超声辅助加工系统研发及其在复合材料加工中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维复合材料在航空航天、国防军工、汽车、高速列车,以及体育与医疗器械等领域的应用越来越广泛。特别是用于航空航天领域的碳纤维复合材料复杂结构件和零部件的加工制造,对加工精度、质量和效率提出了很高的要求,传统机械加工方法和加工工具难以满足碳纤维复合材料的加工要求。超声辅助加工在降低切削力、提高表面加工质量和延长刀具寿命等方面具有优势,是适用于碳纤维复合材料加工的一种最为重要的方法。本文围绕超声辅助加工系统的关键技术开展相关研究,研制超声辅助车削加工装置和超声辅助磨削加工机床,并分别针对三维编织C/C复合材料和CFRP复合材料开展超声辅助车削和超声辅助磨削加工试验,分析超声辅助加工碳纤维复合材料的加工性能和加工效果。本论文的主要研究内容和研究成果如下:
     (1)针对不同加工方式和不同工具形式,研究超声辅助加工变幅杆的设计方法。根据纵向振动的动力学理论和薄圆盘振动理论,分别建立超声辅助车削变幅杆以及采用小工具和大工具的超声辅助磨削变幅杆的设计方法。在此基础上,设计和研制适用于超声辅助车削和磨削加工的变幅杆。通过有限元分析和实际测试对所研制的超声变幅杆的振动性能进行研究,验证所建立的设计方法的正确性。
     (2)针对旋转超声辅助加工对电能传输的需求和接触式电能传输中存在的问题,研究非接触式电能传输单元的设计方法。主要设计非接触式变压器,分析非接触式电能传输单元的匹配拓扑及特征,研究非接触式电能传输单元的匹配质量评价方法和谐振条件等。研制适用于旋转超声辅助加工的非接触式电能传输单元,并对其在额定功率下的传输性能进行测试,结果表明:在转速0~6000r·min-1范围内,随着转速的增加,非接触式电能传输单元的传输效率减小,且传输效率的减小率也逐渐变小
     (3)根据超声辅助加工对超声电源的要求,研制适用于超声辅助加工的数字式智能超声电源。主要设计采用AD9850的高精度超声信号产生电路及其控制程序、基于效率较高的丁类功放电路的超声电源的功放电路、采用IR2110和半桥开关电路相结合的功放驱动电路。基于非接触传输单元原边电压和电流相位差为零的频率跟踪原理,设计采用MLT04模拟乘法器的频率跟踪电路及其控制程序。对研制的超声电源功率输出性能和频率跟踪性能进行测试。
     (4)应用研制的超声振动系统,开发超声辅助车削装置。并应用所开发的装置进行超声辅助车削三维编织C/C复合材料的加工试验,根据三维编织C/C复合材料具有很强的非均质性和各向异性的特征,分析在不同径向位置超声辅助车削C/C复合材料加工表面不同周向位置的纤维分布特征,揭示C/C复合材料超声辅助车削加工表面形成机理,研究不同径向位置加工表面不同周向位置的表面质量变化规律,为C/C复合材料超声辅助车削表面质量评价提供了依据。进行超声辅助车削与普通车削三维编织C/C复合材料的对比试验,结果表明:超声辅助车削C/C复合材料可以显著提高表面质量,以及降低切削力、切削温度和刀具磨损等。
     (5)应用研制的超声振动系统和非接触式超声电能传输技术研发超声辅助磨削机床,并进行超声辅助磨削CFRP复合材料的加工试验。通过观察分析CFRP复合材料加工后的表面形貌、切屑形貌和砂轮表面形貌,揭示超声辅助磨削加工碳纤维复合材料的加工机理。进行超声辅助磨削与普通磨削CFRP复合材料的对比试验,结果表明:超声辅助磨削可以显著降低磨削力,获得较好的表面质量,减少砂轮表面堵塞;超声辅助磨削加工的磨削力和表面粗糙度随加工时间的增大率,以及砂轮表面裸露磨粒密度随加工时间的减小率等明显小于普通磨削加工。
Carbon fiber composites are more and more widely used in the aircraft, automotive, high-speed trains, sports and health equipment etc. Especially, high accuracy, quality and efficiency are required for the manufacturing of complex structural parts and components in the aerospace field. The traditional machining methods and tools are difficult to meet the requirements of machining carbon fiber composites. Because of some advantages in decreasing the cutting force, improving the surface quality and extending tool life effectively, ultrasonic assisted machining is considered to be one of the most important methods to machine carbon fiber composites with high quality and efficiency. In this thesis, the key technologies of ultrasonic assisted machining system are researched. The ultrasonic assisted turning equipment and ultrasonic assisted grinding machine are developed. The experiments of ultrasonic assisted turning of carbon/carbon (C/C) composite and ultrasonic assisted grinding of carbon fiber reinforced polymer (CFRP) composite are carried out, and the performaces and effects of ultrasonic assisted machining carbon fiber composites are also discussed.The main research contents and results are as follows:
     (1) For different machining methods and different types of tool, the design methods of the horn for ultrasonic assisted machining are studied. According to the dynamics theory of longitudinal vibration and, the design methods of the horns for ultrasonic assisted turning and ultrasonic assisted grinding with small grinding tools are researched. Furthermore, combining with the vibration theory of thin disc, the design methods of the horn for ultrasonic assisted grinding with big grinding tools are established. The horn for ultrasonic assisted turning and the horns for ultrasonic assisted grinding with small and big grinding tools are designed and developed individually. The vibration performances of the developed ultrasonic horns are researched by finite element modal analysis and practical test, and the established design methods are verified.
     (2) For the requirement of the power transfer in rotary ultrasonic assisted machining, and the disadvangtes of contact power transfer, the design method of the contactless power transfer unit is set up. The contactless transformer is designd. The matching topologies and their characteristics of the contactless power transfer unit and their application range are discussed. The matching quality evaluation methods and the resonance conditions of contactless power transfer unit are established. A contactless power transfer unit which is suitable for ultrasonic assisted machining is developed. The transfer performances of contactless power transfer unit are tested at rated power, the results show that the transfer efficiency of contactless power transfer unit and decreases with the increase of rotating speed, and the deceasing ratio reduces gradually with that too.
     (3) According to the demands for ultrasonic power supply of the ultrasonic assisted machining, a digital intelligent ultrasonic power supply which is suitable for ultrasonic assisted machining is developed. The high revolution ultrasonic signal generating circuit using AD9850and its control program are designed. The ultrasonic power amplifier circuit based on D power amplifier circuit and the driving circuit combined IR2110with half bridge switching circuit are designed. The frequency tracking method is researched based on the phase difference of the primary voltage and current of the contactless transfer unit. The frequency tracking circuit using MLT04analog multiplier and the control program of the tracking circuit are developed. The output and frequency tracking performances of ultrasonic power supply are tested.
     (4) On the basis of the developed ultrasonic vibration system, an equipment of ultrasonic assisted turning is set up. The experiments of ultrasonic assisted turning of C/C composite are carried out. According to the non-homogeneity and anisotropy of three-dimensional woven C/C composite, the fiber distribution characteristics in the different circumference and radial on machined C/C composite surface are analyzed, the formation mechanism of the C/C composite surface after ultrasonic assisted turning is revealed, and the quality evaluation method of C/C composite surface after ultrasonic assisted turning is established. The comparive tests of ultrasonic assisted turning and common turning of C/C composite are carried out. the results show that the surface roughness, cutting force, the cutting temperature and tool wear are reduced significantly in ultrasonic assisted turning.
     (5) Based on the developed ultrasonic vibration system, a computer numerical control ultrasonic assisted grinding machine is developed. The experiments of ultrasonic assisted grinding of CFRP composite are carried out. Through observing and analyzing the ground surface topography, chip shape and grinding wheel surface topography, the material removal mechanism of ultrasonic assisted grinding of CFRP composite is revealed. The comparive tests of ultrasonic assisted grinding and common grinding of CFRP composite are carried out, the results show that the cutting force is reduced significantly, and the surface quality is improved in ultrasonic assisted grinding. Furthermore, the increasing ratio of grinding force and surface roughness, and the decreasing ratio of the exposed abrasive density of grinding wheel surface of ultrasonic assisted grinding are significantly less than those of common grinding.
引文
[1]李东风,王浩静.贺福等.T300和T700炭纤维的结构与性能[J].新型炭材料.2007,(01):59-64.
    [2]傅孙靖.超高强度碳纤维T1000[J].材料工程.1990,(04):20.
    [3]李威,郭权锋.碳纤维复合材料在航天领域的应用[J].中国光学.2011,(03):201-212.
    [4]Harris C E, Starnes J H, Shuart M J. An Assessment of the State-of-the-Art in the Design and Manufacturing of Large Composite Structures for Aerospace Vehicles[R]. Washington D.C.:NASA, 2001.
    [5]林德春,潘鼎,高健等.碳纤维复合材料在航空航天领域的应用[J].玻璃钢.2007,(01):18-28.
    [6]王春净,代云霏.碳纤维复合材料在航空领域的应用[J].机电产品开发与创新.2010,(02):14-15.
    [7]杨小平,隋刚.碳纤维复合材料在新能源产业中的应用进展[J].新材料产业.2012,(02):20-24.
    [8]杨小平,黄智彬,张志勇等.实现节能减排的碳纤维复合材料应用进展[J].材料导报.2010,(03):1-5.
    [9]刘亚雄,欧阳国恩,张华新等.透光复合材料、碳纤维复合材料及其应用[M].北京:化工工业出版社.2006.
    [10]于启勋.全燕鸣.超硬刀具切削复合材料的实验研究[J].河北科技大学学报.2002,(02):1-6.
    [1]]鲍永杰,高航.董波等.C/E复合材料“以磨代钻”制孔工艺[J].宇航材料工艺.2010,(04):47-49.
    [12]王文杰.C/E复合材料“以磨代铣”试验研究[D].大连:大连理工大学.2010.
    [13]Shanmugam D K, Chen F L, Siores E. et al. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials[J]. Composite Structures. 2002,57(1-4):289-296.
    [14]于坤,张长瑞,曹英斌等C/SiC复合材料残余应力的电火花小孔法测定研究[J].国防科技大学学报.2009(02):31-35.
    [15]Azmir M A, Ahsan A K.A study of abrasive water jet machining process on glass/epoxy composite laminate[J]. Journal of Materials Processing TechnologySpecial Issue:1st International Conference on Abrasive Processes.2009,209(20):6168-6173.
    [16]Babitsky V I, Kalashnikov A N, Meadows A, et al. Ultrasonically assisted turning of aviation materials[J]. Journal of materials processing technology.2003,132(1):157-167.
    [17]Pujana J, Rivero A, Celaya A, et al. Analysis of ultrasonic-assisted drilling of Ti6A14V[J]. International Journal of Machine Tools and Manufacture.2009,49(6):500-508.
    [18]杨鑫宏.韩杰才.脆性光学材料的超声磨削实验研究[J].光学技术.2007,(01):65-67.
    [19]Yanyan Y. Bo Z, Junli L. Ultraprecision surface finishing of nano-ZrO 2 ceramics using two-dimensional ultrasonic assisted grinding[J]. The International Journal of Advanced Manufacturing Technology.2009,43(5):462-467.
    [20]Yakut M, Tangel A, Tangel C. A microcontroller based generator design for ultrasonic cleaning machines[J]. Journal of Electrical & Electronics Engineering.2012.9(1):853-860.
    [21]滕旭东.傅友登.王弘辉.基于数字PWM的新型超声波电源的研究[J].微计算机信息.2008,(07):125-126.
    [22]NGOR B, BEKIROGLU E. A PWM technique for DSP controlled ultrasonic motor drive system[J]. Electric Power components and systems.2005,33(1):21-38.
    [23]Tangel A, Yakut M, Afacan E, et al. An FPGA-based multiple-output PWM pulse generator for ultrasonic cleaning machines[C]. Applied Electronics,2010 International Conference on,Pilsen,8-9, Sept,2010:1-4.
    [24]罗晓宁,周兆英,曹群等.压电传感器在超声振动系统中的设计与应用[J].仪表技术与传感器.2002,(06):6-7.
    [25]张镜澄.差动变量器桥式自动频率跟踪电路[J].应用声学.1988,(04):17-19.
    [26]董惠娟,张广玉,董玮等.压电超声换能器电端匹配下的电流反馈式频率跟踪[J].哈尔滨工业大学学报.2000,(3):115-117.
    [27]Chang W C, Ma K H, Yarn K F. New frequency-tracking control method for ultrasound welding system by the FPGA Chip[J]. International Journal of the Physical Sciences.2010,5(13):2014-2019.
    [28]刘丽华,顾煜炯,杨昆.智能化功率超声发生器的研制[J].电子器件.2002,(1):67-70.
    [29]Shmuel Y B, Simon L. Maximum power tracking of piezoelectric transformer HV converters under load variations[J]. Power Electronics, IEEE Transactions on.2006,21(1):73-78.
    [30]Mortimer B, Du Bruyn T, Davies J, et al. High power resonant tracking amplifier using admittance locking[J]. Ultrasonics.2001,39(4):257-261.
    [31]车保川,屈百达.基于74HC4046新型频率跟踪电路的研究[J].现代电子技术.2008,(03):188-190.
    [32]薛嘉.基于DSP的超声波电源系统研究[D].南京:南京航空航天大学,2009.
    [33]Bayindir N S, Kukrer O, Yakup M. DSP-based PLL-controlled 50-100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications[C]. Electric Power Applications, IEE Proceedings-,2003:365-371.
    [34]谢成祥,张健,邓志良.基于单片机的超声冲击装置频率跟踪控制和恒幅控制[J].应用声学.2006,(04):201-205.
    [35]李小雪,汪东,李平等.基于DDS的超声换能器频率跟踪系统[J].压电与声光.2009,31(05):692-694.
    [36]贺西平,高洁.超声变幅杆设计方法研究[J].声学技术.2006,(1):82-86.
    [37]朱武,张佳民.超声振动系统设计及性能分析[J].上海电力学院学报.2004,(3):47-50.
    [38]陈秀梅,林书玉,鲜晓军.抛物线型超声变幅杆的探讨[J].声学技术.2007,(06):1295-1299.
    [39]赵福令,冯冬菊,郭东明等.超声变幅杆的四端网络法设计[J].声学学报.2002,(06):554-558.
    [40]Yang J J, Fang Z D, Wei B Y, et al. Theoretical explanation of the'local resonance'in stepped acoustic horn based on Four-End Network method [J]. Journal of Materials Processing Technology. 2009,209(6):3106-3110.
    [41]高洁.复合多段式变幅杆优化设计及声学特性分析[J].陕西师范大学学报(自然科学版).2006,(04):44-46.
    [42]汪彦军,贺西平,张频.超声变幅杆性能参数的计算机辅助计算[J].应用声学.2007,(03):181-184.
    [43]Roopa Rani M, Rudramoorthy R. Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding[J]. Ultrasonics.2012,(In Press)
    [44]Lucas M, MacBeath A, McCulloch E, et al. A finite element model for ultrasonic cutting[J]. Ultrasonics.2006,44:503-509.
    [45]冯冬菊,赵福令,徐占国.使用Inventor软件的超声变幅杆模态分析[J].应用声学.2010,(01):69-73.
    [46]Zhou G. The performance and design of ultrasonic vibration system for flexural mode[J]. Ultrasonics. 2000,38(10):979-984.
    [47]卢泽生,李隽.超声振动铣削复合变幅杆扭转振动特性的仿真与优化[J].工具技术.2010,(2):47-50.
    [48]Hunter G, Lucas M, Watson I. et al. A radial mode ultrasonic horn for the inactivation of Escherichia coli K12[J]. Ultrasonics Sonochemistry.2008,15(2):101-109.
    [49]Ma C. Shamoto E, Moriwaki T, et al. Study of machining accuracy in ultrasonic elliptical vibration cutting[J]. International Journal of Machine Tools and Manufacture.2004.44(12-13):1305-1310.
    [50]Suzuki N, Haritani M, Yang J, et al. Elliptical Vibration Cutting of Tungsten Alloy Molds for Optical Glass Parts[J]. CIRP Annals-Manufacturing Technology.2007,56(1):127-130.
    [51]http://www.sonicmill.com/ultrasonic.html.
    [52]http://www.agfm.com/Cutting/3 D_Cutting.htm.
    [53]郑书友.旋转超声加工机床的研制及实验研究[D].泉州:华侨大学.2008.
    [54]张向慧.旋转超声加工振动系统设计及关键技术的研究[D].北京:北京林业大学,2011.
    [55]Boys J T. Covic G A, Green A W. Stability and control of inductively coupled power transfer systems[J].2000,147(1):37-43.
    [56]Wang C S, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. Industrial Electronics. IEEE Transactions on. 2004,51(1):148-157.
    [57]Pedder D A G, Brown A D, Skinner J A. A contactless electrical energy transmission system[J]. Industrial Electronics. IEEE Transactions on.1999,46(1):23-30.
    [58]Maruyama T, Yamamoto K, Kitazawa S, et al. A study on the design method of the light weight coils for a high power contactless power transfer systems[C]. Electrical Machines and Systems (ICEMS),201215th International Conference on.Sapporo.21-24 Oct.,2012:1-6.
    [59]Steigerwals R L, Saj C F, Croff G A. Analysis and design of a contactless rotary power transfer system[C]. Power Electronics Specialists Conference,2001. PESC.2001 IEEE 32nd Annual, Vancouver,17-21,Jun.,2001:2125-2130.
    [60]Stielau O H, Covic G A. Design of loosely coupled inductive power transfer systems[C]. Power System Technology,2000. Proceedings. PowerCon 2000. International Conference on.Perth, 04-07,Dec.,2000:85-90.
    [61]Jang Y, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. Industrial Electronics, IEEE Transactions on.2003,50(3):520-527.
    [62]Sallan J, Villa J L, Llombart A, et al. Optimal design of ICPT systems applied to electric vehicle battery charge[J]. Industrial Electronics, IEEE Transactions on.2009,56(6):2140-2149.
    [63]Heeres B J. Novotny D W, Divan D M. et al. Contactless underwater power delivery[C]. Power Electronics Specialists Conference, PESC'94 Record.,25th Annual IEEE,Taipei,20-25,Jun., 1994:418-423.
    [64]Song B M, Kratz R. Gurol S. Contactless inductive power pickup system for Maglev applications[C]. Industry Applications Conference,2002.37th IAS Annual Meeting. Conference Record of the.2002:1586-1591.
    [65]Lee S. Jung G. Shin S, et al. The optimal design of high-powered power supply modules for wireless power transferred train[C]. Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS). 2012.Bologna,16-18,Oct.,2012:1-4.
    [66]武瑛,严陆光,黄常纲等.新型无接触电能传输系统的性能分析[J].电工电能新技 术.2003,(04):10-13.
    [67]武瑛,严陆光,徐善纲.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报.2004,(05):67-70.
    [68]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报.2005,(11):56-59.
    [69]孙跃,陈国东,戴欣等.非接触电能传输系统恒流控制策略[J].重庆大学学报.2008,(07):766-769.
    [70]李贵强.非接触电能传输系统功率传输和控制研究[D].郑州:郑州大学,2009.
    [71]张旭.感应耦合式电能传输系统的理论与技术研究[D].北京:中国矿业大学(北京),2011.
    [72]倪皓.旋转超声加工及其关键技术的研究[D].天津:天津大学,2009.
    [73]王怀斌.旋转超声磨削加工工艺及装置的研究[D].天津:天津大学,2010.
    [74]庞明鑫.非接触式超声电能传递装置的设计理论及实验研究[D].太原:太原理工大学,2010.
    [75]李华,殷振,李征等.超声内圆磨削系统中电信号的非接触式传输研究[J].制造技术与机床.2008,(08):26-29.
    [76]章志伟.超声振动内圆磨削系统的关键技术及实验研究[D].郑州:河南工业大学,2011.
    [77]皮钧,王素,冯薇.感应电能传输超声振动刀柄集成系统[J].拖拉机与农用运输车.2010,v.37;No.213(01):20-23.
    [78]Takeyama H, Iijima N. Machinability of Glassfiber Reinforced Plastics and Application of Ultrasonic Machining[J]. CIRP Annals-Manufacturing Technology.1988,37(1):93-96.
    [79]Kim J, Lee E. A study of the ultrasonic-vibration cutting of carbon-fiber reinforced plastics[J]. Journal of Materials Processing Technology.1994,43(2-4):259-277.
    [80]Zhao B, Liu C S, Zhu X S, et al. Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al[J]. Journal of Materials Processing Technology. 2002,129(1-3):380-384.
    [81]Zhong Z W, Lin G. Diamond turning of a metal matrix composite with ultrasonic vibrations[J]. Materials and manufacturing processes.2005,20(4):727-735.
    [82]Zhong Z W, Lin G. Ultrasonic assisted turning of an aluminium-based metal matrix composite reinforced with SiC particles[J]. The International Journal of Advanced Manufacturing Technology. 2006,27(11):1077-1081.
    [83]Liu C S, Zhao B, Gao G F, et al. Research on the characteristics of the cutting force in the vibration cutting of a particle-reinforced metal matrix composites SiCp/Al[J]. Journal of Materials Processing Technology.2002,129(1-3):196-199.
    [84]焦锋,赵波,刘传绍等.PCD刀具超声振动车削SiC_p/Al复合材料时的切削力特性研究[J].工具技术.2002,(08):22-25.
    [85]程雪利,赵波,刘传绍等.超声振动切削SiC_P/Al复合材料的刀具磨损机理分析[J].煤矿机械.2007,No.227(01):104-105.
    [86]程雪利,赵波,刘传绍等.超声振动切削SiCp/Al复合材料的刀具磨损试验[J].工具技术.2007,No.404(04):18-20.
    [87]许幸新,张晓辉,刘传绍等.SiC颗粒增强铝基复合材料的超声振动钻削试验研究[J].中国机械工程.2010,v.21;No.309(21):2573-2577.
    [88]许幸新,刘传绍,赵波.超声振动钻削SiC颗粒增强铝基复合材料时的切削力研究[J].工具技术.2007,No.401(O1):49-52.
    [89]Li Z C, Jiao Y, Deines T W, et al. Rotary ultrasonic machining of ceramic matrix composites: feasibility study and designed experiments[J]. International Journal of Machine Tools and Manufacture.2005,45(12-13):1402-1411.
    [90]Cong W L, Pei Z J, Deines T W, et al. Rotary ultrasonic machining of CFRP using cold air as coolant:feasible regions[J]. Journal of Reinforced Plastics and Composites.2011,30(10):899-906.
    [91]Cong W L, Pei Z J, Deines T W. et al. Rotary ultrasonic machining of CFRP composites:A study on power consumption[J]. Ultrasonics.2012,52(8):1030-1037.
    [92]Liu J, Zhang D, Qin L, et al. Feasibily study of the rotary ultrasonic elliptical machining of carbon fibre reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture.2011,
    [93]何俊.颗粒增强铝基复合材料的超声振动切削技术的研究[D].哈尔滨:哈尔滨工业大学,2008.
    [94]董小磊.超声铣削SiCp/Al复合材料的机理研究[D].焦作:河南理工大学,2009.
    [95]支新涛.高体分SiCp/Al复合材料超声高速铣削试验研究[D].焦作:河南理工大学,2011.
    [96]高军,崔巍.超声切割技术在复合材料加工领域的应用[J].航空制造技术.2008,No.301(04):50-52.
    [97]文立伟,严飙,肖军等.复合材料超声切割系统及稳定性研究[J].航空制造技术.2010,No.365(17):49-52.
    [98]林仲茂.超声变幅杆的原理与设计[M].北京:科学出版社,1987.
    [99]屈维德.唐恒龄.机械振动手册[M].北京:机械工业出版社,2000.
    [100]Chen Y C, Wu S, Chen P C. The impedance-matching design and simulation on high power elctro-acoustical transducer[J]. Sensors and Actuators A:Physical.2004,115(1):38-45.
    [101]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社.2004.
    [102]张宗明.非接触电能传输系统电磁机构研究[D].重庆:重庆大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700