不锈钢表面纳米化对应力腐蚀敏感性影响的小冲杆试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的表面纳米化技术及其推广应用是20世纪90年代以来各国科学家的重点研究领域。目前存在的材料自身表面纳米化方法都难以实现自动化,不具备工业上对材料进行大规模处理的潜力。同时,随着对表面纳米化技术研究的日益深入,人们愈加关心材料在经过表面纳米化处理后,其组织结构、力学行为和化学行为的转变。人们也逐渐把提高材料抗应力腐蚀开裂性能的希望寄托在了表面纳米化技术上,关于金属材料自身纳米化后抗应力腐蚀性能的研究报道逐渐增加,但由于分析方法和试验手段的制约,一直没有取得突破性的进展。本文采用具有工业化前景的表面纳米化技术手段——表面机械滚压处理(SMRT)对304L奥氏体不锈钢进行了表面纳米化处理,并与传统的表面机械研磨处理(SMAT)进行了全面的对比分析。作者采用SMAT技术对SS304L进行了分区域(母材、热影响区和焊缝)纳米化处理并对分别对它们的纳米化效果和机理进行了研究。同时,作者根据表面纳米化后材料的特殊性,开发设计了一套新型的应力腐蚀敏感性评估装置——小冲杆应力腐蚀测试技术,并采用该方法系统研究了304L奥氏体不锈钢表面纳米化前后不同区域(母材、热影响区和焊缝)的力学性能及其应力腐蚀敏感性。
     主要研究内容和重要结论如下:
     (1)采用表面机械滚压法(SMRT),分别在液氮和常温空气环境下对SS304L进行了不同冲击次数下的表面纳米化处理,并从组织转变、力学性能变化等多个角度对其纳米化效果进行了表征和分析,同时将SMRT法与表面机械研磨处理(SMAT)进行了全方位的对比。试验证明了SMRT可以有效在304L奥氏体不锈钢表层形成大量具有随机取向的纳米晶组织。该方法的优点是可以进行不同温度环境下的纳米化处理,具备实现自动化的潜力。
     (2)对SS304L实施了分区域(母材、热影响区和焊缝)表面纳米化处理,并对不同区域的纳米化效果和机理进行了表征研究。同时,采用小冲杆试验对SS304L不同区域表面纳米化前后的力学性能进行了对比分析。完善了低层错能金属材料表面纳米化的机理,提出了关于纳米化过程中形成的多系孪晶的细化机理。
     (3)开发设计了小冲杆应力腐蚀(SPT-SCC)敏感性评估体系,试验研究表明,SPT-SCC试验技术是一种有效的材料应力腐蚀敏感性评估手段,具有试验周期短,结果重复性好,力学性能和断口信息丰富,试样尺寸小及微损取样等特点。可以针对具有不同组织结构的多微区进行分类检测,以及对经过特殊处理的单而进行应力腐蚀试验等。对于传统的应力腐蚀检测手段是一种补充和完善。
     (4)作者采用小冲杆应力腐蚀敏感性评估装置,对实现表面纳米化后的SS304L材料进行了分区域(母材、热影响区和焊缝)应力腐蚀敏感性评估并对它们各自的机理进行了详细的分析和阐释。得到了表面纳米化处理与抗应力腐蚀性能的关系。
The technology of surface nanocrystallization (SNC) is becoming a hot area since the1990s, more and more scientists focus on this domain. However, the present SNC methods could not realize industrialization and batch processing easily, a new method is needed urgently. After SNC, the property, mechanical behavior and chemical behavior of materials will change greatly, mastering these knowledge could enable people to maximize the advantages and avoid the deficiencies of these SNC materials in engineering application. At the same time, the scientists want to find out whether the materials with SNC could retard the stress corrosion cracking (SCC). More and more researching reports on SCC of the SNC materials are brought out. However, there are also many problems and confusions in this area due to the deficiency of experimental technique. As we all know, the SCC is the common failure for austenitic stainless steel (ASS) application, so it is necessary to make clear the SCC mode and mechanism of ASS with SNC. In this work, a newly developed SNC method-surface mechanical rolling treatment (SMRT) was studied which can be applied in different environment and easily industrialized. Then, the comparison betweent the SMRT and the traditional SNC method-surface mechanical attrition treatment (SMAT) was drawn in detail. The mechanical properties of the SS304L with SNC were firstly analysed by small punch test (SPT) in different areas (base metal, heat affected zone and welded seam). At the same time, a new SCC evaluating technique was developed on the basis of SPT, which is a useful complement to the traditional SCC testing methods. The SCC susceptibility of SS304L with SNC was firstly studied in different areas (base metal, heat affected zone and welded seam) by SPT-SCC technique.
     The main study contents and conclusions are listed as follows:
     (1) The SNC technique-SMRT was used to generate nano-grain layer on the surface of SS304L in both liquid nitrogen and normal temperature environment successfully. The evolutions of structural and mechanical properties were characterized and analyzed. A detailed comparison between SMRT and the surface mechanical attrition treatment (SMAT) was drawn. It is proven that the SMRT is a useful method to realize material's SNC which has the industrialized potential. The SNC experiments using SMRT could be carried out in different environments with very high energy output.
     (2) The SNC of SS304L in different areas (base metal, heat affected zone and welded seam) was conducted by SMAT. The SNC mechanism and mechanical properties were studied in different areas (base metal, heat affected zone and welded seam) by kinds of testing techniques. SNC mechanism of metal with low stacking fault energy was supplemented, a refinement mode of mechanical twins generated during the SNC process was identified.
     (3) A new SCC testing technique was developed on the basis of SPT. It is proved that the SPT-SCC is a useful SCC evaluation method with lots of advantages, such as short experimental period, reproducible results, rich mechanical and fracture information and non-destructive characteristics. The SPT-SCC technique could also be used for testing the materials with different micro-structures or single side with special treatment. The SPT-SCC technique is a useful supplement to the traditional SCC evaluation methods.
     (4) The SCC susceptibility of surface nanocrystallized SS304L were evaluated in different areas (base metal, heat affected zone and welded seam) by SPT-SCC. The SCC mechanisms of surface nanocrystallized SS304L (base metal, heat affected zone and welded seam) were analyzed and explained in detail. The relationship between SNC and SCC susceptibility was obtained.
引文
[1]埃里希·福克哈德.不锈钢焊接冶金[M].栗卓新,朱学军,译.北京:化学工业出版社.2004.
    [2]王志文,徐宏,关凯书,等.化工设备失效原理与案例分析[M].上海:华东理工大学出版社.2010.
    [3]Truman J E. The influence of chloride content, pH and temperature of test solution on the occurrence of stress corrosion cracking with austenitic stainless steel [J]. Corrosion Science.1977,17(9):737-746.
    [4]Fielder J W, Lee B V, Dulieu D, et al. The corrosion of stainless steels in swimming pools [J]. Proc. of Applications of Stainless Steel'92.1992,2:762-772.
    [5]Herbsleb G, Theiler F. Stress corrosion cracking of austenitic chromium-nickel stainless steels at ambient temperature [J]. Materials and Corrosion.1989,40(8): 467-480.
    [6]Hirschfeld D, Busch H, Stellfeld I, et al. Stress corrosion cracking behavior of stainless steel with respect to their use in architecture, part 1:Corrosion in the active state[J]. Steel Research.1993,64(8-9):461-465.
    [7]Juang H K, Altstetter C. Effect of pH and chloride contents on stress corrosion cracking of austenitic stainless steels at room temperature [J]. Corrosion.1990,46(11): 881-887.
    [8]Torchio S. Stress corrosion cracking of type AISI 304 stainless steel at room temperature:influence of chloride content and acidity[J].Corrosion Science.1980, 20(4):555-561.
    [9]Arlt N, Michel E, Hirschfeld D, et al. Stress corrosion cracking behaviour of stainless steels with respect to their use in architecture, part 2:Corrosion in the passive state[J]. Steel Research.1993,64(10):526-533.
    [10]李培宁等.机械与动力工程[M].北京:科学出版社.2008.
    [11]Arifvanto B, Suyitno, Mahardika M. Effects of surface mechanical attrition treatment (SMAT) on a rough surface of AISI 316L stainless steel[J]. Applied Surface Science.2012,258(10):4538-4543.
    [12]Li Y, Wang L, Zhang D D, et al. The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140[J]. Applied Surface Science.2010,257(3): 979-984.
    [13]Han J, Sheng G M, Zhou X L, et al. Pulse Pressuring Diffusion Bonding of Ti Alloy/Austenite Stainless Steel Processed by Surface Self-nanocrystallization[J]. ISIJ International.2009,49(1):86-91.
    [14]Hamada A S, Karjalainen L P, Venkata Surya P K C, et al. Fatigue behavior of ultrafine-grained and coarse-grained Cr-Ni austenitic stainless steels[J]. Materials Science and Engineering A.2011,528(10-11):3890-3896.
    [15]Yan W L, Fang L, Zheng Z G, et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel[J]. Tribology International.2009,42(5): 634-641.
    [16]Raja K S, Namjoshi S A, Misra M. Improved corrosion resistance of Ni-22Cr-13Mo-4W Alloy by surface nanocrystallization[J]. Materials Letters.2005, 59(5):570-574.
    [17]Wang T S, Yu J K, Dong B F. Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel[J]. Surface & Coatings Technology.2006,200(16-17):4777-4781.
    [18]Ling X, Ma G. Effect of ultrasonic impact treatment on the stress corrosion cracking of 304 stainless steel welded joints[J].Journal of Pressure Vessel Technology. 2009,131(5):229-235.
    [19]Lu J Z, Luo K Y, Yang D K, et al. Effects of laser peening on stress corrosion cracking (SCC) of ANSI 304 austenitic stainless steel[J]. Corrosion Science.2012,60: 145-152.
    [20]Pu Z, Song G L, Yang S, et al. Grain refined and basal textured surface produced by burnishing for improved corrosion performance of AZ31B Mg alloy[J]. Corrosion Science.2012,57:192-201.
    [21]Zhang Y K, You J, Lu J Z, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface and Coatings Technology.2010,204(24):3947-3953.
    [22]熊天英,王吉孝,金花r,等.0Cr18Ni9Ti钢焊接接头表面纳米化及接头抗H2S应力腐蚀性能的研究[J].材料保护.2005,38(1):13-16.
    [23]王志平,王吉孝,纪朝辉,等.表面纳米化0Crl8Ni9Ti焊接接头抗应力腐蚀性能[J].焊接学报.2007,28(1):5-8.
    [24]王吉孝,王志平,霍树斌,等.16MnR钢焊接接头表面纳米化及接头抗112S应力腐蚀性能[J].焊接,2005,(2):13-16.
    [25]石继红,武保林,刘刚.316L不锈钢表面纳米化后腐蚀性能研究[J].材料工程.2005,(10):42-46.
    [26]Ghosh S, Kain V. Microstructural changes in AISI 304L stainless steel due to surface machining:Effect on its susceptibility to chloride stress corrosion cracking[J]. Journal of Nuclear Materials.2010,403(1-3):62-67.
    [27]Scully J C. The interaction of strain-rate and repassivation rate in stress corrosion crack propagation [J]. Corrosion Science.1980,20(8-9):997-1016.
    [28]艾芒,杨镇,王志文.小冲杆试验法的起源、发展和应用[J].机械强度.2000,22(4):279-282.
    [29]艾芒,王志文.微试样小冲孔试验法概述于展望——未来失效预测与预防的有效手段.第三次全国机电装备失效分析预测与预防战略研讨会.北京,1998.
    [30]Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science.1989,33(4): 223-315.
    [31]Suryanarayana C, Inoue A, Masumoto T. Transformation studies and mechanical properties of melt-quenched amorphous titanium-silicon alloys[J]. Journal of Materials Science.1980,15(8):1993-2000.
    [32]Gleiter H. In Proc.2nd Ris φ International Symposium on Metallurgy and Materials Science. Hansen N, Horsewell A, Leffers T, Lilholt H. (eds.). Ris φ National. Laboratory. Roskidle, Denmark.1981,15-21.
    [33]Birringer R, Gleiter H, Klein H P, et al. Nanocrystalline materials:An approach to a novel solid structure with gas-like disorder[J]. Physics Letters A.1984,102(8): 365-369.
    [34]Yoshizawa Y, Oguma S, Yamauchi K J. New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics.1988,64(10): 6044-6046.
    [35]Suryanarayana C. Nanocrystalline materials[J]. International Materials Reviews. 1995,40(2):41-64.
    [36]Nieman G W, Weertman J R. Mechanical behavior of nanocrystalline Cu and Pd[J]. Journal of Materials Research.1991,6(5):1012-1026.
    [37]Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition:A review[J]. Nanostructured Materials.1993,2(2):109-129.
    [38]Kear B H, McCandlish L E. Chemical processing and properties of nanostructured WC-Co materials[J]. Nanostructured Materials.1993,3(1-6):19-30.
    [39]Chang H, Altstetter C J, Averback R S. Characteristics of nanophase TiAl produced by inert gas condensation[J]. Journal of Materials Research.1992,7(11): 2962-2970.
    [40]Bickerdike R L, Clark D, Easterbrook J N, et al. Microstructures and tensile properties of vapour deposited aluminum alloys. Part 1:Layered microstructure[J]. International Journal of Rapid Solidification.1984-85,1:305-325.
    [41]Lashmore D S, Dariel M P. Electrodeposited Cu-Ni textured superlattices[J]. Journal of The Electrochemical Society.1988,135(5):1218-1221.
    [42]Palumbo G, Thorpe S J, Aust K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials[J]. Scripta Metallurgica Et Materialia.1990,24(77):1347-1350.
    [43]Lashmore D S, Dariel M P. Encyclopedia of materials science and engineering[M]. Oxford:Pergamon.1988,1:136-140.
    [44]Ritter J J, Minor D B, Michael R D, et al. Nanophases and nanocrystalline structures[M]. Warrendale, PA, TMS.1993,33-40.
    [45]Mayo M J. Synthesis and applications of nanocrystalline ceramics[J]. Materials & Design.1993,14(6):323-329.
    [46]Roy R A, Roy R. Diphasic xerogels:I. Ceramic-metal composites[J]. Materials Research Bulletin.1984,19(2):169-177.
    [47]Rigney D A. Sliding Wear of Metals[J]. Annual Review of Materials Science.1988,18:141-163.
    [48]Berkowitz A E, Walter J L. Spark erosion:A method for producing rapidly quenched fine powders[J]. Journal of Materials Research.1987,2(2):277-288.
    [49]Chou C H, Phillips J. Plasma production of metallic nanoparticlesfJ]. Journal of Materials Research.1992,7(8):2107-2113.
    [50]Taylor P, Pirzada S A. Plasma synthesis and processing of materials[M]. Warrendale, PA, TMS.1993,215-225.
    [51]Mandich M L, Bondybey V E, Reents W D. Reactive etching of positive and negative silicon cluster ions by nitrogen dioxide[J]. The Journal of Chemical Physics. 1987,86(7):4245-4257.
    [52]Kriechbaum G W, Kleinschmit P. Superfine oxide powders-flame hydrolysis and hydrothermal synthesis[J]. Adavanced materials.1989,101(10):1446-1453.
    [53]Haas V, Gleiter H, Birringer R. Synthesis of nanostructured materials by the use of a thermophoretic forced flux system[J]. Scripta Metallurgica et Materialia.1993, 28:721-724.
    [54]Li D J, Ding B Z, Yao B, et al. Preparation of nanocrystalline Cu-Ti by quenching the melt under high pressure[J]. Nanostructured Materials.1994,4(3): 323-328.
    [55]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach[J]. Journal of Materials Science and Technology.1999,15(3):193-197.
    [56]刘刚,雍兴平,卢柯.金属材料表面纳米化的研究现状[J].中国表面工程.2001,(3):1-5.
    [57]Waltz L, Retraint D, Roos A, et al. Combination of surface nanocrystallization and co-rolling:Creating multilayer nanocrystalline composites[J]. Scripta Materialia. 2009, (60):21-24.
    [58]Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel[J]. Journal of Iron and Steel Research, International.2009,16(2):68-72.
    [59]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅰ.组织与性能[J].金属学报.2003,39(4):342-346.
    [60]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI 304不锈钢表层纳米化Ⅱ.晶粒细化机理[J].金属学报.2003,39(4):347-350.
    [61]吕爱强,刘春明,刘刚.表面机械研磨316L不锈钢诱导表层纳米化[J].东北大学学报(自然科学版).2004,25(9):848-850.
    [62]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Materials Science and Engineering:A.2004, 375-377:38-45.
    [63]杨晓华,兑卫真,刘刚.表面机械研磨处理对316L不锈钢组织和性能的影响[J].材料热处理学报.2007,28(2):118-121.
    [64]Liu G, Lu J, Lu K. Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening[J]. Materials Science and Engineering A.2000,286(1):91-95.
    [65]冯淦,石连捷,吕坚,等.低碳钢超声喷丸表面纳米化的研究[J].金属学报.2000,36(3):300-301.
    [66]Mordyuk B N, Prokopenko G I. Ultrasonic impact peening for the surface properties'management J]. Journal of Sound and Vibration.2007,308(3-5):855-866.
    [67]Prokopenko G I, Kozlov A V, Kleiman J I, et al. Device for ultrasonic peening of metals:US,6,467,321 [P/OL].2002.
    [68]Mordyuk B N, Prokopenko G I, Vasylyev M A, et al. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel[J]. Materials Science & Engineering A.2007,458(1-2):253-261.
    [69]刘阳,吕晓仁,张荣禄,等.超音速微粒轰击表面纳米化及其耐磨性的影响[J].中国表面工程.2006,19(6):20-24.
    [70]葛利玲,刘忠良,井晓天,等.超音速微粒轰击0Cr18Ni9钢表面纳米化的研究[J].热加工工艺.2008,37(16):11-14.
    [71]熊天英,刘志文,李智超,等.超音速微粒轰击金属表面纳米化新技术[J].材料导报.2003,17(3):69-71.
    [72]王晓明,马世宁,李长青,等.超音速微粒轰击表而纳米化设备研制[J].装甲兵工程学院学报.2008,22(3):74-77.
    [73]巴德玛,马世宁,李长青,等.超音速微粒轰击45钢表面纳米化的研究[J].材料科学与工艺.2007,15(3):342-346.
    [74]Fournier J. Ecole polytechnique[M]. France,1989.
    [75]Flavenot J F, Lu J. Shot-blasting and swaging of stainless steel[J]. Galvano-Organo-Traitements de Surface.1990,608:717-722.
    [76]Zhang Y K, You J, Lu J Z, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface and Coatings Technology,2010,204(24):3947-3953.
    [77]朱琳.旋转辊压法诱导低碳钢表面纳米化[D].南京理工大学,2000.
    [78]Li W L, Tao N R, Lu K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment[J]. Scripta Materialia.2008,59(5):546-549.
    [79]Gleiter H. Nanostructured materials:basic concepts and microstructure[J]. Acta Materialia.2000,48(1):1-29.
    [80]Statnikov E S. Applications of Operational Ultrasonic impact treatment (UIT) technologies in production of welded joints[J]. ⅡW/ⅡS Doc. Ⅻ-1667-97,1997.
    [81]Statnikov E S. Comparison of post-weld deformation methods for increase in fatigue strength of welded joints[J].ⅡW/ⅡS Doc.ⅩⅢ-1668-97,1997.
    [82]Haagensen P J, Statnikov E S, Martinez L L. Introductory fatigue tests on welded joints in high strength and in aluminium improved by various methods including ultrasonic impact treatment (UIT)[J].ⅡW Doc.ⅩⅢ-1748-98,1998.
    [83]Roy S, Fisher J W, Yen T B. Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT)[J]. International Journal of Fatigue.2003,25: 1239-1247.
    [84]Cheng X H, Fisher J W, Prask H J. Residual stress modification by post-weld treatment and its beneficial effect on fatigue strength of welded structures[J]. International Journal of Fatigue.2003,25:1259-1269.
    [85]Statnikov E S, Shevtsov E M, Kulikov V F. Ultrasonic impact tool for strengthening welds and reducing residualstresses[M]. New Physical Methods of Intensification of Technological Processes,1977.
    [86]王东坡,霍立兴.提高焊接接头疲劳强度的超声波冲击法[J].焊接学报.1999,20(3):158-163.
    [87]王东坡,霍立兴.超声冲击法提高低碳钢焊接接头疲劳强度的研究[J].机械强度,1999,21(4):289-291.
    [88]王东坡,霍立兴,蔡国余,等.改善焊接接头疲劳强度的超声冲击装置[J].焊接学报,2000,21(2):32-35.
    [89]王东坡,霍立兴,荆洪阳,等.改善焊接接头疲劳强度超声冲击装置的研制及应用[J].机械强度,2000,21(4):249-252.
    [90]霍立兴,王东坡.改善焊接接头疲劳强度超声冲击法的试验研究[J].机械工程学报,2000,36(4):78-82.
    [91]王东坡,霍立兴.超声冲击法改善LF21铝合金焊接接头的疲劳性能[J].中国有色金属学报,2001,11(5):754-759.
    [92]王文先,王东坡,霍立兴,等.变幅载荷下超声冲击处理焊接接头的疲劳行为[J].机械工程学报,2003,39(9):87-92.
    [93]王东坡,霍立兴,葛宝文,等.超声冲击法改善高强钢焊接接头的疲劳性能[J].中国造船,2003,44(4):86-92.
    [94]王东坡,霍立兴,张玉凤,等.过载对超声冲击处理焊接接头疲劳性能的影[J].焊接,2000,(4):11-14.
    [95]Wang J X, Liu Y L, Xiong T Y. Study on surface nancrystallization and resisting H2S stress corrosion properties of pressure vessel steel welding jointing[J]. Journal of Guangdong Non-ferrous Metals.2005,38(1):13-16.
    [96]王志平,冯日宝,贾鹏,等.表面纳米化焊接接头力学性能研究[J].焊接.2007,(3):35-38.
    [97]王佳杰,霍树斌,王吉孝,等.超音速微粒高能轰击16MnR钢表面纳米化的研究[J].焊接.2006,(2):43-46.
    [98]李东,徐宏,朱登亮.一种制备金属材料纳米结构表面层的方法及其装置:中国,CN101513645[P].
    [99]廖礼宝.金属表面纳米晶化方法及性能研究[D].华东理工大学,2011.
    [100]熊天英,李铁藩,吴杰,等.超声速微粒轰击金属材料表面纳米化方法:中国,CN1410560[P].
    [101]Wang X Y, Li D Y. Mechanical and electrochemical behavior of nanocrystalline surface of 304 stainless steel[J]. Electrochimica Acta.2002,47(24): 3939-3947.
    [102]梁永立,张俊宝,宋洪伟.表而自纳米化钢铁材料的研究进展[J].世界钢铁.2011,(2):36-43.
    [103]Mordyuk B N, Milman Y V, Iefimov M O, et al. Characterization of ultrasonically peened and laser-shock peened surface layers of AISI 321 stainless steel[J]. Surface & Coatings Technology.2008,202(19):4875-4883.
    [104]Peyre P, Chaieb I, Braham C. FEM calculation of residual stresses induced by laser shock processing in stainless steels[J]. Modelling and Simulation in Materials Science and Engineering.2007,15(3):221-227.
    [105]Bugayev A A, Gupta M C, Payne R. Laser processing of inconel 600 and surface structure[J]. Optics and Lasers in Engineering.2006,44(2):102-111.
    [106]Zhang Y K, You J, Lu J Z, et al. Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy[J]. Surface & Coatings Technology.2010,204(24):3947-3953.
    [107]刘刚,周蕾.工程金属材料的表面纳米化技术(二)[J].纳米科技.2006,(2):51-56.
    [108]李国宾,关德林,张明星.表面纳米化中碳钢在干摩擦条件下的摩擦磨损性能研究[J].摩擦学学报.2008,28(1):39-43.
    [109]Ya W L, Fang L, Zheng Z G, et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel[J]. Tribologylnternational.2009,42: 634-641.
    [110]Tekeli S. Enhancement of fatigue strength of SAE 9245 steel by shot peening[J]. Materials Letters.2002,57(3):604-608.
    [111]李东,陈怀宁,刘刚,等.SS400港对接接头表面纳米化及其对疲劳强度的影响[J].焊接学报.2002,23(2):18-21.
    [112]Chen C, Li D Y, Shang C J. Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive[J]. Electrochimica Acta.2009,55(15):118-124.
    [113]石继红,武保林,刘刚.表而纳米化对316L不锈钢抗点蚀性能的影响[J].材料保护.2008,41(5):26-28.
    [114]吕爱强,张洋,刘春明,等.表面纳米化316L不锈钢在酸性介质中腐蚀性能的研究[J].材料与冶金学报.2004,3(2):129-132.
    [115]Misawa T, Hamaguchi Y, Saito M. Stress corrosion cracking and hydrogen embrittlement studies of austenitic and ferritic steels by small punch test[J]. Journal of Nuclear Materials.1988,155-157(2):749-753.
    [116]Misawa T, Ohtsuka T, Seo M, et al. Comparison of stress corrosion cracking susceptibility of austenitic and ferritic stainless steels in small punch testing[J]. Journal of Nuclear Materials.1991,179-181(1):611-614.
    [117]Yu H S, Na E G, Chung S H. Assessment of stress corrosion cracking susceptibility by a small punch test[J]. Fatigue and Fracture of Engineering Materials and Structures.1999,22(10):889-896.
    [118]Isselin J, Kai A, Sakaguchi K, et al. Assessment of the effects of cold work on crack initiationin in a light water environment using the small-punch test[J]. Metallurgical and Materials Transactions A.2008,39(5):1099-1108.
    [119]Isselin J, Shoji T. Crack initiation resistance characterization of weld by small-punch test in boiling water reactor environment [J]. International Journal of Pressure Vessels and Piping.2012,93-94:22-28.
    [120]崔忠圻,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社.1996,193-202.
    [121]Sui M L, Lu K. Variation in lattice parameters with grain size of a nanophase Ni3P compound[J]. Materials Science and Engineering:A.1994,179-180(1): 541-544.
    [122]Lu K. Grain growth processes in nanocrystalline materials studied by differentiall scanning calorimetry[J]. Scripta Metallurgica et Materialia.1991,25(9): 2047-2052.
    [123]Tao N R, Sui M L, Lu J, et al. Surface nanocrystallization of iron induced by ultrasonic shot peening[J]. NanoStructured Materials.1999,11(4):443-440.
    [124]Liu G, Wang S C, Lou X F, et al. Low carbon steel with nanostructured surface layer induced by high-energy shot peening[J]. Scripta Materialia.2001,44(8-9): 1791-1795,
    [125]Tao N R, Wang Z B, Tong W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia.2002,50(18):4603-4616.
    [126]Vorlicek V. Exworthy L F. Flewitt P E J. Evaluation of a miniaturized disc test for establishing the mechanical properties of low-alloy ferritic steels[J]. Journal of Materials Science.1995,30(11):2936-2943.
    [127]Pathak K K, Dwivedi K K, Shukla M, et al. Influence of key test parameters on SPT results[J]. Indian Journal of Engineering & Materials Sciences.2009,16(6): 385-389.
    [128]Toloczko M B, Abe K, Hamilton M L, et al. The effect of specimen thickness and grainsize on mechanical properties obtained from the shear punch test[J]. ASTM Special Technical Publication.2002,1418:371-379.
    [129]Guduru R K, Nagasekhar A V, Scattergood R O, et al. Thickness and clearance effects in shear punch testing[J]. Advanced Engineering Materials.2007,9(3): 157-160.
    [130]lost A, Isselin J, Golek J, et al. Assessment of the constitutive law by inverse methodology:Small punch test and hardness[J]. Journal of Nuclear Materials.2006, 352(1-3):97-106.
    [131]Campitelli E N, Spatig P, Bonade R, et al. Assessment of the constitutive properties from small ball punch test:experiment and modeling[J]. Journal of Nuclear Materials.2004,335(3):366-378.
    [132]Song M, Guan K, Qin W, et al. Comparison of mechanical properties in conventional and small punch tests of fractured anisotropic A350 alloy forging flange[J]. Nuclear Engineering and Design.2012,247:58-65.
    [133]Jai-Man B, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel [J]. Scripta Metallurgica.1983,17(12):1443-1447.
    [134]Mao X, Saito M, Takahashi H. Small punch test to predict ductile fracture toughness JIC and brittle fracture toughness KIC[J]. Scripta Metallurgica Et Materialia.1991,25(11):2481-2485.
    [135]Misawa T, Adachi T, Saito M, et al. Small punch tests for evaluating ductile-brittle transition behavior of irradiated ferritic steels[J]. Journal of Nuclear Materials.1987,150(2):194-202.
    [136]Rodriguez C, Garcia Cabezas J, Cardenas E, et al. Mechanical properties characterization of heat-affected zone using the small punch test:use of the small punch test for the mechanical characterization of small areas such as the different zones that characterize the haz showed promise[J]. Welding Journal.2009,88(9): 188-192.
    [137]Ule B, Sustar T, Dobes F, et al. Small punch test method assessment for the determination of the residual creep life of service exposed components:outcomes from an interlaboratory exercise[J]. Nuclear Engineering and Design.1999,192(1): 1-11.
    [138]Jai-Man B, Kameda J, Buck O. Small punch test evaluation of intergranular embrittlement of an alloy steel[J]. Scripta Metallurgica.1983,17(12):1443-1447.
    [139]左景伊.应力腐蚀破裂[M].西安:西安交通大学出版社.1985.
    [140]GB/T 15970.5-1998 C型环试样的制备和应[S].
    [141]GB/T 15970.3-1995 U型弯曲试样的制备和应用[S].
    [142]GB/T 15970.2-2000弯梁试样的制备和应用[S].
    [143]GB/T 15970.6-1998预裂纹试样的制备和应用[S].
    [144]GB/T 15970.9-2007渐增式载荷或渐增式位移下的预裂纹试样的制备和应用[S].
    [145]GB/T 12445.3-90高强度合金楔形张开加载(WOL)预裂纹试样应力腐蚀试验方法[S].
    [146]GB/T 15970.7-2000慢应变速率试验[S].
    [147]ASTM D1141-98(2003) Standard practice for the preparation of substitute ocean water[S].
    [148]黄毓晖.304不锈钢氯离子腐蚀的力-化学行为研究[D].华东理工大学,2011.
    [149]Magnin T, Chieragatti R, Oltra R. Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion[J]. Acta Metallurgica et Materialia.1990,38(7): 1313-1319.
    [150]Kaufman M J, Fink J I. Evidence for localized ductile fracture in the "brittle" transgranular stress corrosion cracking of ductile F.C.C. alloys[J]. Acta Metallurgica. 1988,36(8):213-228.
    [151]Jones D A. A unified mechanism of stress corrosion and corrosion fatigue cracking[J]. Metallurgical Transactions A.1985,16(6):1133-1141.
    [152]Flanagan W F, Bastias P, Lichter B D. A theory of transgranular stress-corrosion cracking[J]. Acta Metallurgica et Materialia.1991,39(4):695-705.
    [153]Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking[J]. Philosophical Magazine A.1985,51(1):95-132.
    [154]Galvele J R. Surface mobility mechanism of stress-corrosion cracking[J]. Corrosion Science.1993,35(1-4):419-434.
    [155]Qiao L J, Chu W Y, Mao X. Critical hydrogen concentration for hydrogen-induced cracking of type 321 stainless steel[J]. Corrosion Science.1996, 52(4):275-279.
    [156]Qiao L J, Mao X, Chu W Y. The role of hydrogen in stress-corrosion cracking of austenitic stainless steel in hot MgCl2 solution[J]. Metallurgical and Materials Transactions A.1995,26(7):1777-1784.
    [157]Woodtli J, Kieselbach R. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis.2000,7(6):427-450.
    [158]Gleiter H. Nanostructured Materials[J]. Advanced Materials.1992,4(7-8): 474-481.
    [159]Brus L E. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state[J]. Journal of Chemical Physics.1984,80(9):4493-4408.
    [160]Ayyub P, Multani M, Barma M, et al. Size-induced structural phase transitions and hyperfine properties of microcrystalline Fe2O3[J]. Journal of Physics C:Solid State Physics.1988,21(11):2229-2231.
    [161]Siegel R W. Synthesis and properties of nanophase materials[J]. Materials Science and Engineering:A.1993,168(2):189-197.
    [162]Gleiter H. On the structure of grain boundaries in metals[J]. Materials Science and Engineering.1982,52(2):91-131.
    [163]Birringer R. Nanocrystalline materials[J]. Materials Science and Engineering:A. 1989,117:33-43.
    [164]Donovan J A. Accelerated evolution of hydrogen from metals during plastic deformation[J]. Metallurgical Transactions A.1976,7(11):1677-1683.
    [165]Lecoester F, Chene J, Noel D. Hydrogen embrittlement of the Ni-base Alloy 600 correlated with hydrogen transport by dislocations[J]. Materials Science and Engineering:A.1999,262(1-2):173-183.
    [166]Huang H, Shaw W J D. Effect of Cold Working on the Fracture Characteristics of a Mild Steel Exposed to a Sour Gas Environment[J]. Materials Characterization. 1995,34(1):43-50.
    [167]Briant C L, Ritter A M. The effect of martensite on the sensitization of low carbon 304 stainless steel[J]. Metallurgical Transactions A.1981,12(5):910-913.
    [168]Briant C L, Ritter A M. Sensitization of partially martensitic stainless steels at very low temperatures [J]. Corrosion Science.1982,38(11):596-597.
    [169]Zheng J H, Bogaerts W F. Effects of cold work on stress corrosion cracking of type 316L stainless steel in hot lithium hydroxide solution[J]. Corrosion Science. 1993,49(7):585-593.
    [170]Kowaka M, Fujikawa H. Development of the austenitic stainless steels immune to stress corrosion cracking in boiling MgCl2 solution[J]. Sumitonio Search.1972,7: 10-26.
    [171]Cochran R W, Staehle R W. Effects of surface preparation on stress corrosion cracking of type 310 stainless steel in boiling 42 percent magnesium chloride(Surface preparation effect on stress corrosion cracking of type 310 stainless steel wires in boiling aqueous magnesium chloride solutions)[J]. Corrosion Science.1968,11(3): 369-378.
    [172]Garcia C, Martin F, Tiedra P, et al. Effect of prior cold work on intergranular and transgranular corrosion in type 304 stainless steels:quantitative discrimination by image analysis[J]. Corrosion.2000,56(3):243-255.
    [173]Garcia C, Martin F, Tiedra P, et al. Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels[J]. Corrosion.2001,43(8):1519-1539.
    [174]Qiao L J, Gao K W, Alex A V, et al. Discontinuous surface cracks during stress corrosion cracking of stainless steel single crystal[J]. Corrosion Science.2011,53(11): 3509-3514.
    [175]Li J X, Chu W Y, Wang Y B, et al. In situ TEM study of stress corrosion cracking of austenitic stainless steel[J]. Corrosion Science.2003,45 (7):1355-1365.
    [176]Meng F J, Wang J Q, Han E H, et al. Effects of scratching on corrosion and stress corrosion cracking of Alloy 690TT at 58℃ and 330℃[J]. Corrosion Science. 2009,51(11):2761-2769.
    [177]Woodtli J, Kieselbach R. Damage due to hydrogen embrittlement and stress corrosion cracking[J]. Engineering Failure Analysis.2000,7(6):427-450.
    [178]Lecoester F, Chene J, Noel D. Hydrogen embrittlement of the Ni-base Alloy 600 correlated with hydrogen transport by dislocations [J]. Materials Science and Engineering:A.1999,262(1-2):173-183.
    [179]Birnbaum H K, Sofronis P. Hydrogen-enhanced localized plasticity-a mechanism for hydrogen-related fracture[J]. Materials Science and Engineering:A. 1994,176(1-2):191-202.
    [180]Martin M, Weber S, Izawa C, et al. Influence of machining-induced martensite on hydrogen-assisted fracture of AISI type 304 austenitic stainless steel[J]. International Journal of Hydrogen Energy.2011,36(17):11195-11206.
    [181]Lu B T, Qiao L J, Luo J L, et al. Role of hydrogen in stress corrosion cracking of austenitic stainless steels[J]. Philosophical Magazine.2011,91(2):208-228.
    [182]Mao S X, Gu B, Wu N Q, et al. The mechanism of hydrogen-facilitated anodic-dissolution-type stress corrosion cracking:theories and experiments[J]. Philosophical Magazine.2001,81(7):1813-1831.
    [183]Qiao L J, Mao X. Thermodynamic analysis on the role of hydrogen in anodic stress corrosion cracking[J].1995,43(11):4001-4006.
    [184]Yu J G, Zhang C S, Luo J L, et al. Investigation of the effect of hydrogen on the passive film on iron by surface analysis techniques[J]. Journal of The Electrochemical Society.2003,150(2):68-75.
    [185]Yu J G, Zhang C S, Luo J L, et al. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition[J]. Journal of The Electrochemical Society.2003,150(2): 405-411.
    [186]Zeng Y M, Luo J L, Norton P R. A study of semiconducting properties of hydrogen containing passive films[J]. Thin Solid Films.2004,460(1-2):116-124.
    [187]Yang Q, Luo J L. Effects of hydrogen on disorder of passive films and pitting susceptibility of type 310 stainless steel[J]. Journal of The Electrochemical Society B. 2001,148(1):29-35.
    [188]Yang Q, Luo J L. The hydrogen-enhanced effects of chloride ions on the passivity of type 304 stainless steel[J]. Electrochimica Acta.2000,45(24):3927-3937.
    [189]Hasegawa M, Osawa M. Anomalous corrosion of austenitic stainless steel exposed to hydrogen at high temperature and pressure[J]. Corrosion.1980,36:67-73.
    [190]Hasegawa M, Osawa M. Anomalous Corrosion of hydrogen-containing ferritic steels in aqueous acid solution[J]. Corrosion.1983,39(4):115-120.
    [191]Yu J G, Luo J L, Norton P R. Investigation of hydrogen-promoted pitting by the electrochemical noise method and the scanning reference electrode technique[J]. Langmuir.2002,18(17):6637-6646.
    [192]Han G, He J, Fukuyama S, et al. Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures[J]. Acta Materialia.1998,13(46):4559-4570.
    [193]Brass A M, Chene J, Anteri G, et al. Role of shot-peening on hydrogen embrittlement of a low-carbon steel and a 304 stainless steel[J]. Journal of Materials Science Letters.1991,26(16):4517-4526.
    [194]Chen H, Chu W Y, Gao K W, et al. Effect of hydrogen-induced martensite on stress corrosion cracking of type 304 stainless steel in boiling MgCl2[J]. Journal of Materials Science Letters.2002,21(17):1337-1338.
    [195]Sui G, Charles E A, Congleton J. The effect of delta-ferrite content on the stress corrosion cracking of austenitic stainless steels in a sulphate solution[J]. Corrosin Science.1996,38(5):687-703.
    [196]Krishnan K N, Rao K P. Effect of microstructure on stress corrosion cracking behaviour of austenitic stainless steel weld metals[J]. Materials Science and Engineering, A.1991,142:79-85.
    [197]董俊明,潘希德,樊培丽,等.不锈钢焊接接头在MgCl2溶液中的应力腐蚀开裂研究[J].西安交通大学学报.1997,31(12):49-54.
    [198]张震.0Cr18Ni9Ti奥氏体不锈钢焊接接头应力腐蚀行为的研究[J].木工机床.2002,3:22-26.
    [199]李荣锋.奥氏体不锈钢焊接构件在浓氯化物溶液中的应力腐蚀开裂[J].钢铁研究.1993,4:17-20.
    [200]林良道,龚天宏.不锈钢气相管焊接热影响区应力腐蚀开裂研究[J].物理测试.2005,23(3):48-52.
    [201]赵尔冰,张亦良,陈鸰志.焊接工艺对奥氏体不锈钢应力腐蚀行为的影响[J].北京工业大学学报.2011,37(11):1601-1606.
    [202]董俊明,潘希德,戚继皋,等.HG80钢焊接接头在硝酸盐介质中的应力腐蚀性能研究[J].焊接研究与生产.1997,6(4):11-16.
    [203]Lu B T, Chen Z K, Luo J L, et al. Stress corrosion crack initiation and propagation in longitudinally welded 304 austenitic stainless steel [J]. Corrosion Engineering, Science and Technology.2003,38(1):69-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700