-740.
    [3]Walker J D. From Columbia to Discovery:Understanding the impact threat to the space shuttle [J]. International Journal of Impact Engineering,2009,36(2):303-317.
    [4]李清源.航天器对空间碎片撞击危害的被动防护技术[J].强度与环境,2002,(04):45-50.
    [5]Kahraman A, Blankenship G W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters [J]. Journal of Applied Mechanics, Transactions ASME,1997,64(1):217-226.
    [6]Yau Y H, Hua S N. A Comprehensive Review of Drop Impact Modeling on Portable Electronic Devices [J]. Applied Mechanics Reviews,2011,64(2):020803.
    [7]El-Rich M, Arnoux P-J, Wagnac E, et al. Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions [J]. Journal of Biomechanics,2009,42(9):1252-1262.
    [8]Bangash M. Shock, Impact and Explosion:Structural Analysis and Design [M]. Springer Verlag,2009.
    [9]Wen Z, Jin X, Zhang W. Contact-impact stress analysis of rail joint region using the dynamic finite element method [J]. Wear,2005,258(7-8):1301-1309.
    [10]Knudsen J, Massih a R. Vibro-Impact Dynamics of a Periodically Forced Beam [J]. Journal of Pressure Vessel Technology,2000,122(2):210-221.
    [11]Yulong L, Yongkang Z, Pu X. Study of Similarity Law for Bird Impact on Structure [J]. Chinese Journal of Aeronautics,2008,21(6):512-517.
    [12]Airoldi A, Cacchione B. Modelling of impact forces and pressures in Lagrangian bird strike analyses [J]. International Journal of Impact Engineering,2006,32(10): 1651-1677.
    [13]孙志国,朱春玲.三维机翼表面水滴撞击特性计算[J].计算物理,2011,(05):677-685.
    [14]Katta R R, Polycarpou a A, Hanchi J V, et al. Analytical and Experimental Elastic-Plastic Impact Analysis of a Magnetic Storage Head-Disk Interface [J]. Journal of Tribology, 2009,131(1):011902-011910.
    [15]Grewal G, Lee M. Strength of minimum structure platforms under ship impact [J]. Journal of Offshore Mechanics and Arctic Engineering,2004,126(4):368-375.
    [16]Maragakis E A, Jennings P C. Analytical models for the rigid body motions of skew bridges [J]. Earthquake Engineering & Structural Dynamics,1987,15(8):923-944.
    [17]Demarco a L, Chimich D D, Gardiner J C, et al. The impact response of motorcycle helmets at different impact severities [J]. Accident Analysis & Prevention,2010,42(6): 1778-1784.
    [18]余新刚,刘华,杨嘉陵.人体冲撞耐受性分析中的数值模型[J].航空学报,2008,(02):373-378.
    [19]Yuan C, Xianlong J. Dynamic response of flexible container during the impact with the ground [J]. International Journal of Impact Engineering,2010,37(10):999-1007.
    [20]Kaneko T, Ujihashi S, Yomoda H, et al. Finite element method failure analysis of a pressurized FRP cylinder under transverse impact loading [J]. Thin-Walled Structures, 2008,46(7-9):898-904.
    [21]杨秀娟,闫涛,修宗祥,等.海底管道受坠物撞击时的弹塑性有限元分析[J].工程力学,2011,(06):189-194.
    [22]张冠军,曹立波,官凤娇,等.基于汽车与行人碰撞载荷特点的下肢长骨建模[J].力学学报,2011,(05):939-947.
    [23]Han I, Lee Y. Chaotic dynamics of repeated impacts in vibratory bowl feeders [J]. Journal of Sound and Vibration,2002,249(3):529-541.
    [24]Wiercigroch M, Wojewoda J, Krivtsov A. Dynamics of ultrasonic percussive drilling of hard rocks [J]. Journal of Sound and Vibration,2005,280(3):739-757.
    [25]Cheng J, Xu H. Inner mass impact damper for attenuating structure vibration [J]. International Journal of Solids and Structures,2006,43(17):5355-5369.
    [26]汪勇,魏敏,宋占永,等.金属材料的超声冲击残余应力研究[J].中国表面工程,2011,(02):80-82+103.
    [27]Li Y, Xi F, Behdinan K. Dynamic Modeling and Simulation of Percussive Impact Riveting for Robotic Automation [J]. Journal of Computational and Nonlinear Dynamics, 2010,5(2):021011-021010.
    [28]Li W-Y, Yin S, Wang X-F. Numerical investigations of the effect of oblique impact on particle deformation in cold spraying by the SPH method [J]. Applied Surface Science, 2010,256(12):3725-3734.
    [29]Chizari M, Barrett L M. Single and double plate impact welding:Experimental and numerical simulation [J]. Computational Materials Science,2009,46(4):828-833.
    [30]Chen R, Luo J, Guo D, et al. Phase transformation during silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2008,266(14):3231-3240.
    [31]Setoh M, Nakamura a M, Michel P, et al. High-and low-velocity impact experiments on porous sintered glass bead targets of different compressive strengths:Outcome sensitivity and scaling [J]. Icarus,2010,205(2):702-711.
    [32]王心源,吉玮,李超,等.基于”嫦娥一号”数据的月表撞击坑特征的多参数统计分析[J].地理研究,2012,31(2):369-376.
    [33]Wang H, Chang R, Sheng K, et al. Impact Response of Bamboo-Plastic Composites with the Properties of Bamboo and Polyvinylchloride (PVC) [J]. Journal of Bionic Engineering,2008,5:28-33.
    [34]Tran K T, Mcvay M, Herrera R, et al. Estimation of nonlinear static skin friction on multiple pile segments using the measured hammer impact response at the top and bottom of the pile [J]. Computers and Geotechnics,2012,41:79-89.
    [35]余同希,力学,华云龙.结构塑性动力学引论[M].合肥:中国科学技术大学出版社,1994.
    [36]王礼立.应力波基础[M].北京:国防工业出版社,2005.
    [37]Zhong Z-H, Mackerle J. Contact-Impact Problems:A Review With Bibliography [J]. Applied Mechanics Reviews,1994,47(2):55-76.
    [38]Dias J, Pereira M. Dynamics of flexible mechanical systems with contact-impact and plastic deformations [J]. Nonlinear Dynamics,1995,8(4):491-512.
    [39]Stronge W. Impact Mechanics [M]. Cambridge U K: Cambridge University Press,2000.
    [40]余同希,斯壮W J.塑性结构的动力学模型[M].北京大学出版社,2002.
    [41]马晓青.冲击动力学[M].北京:北京理工大学出版社,1992.
    [42]Lee E, Symonds P S. Large plastic deformations of beams under transverse impact [J]. Journal of Applied Mechanics,1952,19:308-314.
    [43]Parkes E W. The Permanent Deformation of a Cantilever Struck Transversely at Its Tip [J]. Mathematical and Physical Sciences,1955,228(1175):462-476.
    [44]Symonds P. Survey of methods of analysis for plastic deformation of structures under dynamic loading [M]. Brown Univ., Division of Engineering Report BU/NSRDC/1-67. 1967.
    [45]Johnson W. Impact strength of materials [M]. London:Edward Arnold Ltd.,1972.
    [46]Bodner S R, Speirs W G Dynamic plasticity experiments on aluminium cantilever beams at elevated temperature [J]. Journal of the Mechanics and Physics of Solids,1963,11(2): 65-77.
    [47]Bodner S R, Symonds P S. Experimental and theoretical investigation of the plastic deformation of cantilever beams subjiectd to impulsive loading [J]. Journal of Applied Mechanics,1962,29(4):719-729.
    [48]杨嘉陵,余同希,王仁.结构塑性动力响应当前的研究进展和重点[J].力学进展,1993,(01):23-33.
    [49]赵亚溥,方竞,余同希.结构塑性动力响应实验研究的简要综述[J].力学进展,1997,(03):39-54.
    [50]Symonds P S, Fleming Jr W T. Parkes revisited:On rigid-plastic and elastic-plastic dynamic structural analysis [J]. International Journal of Impact Engineering,1984,2(1): 1-36.
    [51]Reid S R, Gui X G On the elastic-plastic deformation of cantilever beams subjected to tip impact [J]. International Journal of Impact Engineering,1987,6(2):109-127.
    [52]Wang X, Yu T. Parkes revisited:effect of elastic deformation at the root of a cantilever beam [J]. International Journal of Impact Engineering,1991,11(2):197-209.
    [53]Symonds P S, Yu T X. Counterintuitive Behavior in a Problem of Elastic-Plastic Beam Dynamics [J]. Journal of Applied Mechanics,1985,52(3):517-522.
    [54]Forrestal M J, Wesenberg D L. Elastic-plastic response of 6061-T6 aluminum beams to impulse loads [J]. Transactions of the ASME Series E, Journal of Applied Mechanics, 1976,43(2):259-262.
    [55]Liu S C, Lin T H. Elastic-plastic dynamic analysis of structures using known elastic solutions [J]. Earthquake Engineering & Structural Dynamics,1979,7(2):147-159.
    [56]李永池,周光泉,黄峰.撞击引起的弹塑性激波衰减规律的拟级数解法[J].力学学报,1989,(S1):156-165.
    [57]虞吉林,黄锐.冲击载荷下软钢梁早期响应的数值模拟和简化模型[J].力学学报,1997,(04):81-86.
    [58]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [59]Yin X C. Multiple impacts of two concentric hollow cylinders with zero clearance [J]. International Journal of Solids and Structures,1997,34(35-36):4597-4616.
    [60]Yin X C, Qin Y, Zou H. Transient responses of repeated impact of a beam against a stop [J]. International Journal of Solids and Structures,2007,44(22-23):7323-7339.
    [61]Yin X C, Wang L G. The effect of multiple impacts on the dynamicss of an impact system [J]. Journal of Sound and Vibration,1999,228(5):995-1015.
    [62]Yin X C, Yue Z Q. Transient Plane-Strain Response of Multilayered Elastic Cylinders to Axisymmetric Impulse [J]. Journal of Applied Mechanics,2002,69(6):825-835.
    [63]邢誉峰.梁结构线弹性碰撞的解析解[J].北京航空航天大学学报,1998,24(06):633-637.
    [64]汪东廷,洪嘉振,吴坛辉.平面柔性多体碰撞阶段附加接触约束方法[J].力学学报,2011,(06):1157-1161.
    [65]刘锦阳,洪嘉振.卫星太阳电池阵在板展开阶段的撞击特性研究[J].空间科学学报,2000,(01):61-68.
    [66]刘锦阳,洪嘉振.闭环柔性多体系统的多点撞击问题[J].中国机械工程,2000,(06):28-32+25.
    [67]郭安萍,洪嘉振,杨辉.柔性多体系统接触碰撞子结构动力学模型[J].中国科学E辑:技术科学,2002,(06):765-770.
    [68]Wu S C, Haug E J. A Substructure Technique for Dynamics of Flexible Mechanical Systems With Contact-Impact [J]. Journal of Mechanical Design,1990,112(3):390-398.
    [69]Guo A, Batzer S. Substructure Analysis of a Flexible System Contact-Impact Event [J]. Journal of Vibration and Acoustics,2004,126(1):126-131.
    [70]Shen Yu N, Yin Xiao C. Dynamic substructure model for multiple impact responses of micro/nano piezoelectric precision drive system [J]. Science in China Series E: Technological Sciences,2009,52(3):622-633.
    [71]沈煜年,尹晓春.非均质柔性杆撞击瞬态动力学动态子结构法[J].工程力学,2008,(11):42-47.
    [72]沈煜年.复杂柔性系统多次撞击动力学的动态子结构方法[D].南京;南京理工大学,2009.
    [73]Yigit a S. On the use of an elastic-plastic contact law for the impact of a single flexible link [J]. journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1995,117(527-533):
    [74]Ahmed T U, Ramachandra L S, Bhattacharyya S K. Elasto-plastic response of free-free beams subjected to impact loads [J]. International Journal of Impact Engineering,2001, 25(7):661-681.
    [75]Ruan H H, Yu T X. Local deformation models in analyzing beam-on-beam collisions [J]. International Journal of Mechanical Sciences,2003,45(3):397-423.
    [76]Mentel T J, The Plastic Deformation Due to Impact of a Cantilever Beam with an Attached Tip Mass [R]United States,1956.
    [77]Yu T X, Yang J L, Reid S R, et al. Dynamic behaviour of elastic-plastic free-free beams subjected to impulsive loading [J]. International Journal of Solids and Structures,1996, 33(18):2659-2680.
    [78]Yang J L, Xi F. Experimental and theoretical study of free-free beam subjected to impact at any cross-section along its span [J]. International Journal of Impact Engineering,2003, 28(7):761-781.
    [79]唐志平,卢艰春,张兴华TiNi相变悬臂梁的横向冲击特性实验研究[J].爆炸与冲击,2007,(04):289-295.
    [80]Dorogoy A, Rittel D. Transverse impact of free-free square aluminum beams:An experimental-numerical investigation [J]. International Journal of Impact Engineering, 2008,35(6):569-577.
    [81]Ruan H H, Yu T X. Experimental study of collision between a free-free beam and a simply supported beam [J]. International Journal of Impact Engineering,2005,32(1-4): 416-443.
    [82]王仁.在冲击载荷作用下结构塑性分析近况[M].北京;北京科学出版社.1965.
    [83]Meo M, Morris a J, Vignjevic R, et al. Numerical simulations of low-velocity impact on an aircraft sandwich panel [J]. Composite Structures,2003,62(3-4):353-360.
    [84]Johnson a F, Holzapfel M. Modelling soft body impact on composite structures [J]. Composite Structures,2003,61(1-2):103-113.
    [85]Dean G, Wright L. An evaluation of the use of finite element analysis for predicting the deformation of plastics under impact loading [J]. Polymer Testing,2003,22(6):625-631.
    [86]Caprino G, Spataro G, Del Luongo S. Low-velocity impact behaviour of fibreglass-aluminium laminates [J]. Composites Part A:Applied Science and Manufacturing,2004,35(5):605-616.
    [87]皮爱国,黄风雷.大长细比结构弹体侵彻2024-0铝靶的弹塑性动力响应[J].爆炸与冲击,2008,No.119(03):252-260.
    [88]庞宝君,朱凼凼,孙英超,等.微流星体撞击航天器防护结构的模拟实验[J].力学与实践,2010,(006):18-21.
    [89]Yu T X, Yang J L, Reid S R. Interaction between reflected elastic flexural waves and a plastic 'hinge'in the dynamic response of pulse loaded beams [J]. International Journal of Impact Engineering,1997,19(5-6):457-475.
    [90]王肖钧,肖绍平.梁中复合应力波的传播[J].爆炸与冲击,1997,17(2):182-187.
    [91]席丰,杨嘉陵,鹿晓阳.受撞击简支梁的弹塑性响应模式[J].工程力学,2000,(S1):183-187.
    [92]刘锋,席丰.子弹撞击作用下固支浅圆拱的弹塑性动力响应[J].爆炸与冲击,2005,(04):361-367.
    [93]刘锋,席丰.端部受斜撞击作用悬臂梁的弹塑性动力响应模式[J].固体力学学报,2005,(04):439-446.
    [94]刘锋,席丰.阶跃载荷作用下弹塑性悬臂梁的变形机制与能量耗散[J].爆炸与冲击,2008,No.119(03):243-251.
    [95]侯唯健,余同希,苏先樾.弹塑性悬臂梁结构动力响应中的弹性效应[J].固体力学学报,1995,(01):13-21.
    [96]Lepik. Dynamic response of elastic-plastic beams with axial constraints [J]. International Journal of Impact Engineering,1994,15(1):3-16.
    [97]Lepik. Dynamic response of elastic-plastic pin-ended beams by galerkin's method [J]. International Journal of Solids and Structures,1994,31(23):3249-3260.
    [98]Chang C, Engblom J J. Nonlinear dynamical response of impulsively loaded structures. A reduced basis approach [J]. AIAA journal,1991,29(4):613-618.
    [99]剧锦三,杨蔚彪,蒋秀根.刚体撞击弹塑性直杆时冲击荷载之数值解[J].工程力学,2007,(06):49-53.
    [100]剧锦三,蒋秀根,傅向荣.考虑接触变形的梁受到球碰撞时弹塑性冲击荷载[J].工程力学,2008,(04):32-38.
    [101]剧锦三,杨蔚彪,蒋秀根.受刚体碰撞方管柱考虑局部屈曲时的弹塑性冲击荷载[J].工程力学,2008,(07):190-195.
    [102]Bayton D a F, Long R, Fourlaris G. Dynamic responses of connections in road safety barriers [J]. Materials & Design,2009,30(3):635-641.
    [103]Riedel W, Noldgen M, StraBburger E, et al. Local damage to Ultra High Performance Concrete structures caused by an impact of aircraft engine missiles [J]. Nuclear Engineering and Design,2010,240(10):2633-2642.
    [104]唐志平.三维离散元方法及其在冲击力学中的应用[J].中国科学:E辑,2003,33(011):989-998.
    [105]刘凯欣,高凌天.离散元法在求解三维冲击动力学问题中的应用[J].固体力学学报,2004,25(002):181-185.
    [106]Seo S, Min O. Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact [J]. Computer Physics Communications,2006,175(9):583-603.
    [107]高凌天,刘凯欣,刘颖.无网格方法在冲击动力学中的应用[J].计算爆炸力学进展, 2006:29-39.
    [108]李永池,王志海,邓世春.爆炸和冲击工程力学近期研究进展[J].中国科学技术大学学报,2007,37(010):1172-1180.
    [109]楼梦麟.结构动力分析的子结构方法[M].同济大学出版社,1997.
    [110]王永岩.动态子结构方法理论及应用[M].科学出版社,1999.
    [111]Craig J R R. Substructure Methods in Vibration [J]. Journal of Vibration and Acoustics 1995,117(B):207-213.
    [112]向树红,邱吉宝,王大钧.模态分析与动态子结构方法新进展[J].力学进展,2004,(03):289-303.
    [113]殷学纲,力学.结构振动分析的子结构方法[M].中国铁道出版社,1991.
    [114]Hurry W C. Vibration of structural systems by component mode synthesis [J]. Proceedings of the American Society of Civil Engineers 1960,85(4):51-69.
    [115]Well G M L G. Brauch mode analysis of vibrating systems [J]. Journal of Sound and Vibration,1964,1:41-59.
    [116]Seshu P. Substructuring and component mode synthesis [J]. Shock and Vibration,1997, 4(3):199-210.
    [117]王文亮,杜作润.动态子结构法的国内进展[J].力学进展,1985,(01):21-30.
    [118]江颖祥.关于动态子结构法合理发展方向问题[J].吉林工学院学报,1987,(01):77-84.
    [119]王文亮.论动态子结构方法[J].机械设计与研究,1986,(03):10-21+46.
    [120]Hurty W C. Dynamic analysis of structural systems using component modes [J]. ALA A journal,1965, (4):678-685.
    [121]Craig R R, Jr, Bampton M C C. Coupling of substructures for dynamic analyses [J]. AIAA journal,1968,6:1313-1319.
    [122]Hou S N, Review of Modal Synthesis Techniques and a New Approach [R]United States, 1969.
    [123]Benfield W, Hruda R. Vibration analysis of structures by component mode substitution [J]. AIAA journal,1971,9:1255-1261.
    [124]郑兆昌.非线性系统动力分析的模态综合技术[J].应用数学和力学,1983,(04):563-572.
    [125]郑兆昌,谭明一.非线性系统动态响应的数值计算方法[J].应用数学和力学,1985,(01):93-101.
    [126]Wu S-C, Haug E J. Geometric Non-linear Substructuring for Dynamics of Flexible Mechanical Systesms [J]. International Journal for Numerical Methods in Engineering, 1988,26(10):2211-2226.
    [127]Liu a Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexible multibody systems [J]. Computer Methods in Applied Mechanics and Engineering,1994,114(3-4):379-396.
    [128]张马俊,梅占馨,傅学怡,万虹,王建俊.刚臂—芯筒高层建筑结构的弹塑性动力分析[J].西安建筑科技大学学报,1996,(04):36-39.
    [129]樊琨.材料非线性结构的动态子结构法[J].河海大学学报(自然科学版),1999,(02):93-98.
    [130]刘睫,梅占馨,傅学怡.高层建筑刚臂-芯筒结构体系的弹塑性动力分析的迁移子结构法[J].西安公路交通大学学报,1997,(02):75-80.
    [131]Wei F, Zheng G. Nonlinear vibration analysis of spacecraft with local nonlinearity [J]. Mechanical Systems and Signal Processing,2010,24(2):481-490.
    [132]刘锦阳.研究柔性体撞击问题的子结构离散方法[J].计算力学学报,2001,(01):28-32.
    [133]Guo A, Hong J, Yang H. A dynamic model with substructures for contact-impact analysis of flexible multibody systems [J]. Science in China, Series E:Technological Sciences, 2003,46(1):33-40.
    [134]刘锦阳,洪嘉振.卫星太阳能帆板的撞击问题[J].宇航学报,2000,(03):34-38.
    [135]沈煜年,尹晓春.柔性体撞击瞬态波子结构法研究[J].南京理工大学学报(自然科学版),2007,(01):51-55.
    [136]刘中华,尹晓春.自由梁对简支梁的多次弹塑性撞击[J].机械工程学报,2010,46(10):47-53.
    [137]刘中华,尹晓春.钝圆头质量块对简支梁的多次弹塑性撞击[J].爆炸与冲击,2010,v.30;No.130(02):138-144.
    [138]刘中华,刘冬敏,尹晓春等.刚性质量与轴向约束简支梁多次弹塑性撞击的研究[J].机械强度,2010,32(1):94-98.
    [139]杨钧,尹晓春,刘中华,等.刚性质量对自由梁的弹粘塑性次撞击[J].机械工程学报,2012,48(1):72-77.
    [140]刘中华,尹晓春.一次撞击过程中刚性质量对变截面梁的多次弹塑性撞击[J].工程力学,2010,(11):244-249+256.
    [141]刘中华,尹晓春,唐亮.局部接触变形模型对简支梁多次弹塑性撞击模拟结果的比较[J].南京理工大学学报(自然科学版),2009,33(06):739-744.
    [142]郑宏,刘德富.弹塑性矩阵Dep的特性和有限元边坡稳定性分析中的极限状态标准[J].岩石力学与工程学报,2005,24(7):1099-1105.
    [143]黄筑平.有限塑性变形中关于应变硬化的一个注记[J].北京大学学报,1988,24(3):291-296.
    [144]王文亮Hurty-Craig约束模态综合法的动力原理和它的一种变体[J].复旦学报(自然科学版),1982,(02):121-130.
    [145]Watanabe Q Kawashima K. Numerical Simulation of Pounding of Bridge Decks, F,2004 [C].
    [146]徐然,尹晓春.竖向地震作用下桥面与桥墩的多次重撞击力的计算[J].工程力学,2010,(10):124-130.
    [147]吴家强,王宏志.杆的纵向冲击问题全过程分析[J].振动与冲击,2004,23(1):101-104.
    [148]Liu Y, Higuchi T, Fung R. A novel precision positioning table utilizing impact force of spring-mounted piezoelectric actuator--part Ⅱ:theoretical analysis [J]. Precision Engineering,2003,27(1):22-31.
    [149]诸德超,邢誉峰.点弹性碰撞问题之解析解[J].力学学报,1996,28(001):99-103.
    [150]邢誉峰,诸德超.用模态法识别结构弹性碰撞载荷的可行性[J].力学学报,1995,27(5):560-566.
    [151]高玉华.刚体撞块撞击弹性长杆的二次撞击分析[J].上海力学,1996,(04):334-338.
    [152]Mason H L. Impact on beams [J]. ASME Journal of Applied Mechanics,1935,2: A55-A61.
    [153]饶伟锋,文鹤鸣.齿轮系统传动轴受横向冲击的响应分析[J].爆炸与冲击,2005,(02):163-170.
    [154]卓家寿.非线性固体力学基础[M].北京:中国水利水电出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700