AZ31B镁合金及其TIG焊焊接接头疲劳断裂行为及评定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有轻质高强,易于回收等一系列优点,被誉为“21世纪绿色金属结构材料”,其最具发展前途的应用领域是“陆、海、空、天”等交通运载装备,这些结构离开焊接技术的支持是无法完成的。资料表明,70%~90%的焊接结构失效是焊接接头在动载负荷作用下造成的,镁合金及其焊接接头中裂纹的启裂和扩展对焊接结构的疲劳性能及疲劳寿命产生较大的影响,而其失稳断裂临界裂纹尺寸又决定了材料或结构的疲劳寿命。因此,研究镁合金及其焊接接头的疲劳性能、裂纹扩展速率,对疲劳性能进行评定,具有重要的理论意义和应用价值。
     本研究针对AZ31B镁合金及其焊接接头疲劳性能、裂纹扩展速率及断裂韧度进行研究,利用OM和SEM等手段对材料的组织、裂纹扩展行为及断口进行分析;采用疲劳裂纹扩展理论(Parise公式)对疲劳寿命进行预测;利用临界距离法和热点应力法对不同形式的焊接接头进行疲劳评定;分析了织构对疲劳性能和裂纹扩展速率的影响。
     研究认为,在2×106循环次数下,AZ31B镁合金母材的疲劳强度为66.72 MPa,对接、横向十字、纵向非承载十字和侧面连接接头的疲劳强度分别为39.00 MPa,24.38 MPa,32.18MPa和24.40 MPa;焊接接头裂纹均起裂于焊趾部位,裂纹以穿晶方式扩展,塑性变形方式为滑移和孪生。镁合金及其焊接接头的疲劳断裂均为河流花样组成的脆性断口。采用TIG熔修和超声冲击(UIT)改善对接和横向十字接头疲劳性能,经TIG熔修处理后,AZ31B镁合金对接和横向十字接头的疲劳强度分别为41.68 MPa和34.13 MPa,与处理前相比较,分别提高了6.9%和39.9%。经过UIT后,十字接头的疲劳强度为24.7 MPa,比焊态试样提高了43.6%。
     疲劳裂纹扩展试验结果表明,T-L、L-T(第一、二个字母分别表示裂纹面的法线方向和表示预期的裂纹扩展方向;L表示长度或主变形方向,T表示宽度方向)方向试件裂纹扩展方向与切口方向平行,疲劳裂纹在AK达到5.5 MPa·m1/2、5.7 MPa·m1/2左右时,开始进入快速扩展阶段。45°方向试件裂纹扩展方向与切口方向成10°左右,疲劳裂纹在AK达到4.1 MPa·m1/2左右时,开始进入快迅速扩展阶段。疲劳断口为解理形貌的脆性断裂,断口中存在二次裂纹。L-T(W)和T-L(H)试样裂纹扩展过程中,裂纹沿焊缝中心和热影响区即切口方向扩展,L-T(W)试样当AK达到6.12 MPa·m1/2时,裂纹扩展速率减慢,T-L(H)试样裂纹扩展速率趋于一致。L-T(H)试样当AK达到8.2 MPa·m1/2时,裂纹扩展速度趋于缓慢;疲劳裂纹尖端以穿晶方式向前扩展,T-L(H)试样裂纹存在少量沿晶扩展。断口均为脆性特征的解理断口,断口中存在二次裂纹。
     平面应变断裂韧度试验结果表明,0,45和90试样的平均平面应变断裂韧度KIC平均值分别为9.36,9.40和9.89 MPa·m1/2。焊缝金属和热影响区的平均平面应变断裂韧度KIC值分别为18.28和15.62 MPa·m1/2,缺口在焊缝中心的断裂韧度大于缺口在热影响区的,因此焊缝中心部位的阻止裂纹扩展能力比焊接热影响区强。AZ31B镁合金母材及其焊缝的断口均为准解理断裂特征的脆性断裂,热影响区断口有沿晶断裂特征。
     采用临界距离法和热点应力法对焊接接头进行疲劳评定,在2×106循环次数下,临界距离法中采用点法和线法对接接头和横向十字接头的疲劳强度分别为79.55、49.10 MPa和79.01、44.38 MPa,两种方法差别不大,因此可以采用临界距离法预测疲劳断裂位置。用热点应力对焊接接头进行评定时,试验数据分散性明显比名义应力法减小。对接接头和纵向非承载十字接头疲劳强度可以用一条S-N曲线表示。
     板材中在挤压过程中产生的织构对疲劳性能和裂纹扩展速率产生影响,织构分析结果表明AZ31B镁合金心部存在{0002}<2110>和{0002}<1010>基面织构,基面织构与取向因子总体大于棱柱面织构的取向因子,外力在挤压方向时晶粒更容易发生滑移,横向试样不易滑移,疲劳累积损伤的程度就大,容易发生断裂,因此横向的疲劳寿命比挤压方向的小
     镁合金的织构ODF分析结果表明镁合金(0002)基面在挤压方向和横向的Schmid因子均为零,滑移所需临界剪切应力(CRSS)较大,基面织构在各个方向为硬取向,产生织构硬化,不易滑移。非基面滑移系在挤压方向和横向的取向因子不同,mED>mTD;挤压方向塑性变形较容易,造成镁合金横向疲劳裂纹扩展门槛值AKth大于挤压方向,挤压方向的裂纹扩展速率较高。
Magnesium alloys have excellent mechanical properties such as low density and high specific strength, easiness of recycling, etc; they are prospective green engineering structure materials of the 21st century. This makes them ideal candidates in the traffic vehicle, automotive industry, aerospace industry etc. Welding technology is one of the most important methods for developing complicated and large-scale magnesium alloy structure. Fatigue fracture is a major failure pattern in metal structures, and 70% to 90% of failure accidents involving welding structures are caused by the fatigue fracture of welded joints. The crack initiation and micro-crack propagation have an improvement affect on fatigue properties and fatigue life of the magnesium alloy and its welded joints, the fatigue life are decided by the instability fracture critical crack size, investigations on the fatigue properties and fatigue crack propagation rate of the magnesium alloy welded joints have theoretical and practical significance in engineering applications.
     The fatigue properties, crack propagation rate and fracture toughness were researched for AZ31B magnesium alloy and its welded joints. The microstructure, crack propagation behavior and fracture were determined by OM and SEM; the fatigue life were forecasted by Parise crack propagation theory; the welded joints were assessed by critical distance method and the hot spot stress approach; the textures of AZ31B magnesium alloy and the effect on fatigue properties and crack propagation rate were analyzed.
     It is concluded that the fatigue strengths of AZ31B magnesium alloy and its butt joint (BJ), transverse cross joint (TJ), longitudinal cross joint (LJ), lateral connection joint (LCJ) (under 2×106 cycle times) are 66.72 MPa,39.00 MPa,24.38MPa,32.18 MPa and 24.4 MPa, respectively. The crack propagation of the AZ31B magnesium alloy base metal in a transgranular manner, the twin is the main format in the course of crack propagation. The crack propagates from the weld toe for the welded joints. Moreover, the fracture of the base metal and welded jointS are brittle and of cleavage-type, based on quasi-cleavage fracture. Secondary cracks between the base metal and welded joints fracture are also observed.
     The TIG dressing and UIT were used to improve the fatigue property of BJ and TJ. The fatigue property of BJ and TJ are 41.68 MPa and 34.13 MPa, respectively by TIG dressing, and 6.9% and 39.9% of the fatigue property are advanced. Under 2×106 cycles, the fatigue property of TJ improved to 24.7 MPa by UIT, and it have 43.6% advanced.
     Fatigue crack propagation rate on as-extruded AZ31B magnesium alloy is tested. C(T) specimens of the incision direction are parallel (T-L), vertical (L-T) and inclined 45°to extrusion direction. Results indicated that crack propagate along the extrusion direction for T-L and L-T specimens, Inclined 45°specimen has an angular deflection about 10°to extrusion direction. Fatigue crack begin to rapidly propagate when AK are about 5.5 MPa·m1/2,5.7 MPa·m1/2 and 4.1 MPa·m1/2,respectively for T-L, L-T and 45°specimen. Fatigue fracture consists of quasi-cleavage and it was brittle fracture. The fatigue crack is along the notch direction for L-T(W) and T-L(H) specimens, the crack fatigue propagation begin to slower propagation when AK is 6.12 MPa·m1/2 for L-T(W), the crack propagation rate of T-L(H) specimens is identical. Fatigue crack begin to slow propagate when AK is about 8.2 MPa·m1/2 for along welding direction. The crack tip propagates by both transgranular and intergranular fractures. The fracture is brittle fracture characterized by a cleavage plane, some secondary cracks and river pattern can be seen.
     Plane-strain fracture toughness KIC of a 10 mm-thick as-extruded AZ31B magnesium alloy and its welded joints are tested by three-point bending test. The result shows that fracture toughness KIC values of AZ31B magnesium alloy base metal in pallrel (0-sample),45 and vertical (90-sample) to the as-extruded direction is 9.36,9.40 and 9.89 MPa·m1/2, respectively, and the KIC of 90-sample is the highest. The KIC of notch in welding center and HAZ are 18.28 and 15.62 MPa·m1/2, respectively, and the fracture toughness of welded joints is well than base metal, that is, the ability resisting fracture of welding is well. The fracture appearance of AZ31B magnesium alloy and its welded joints consist of quasi-cleavage and are brittle type of fracture; the fracture appearance of notch in HAZ is an intergranular fracture.
     The critical distance method and the hot spot stress approach are used to assess the welded joints. The critical distance assess including PM and LM. The BJ and TJ fatigue strength are 79.55 MPa and 49.10 MPa for PM and 79.01 MPa and 44.38 MPa for LM. Hot spot stress approach evaluated result shows that the dispersity is reduced largely, the fatigue strength can be expressed by only one S-N curve for BJ and LJ, and fatigue level is FAT33. The tested fatigue level of two evaluation methods is higher than fatigue level obtained used 3.0 recommended byⅡW, which indicates there is greater safety factor in welded structures design if 3.0 applied.
     The texture is often formed in the course of molding and its existence effect on fatigue property and crack propagation rate. There are obvious basel texture{0002}<2110> and{0002}<1010> in the AZ31B magnesium alloy plate. The schmid factor average of non-basal texture in ED is greater than TD, so it is easy for non-basal texture slipping and crack source forming under the alternating loads, this causes the fatigue life difference between ED specimen and TD specimen.
     Polar diagram and ODF are analysized and the results indicate that the Schmid factors of non-basal slip systems are different in two directions: mED>mTD, and the threshold of fatigue crack propagation rateΔKth is different: the TD is greater than the ED. Plastic deformation will easier in ED specimen and the crack easy to propagate.
引文
[1]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277~288.
    [2]左铁镛.21世纪的轻质结构材料—镁及镁合金发展[J].新材料产业,2007,12:22-26.
    [3]常丽丽.变形镁合金AZ31的织构演变与力学性能[D].大连:大连理工大学,2009.
    [4]Ando S, Tanaka M, Tonda H. Pyramidal slip in magnesium alloy single crystals. Materials Science Forum,2003,419-422:87-91.
    [5]Ku K. Magnesium alloys and their applications [M]. FRG:DGM Information sgesellschaft, 1992.
    [6]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社,2004.
    [7]Schumann S, Friedrich H. Current and future use of magnesium in the automobile industry [J]. Materials Science Forum,2003,419-422.
    [8]潘际銮.镁合金结构及焊接[J].电焊机.2005,35(9):1-7.
    [9]Eliezer D. Magnesium Science, Technology and Applicatian [J]. Advanced Perfonnallce Materials,1998, (5):201~212.
    [10]Zeng R C, Ke W, Han E H. Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy [J]. International Journal of Fatigue,2009,31(3):463~467.
    [11]方洪渊.焊接结构学[M].北京:机械工业出版社.2008.
    [12][美]S. Suresh著,王光中等译.材料的疲劳[M].北京:国防工业出版社,1998.
    [13]胡毓仁,陈伯真.船舶及海洋工程结构安全可靠性分析[M].北京:人民交通出版社,1996.
    [14]Park S S, Tang W N, You B S. Microstructure and mechanical properties of an indirect-extruded Mg-8Sn-lAl-1Zn alloy [J]. Materials Letters,2010,64:31~34.
    [15]Zhang Hui, Yan Qiqi, Li Luoxing. Microstructures and tensile properties of AZ31 magnesium alloy by continuous extrusion forming process [J]. Materials Science and Engineering A,2008,486:295~299.
    [16]周志良,谢明,林文君,等WEL-TEN780A高强钢及焊接接头疲劳裂纹扩展速率[J].大连铁道学院学报,1999,20(3):79~83.
    [17]Croft M, Zhong Z, Jisrawi N, et al. Strain profiling of fatigue crack overload effects using energy dispersive X-ray diffraction [J]. International Journal of Fatigue,2005,27(10/12): 1408~1419.
    [18]聂德福,赵杰.AZ31镁合金疲劳裂纹扩展和过载效应[J].中国有色金属学报,2008,18(5):771~776.
    [19]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005,27(3):358~370.
    [20]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [21]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [22]杨化仁,郭晓光.焊接结构疲劳强度理论[M].沈阳:东北大学出版社.2002.
    [23]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995.
    [24]Tsujikawa Masato, Somekawa Hidetoshi, kenji, et al. fatigue of welded magnesium alloy joints [J]. Material Transactions,2004,45(2):419-422.
    [25]Murugan G, Raghukandan K, Pillai U T S, et al. High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load. Materials and Design,2008,30: 2636~2641.
    [26]王文先,张金山,许并社.镁合金材料的应用及其加工成型技术[J].太原理工大学学报,2001,32(6):34~39.
    [27]张华,林三宝,吴林等.AZ31镁合金搅拌磨擦焊接接头断裂机制[J].材料工程,2005(1):33~36.
    [28]王文先,赵彭生,武振龙.变形镁合金钨极氩弧焊接及其焊接接头力学性能的试验研究[J].兵器材料科学与工程,2001,(1):56~59.
    [29]Horstemeyer M F, Yang N, Gall K, et al. High Cycle Fatigue of a Die Cast AZ91E-T4 magnesium alloy [J]. Acta Materialia,2004,52(5):1327~1336.
    [30]Papakyriacou M, Mayer H, Fuchs U, et al. Influence of Atmospheric Moisture on Slow Fatigue Crack Growth at Ultrasonic Frequency in Aluminum and Magnesium Alloys [J]. Fatigue and Fracture of Engineering Materials and strecture,2002,25(8-9):795~804.
    [31]高玉侠,刘马宝,张英杰等.压铸镁合金AZ91HP疲劳性能的研究[J].汽车技术,2005,(5):38~40.
    [32]Eisenmeier G, Holzwarth B, Hoppel H W, et al. Cyclic Defoemation and Fatigue Behavior of the Magnesium Alloy AZ91 [J]. Materials Science and Engineering A,2001, A319-321: 578~582.
    [33]Hilpert M, Wagner L. Corrosion Fatigue Behavior of the Highstrength Magnesium Alloy AZ80 [J]. Journal of Materials Engineering and Performance,2000 (9):402~407.
    [34]Eliezer A, Gutman E M, Abramov E, et al. Corrosion Fatigue of Die-cast and Extruded Magnesium Alloys [J]. Journal of Light Metals,2001 (1):179~186.
    [35]Yang Y, Liu Y B. High cycle fatigue characterization of two die-cast magnesium alloys [J]. Materials Characterization,2008,59:567~570.
    [36]Lichun Bian, Farid Taheri, You Lu. Analytical and experimental evaluations of the influence of fracture surface roughness, its sliding actions and the associated plasticity on fatigue crack propagation [J]. International Journal of Plasticity,2008,24:302~326.
    [37]Mayer H, Papakyriacou M, Zettl B, et al. Inflounce of porosity on the fatigue limit of die-casting magnesium and alluminum alloys [J]. International Journal of Fatigue,2003, (25):245~256.
    [38]Nan Z Y, Ishihara S, Goshima T, et, al. Scanning probe microscope obserbations of fatigue process in magnesium alloy AZ31 near the fatiue limit [J]. Scripta Materialia,2004,50 (4): 429~434.
    [39]高洪涛,吴国华,丁文江.镁合金疲劳性能的研究现状[J].铸造技术,2003,24(4):266~268.
    [40]Shih T S, Liu W S, Chen Y J. Fatigue of As-extruded AZ61A Magnesium Alloy [J]. Materials Science and Engineering A,2002, A325:152~162.
    [41]Sotomi Ishihara, Zhenyu Nan, Takahito Goshima. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy [J]. Materials Science and Engineering A,2007, 468-470:214~222.
    [42]Zainuddin Bin Sajuri, Yukio Miyashita, Yasunobu Hosokai, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys[J]. International Journal of Mechanical Sciences,2006,48:198~209.
    [43]Nascimento L, Yi S, Bohlen J, et al. High Cycle Fatigue Behaviour of Magnesium Alloys [J]. Procedia Engineering,2010,2:743~750.
    [44]Michael Huppmann, Martin Lentz, Katrin Brmelhoff, et al. Fatigue properties of the hot extruded magnesium alloy AZ31 [J]. Materials Science and Engineering A,2010,527: 5514~5521.
    [45]Begum S, Chen D L, Xu S, et al. Low cycle fatigue properties of an extruded AZ31 magnesium alloy [J]. International Journal of Fatigue,2009,31:726~735.
    [46]Yang F, Yin S M, Li S X, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime [J]. Materials Science and Engineering A,2008, 491:131~136.
    [47]MORITA1S, OHNO1 N, TAMAI F, et al. Fatigue properties of rolled AZ31B magnesium alloy plate [J]. Transactions of Nonferrous Metals Society of China,2010,20:s523-s526.
    [48]Kwon S, Song K, Shin K S, et al. Low cycle fatigue properties and cyclic deformation behavior of as-extruded AZ31 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20:s533-s539.
    [49]周华茂,王俭秋,张波,等.轧制AZ31B镁合金在空气和NaCl溶液中的疲劳行为中国腐蚀与防护学报,2009,29(2):132~136.
    [50]Martin Jonsson, Dan Persson, Dominique Thierry. Corrosion product formation during NaCl induced atmospheric corrosion of magnesium alloy AZ91D. Corrosion Science,2007,46: 1540-1558.
    [51]刘正,张奎,曾小勤.镁基轻质合金理论与应用[M].北京:机械工业出版社,2002.
    [52]刘英,李元元,张卫文,等.镁合金疲劳的研究进展[J].材料导报,2005,19(2):87~90.
    [53]Carsten P, Kail U K. Fatigue of magnesium alloys [J]. Advanced Engineering Material,2004, 6:281~285.
    [54]陈立佳,刘正,胡壮麒.镁合金疲劳行为的研究现状及展望[J].沈阳工业大学学报,2005,27(3):253-2556.
    [55]Miller W T. Sensor based control of robotic manipulators using a general learning algorithm [J]. IEEE J. Robotics and Automation,1992,3(6):157~165.
    [56]张爱民,权高峰.镁合金疲劳性能的研究现状及展望[J].机械工程材料,2010,34(5):1-4.
    [57]Lu Y, Taheri F, Charghouti M A, et al. Experimental and numerical study of the effects of porosity on fatigue crack initiation of HPDC magnesium AM60B alloy [J]. Alloys and Compounds,2009,470:202~213.
    [58]王长义,刘正.压铸态AZ91镁合金疲劳断口组织与裂纹扩展机制[J].特种铸造及有色合金,2008,28(1):37~39.
    [59]Venkateswaran P, Ganesh Sundara Raman S, Pathak S D, et al. Fatigue crack growth behaviour of a die-cast magnesium alloy AZ91D [J]. Materials Letters,2004,58: 2525~2529.
    [60]Xue Y, Horstemeyre M F, Mcdowell D L, et al. Microstructure-based multistage fatigue modeling of a cast AE44 magnesium alloy [J]. International Journal of Fatigue,2007,29: 666~676.
    [61]Kadiri H E, Xue Y, Horstemeyre M F, et al. Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy [J]. Acta Materialia,2006,54: 5061~5076.
    [62]Horstemeyer M F, Yang N, Gall K, et al. High cycle fatigue mechanisms in a cast AM60B magnesium alloy [J]. Fatigue and fracture of Engineering Material and Structures,2002,25: 1045~1054.
    [63]Ogarecic V V, Stephens R I. Fatigue of magnesium alloys [J]. Annual Review of Materials Science,2004,52:1327~1336.
    [64]Uematsu Y, Tokaji K, Kamakurab M, et al. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys [J]. Materials Science and Engineering A,2006,434:131~140.
    [65]毛萍莉,李扬,刘正,等.挤压态AZ31镁合金的疲劳行为研究[J].特种铸造及有色合金,2010,30(3):213~215.
    [66]Xu D K, Liu L, Xu Y B, et al. The fatigue crack propagation behavior of the forged Mg-Zn-Y-Zr alloy [J]. Journal of Alloys and Compounds,2007,431:107~111.
    [67]曾荣昌,韩恩厚,刘路等.轧制组织对镁合金AM60疲劳性能的影响[J].材料研究学报,2003,17(3):241~246.
    [68]Zeng Rongchang, Han Enhou, Ke Wei, et al. Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60 [J]. International Journal of Fatigue,2010,32:411~419.
    [69]Ishihara S, McEvily A J, Sato M, et al. The effect of load ratio on fatigue life and crack propagation behavior of an extruded magnesium alloy [J]. International Journal of Fatigue, 2009,31:1788~1794.
    [70]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006.
    [71]肖纪美.金属的韧性和韧化[M].上海:上海科学技术出版社,1980.
    [72]王慧敏,严红革.平面应变断裂韧性KIc的研究[J].材料导报,2002,16(11):11~13.
    [73]翟春泉,曾小勤.镁合金的开发与应用[J].机械工程材料,2001,25(1):6-10.
    [74]Hidetoshi Somekawa, Toshiji Mukai. Fracture toughness in a rolled AZ31 magnesium alloy [J]. Journal of Alloys and Compounds,2006,417:209~213.
    [75]Hidetoshi Somekawa, Alok Singh, Toshiji Mukai. High fracture toughness of extruded Mg-Zn-Y alloy by the synergistic effect of grain refinement and dispersion of quasicrystalline phase [J]. Scripta Materialia,2007,56:1091~1094.
    [76]Hidetoshi Somekawa, Toshiji Mukai. High strength and fracture toughness balance on the extruded Mg-Ca-Zn alloy [J]. Materials Science and Engineering A,2007,459:366~370.
    [77]Taisuke Sasaki, Y. Takigawa, K. Higashi. Effect of Mn on fracture toughness in Mg-6Al-lwt.%Zn alloy [J]. Materials Science and Engineering A,2008,479:117~124.
    [78]Hidetoshi Somekawa, Toshiji Mukai. Effect of texture on fracture toughness in extruded AZ31 magnesium alloy [J]. Scripta Materialia,2005,53:541~545.
    [79]郭峰,李志.断裂韧度与钢组织性能的关系[J].失效分析与预防,2007,2(4):59~64.
    [80]Guenther Schubert, Armando Joaquin. Electron Beam Welding of Die Cast Magnesium [J]. Advanced Materials and Processes,2001,159(8):67~70.
    [81]梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF分析[M].沈阳:东北工学院出版社,1986.
    [82]丘利,胡玉和.X射线衍射技术及设备M].北京:冶金工业出版社,1999.
    [83]毛燕,蔡庆伍,魏松波.变形参数对AZ31镁合金板材织构的影响[J].塑性工程学报,2008,15(6):4-7.
    [84]Yi S B, Davies C H J, Brokmeier H G, et al. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading [J]. Acta Materialia,2006,54:549~562.
    [85]汪凌云,黄光胜,范永革,等.变形AZ31镁合金的晶粒细化[J].中国有色金属学报,2003,13(3):594~598.
    [86]于彦东,张凯锋,蒋大鸣,等.轧制镁合金超塑性和超塑胀形[J].中国有色金属学报,2003,13(1):71~75.
    [87]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工艺出版社,2005.
    [88]陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1~11.
    [89]汪凌云,范永革,黄光杰,等.AZ31B镁合金板材的织构[J].材料研究学报,2004,18(5):466~470.
    [90]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [91]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1993.
    [92]Hyo Tae Jeong, Tae Kwon Ha. Texture development in a warm rolled AZ31 magnesium alloy [J]. Journal of Materials Processing Technology,2007,187-188:559~561.
    [93]Wagner L, Hilpert M, Wendt J. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80 [J]. Materials Science Forum,2003,419-422: 93~102.
    [94]Kalidindi S R. Modeling anisopt ropic strain hardening and deformation textures in low stacking fault energy materials [J]. International Journal of Plasticity,2001,17:837~860.
    [95]张信钰.金属和合金的织构.北京:科学出版社,1976.
    [96]余琨,黄守泰,王日初,等.AZ31B镁合金挤压薄板织构及力学各向异性[J].有色金属学报,2008,18(12):2127~2131.
    [97]Styczynski A, Hartlg C, Bohlen J, et al. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Scripta Mater,2004,50(7):943-947.
    [98]Hyo Tae Jeong, Tae Kwon Ha. Texture development in a warm rolled AZ31 magnesium alloy [J]. Journal of Materials Processing Technology,2007,187-188:559~561
    [99]Huang Guangjie, Liu Qing, Wang Lingyun, et al. Microstructure and texture evolution of AZ31 magnesium alloy during rolling [J]. Transactions of Nonferrous Metals Society of China,2008,18:s170~176.
    [100]Yu Kun, Rui Shoutai, Wang Xiaoyan, et al. Texture evolution of extruded AZ31 magnesium alloy sheets [J]. Transactions of Nonferrous Metals Society of China,2009,19:511~516.
    [101]Chang L L, Shang E F, Wang Y N,et al. Texture and microstructure evolution in cold rolled AZ31 magnesium alloy [J]. Materials Characterization,2009,60:487~491
    [102]Styczynski A, Hartig Ch, Bohlen J, et al. Cold rolling textures in AZ31 wrought magnesium alloy [J]. Scripta Materialia,2004,50:943~947
    [103]李秀莲,王茂银,辛仁龙,等.AZ31镁合金挤压轧制过程微观织构演变[J].材料热处理学报,2010,31(5):61~64
    [104]Roberto B. Figueiredo, Irene J. Beyerlein, Alexander P. Zhilyaev, et al. Evolution of texture in a magnesium alloy processed by ECAP through dies with different angles [J]. Materials Science and Engineering A,2010,527:1709~1718
    [105]李萧,杨平,李继忠,等.等通道挤压对AZ80镁合金的组织和织构的影响[J].热加工工艺,2010,39(1):85~88
    [106]Jan Bohlen, Marcus R. Nurnberg, Jeremy W. Senn, et al. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets [J]. Acta Materialia,2007,55:2101~2112
    [107]Mabuchi M, Chino Y, Iwasaki H, et al. The grain size and texture dependence of tensile properties in extruded Mg-9A1-Zn [J]. Materials Transactions,2001,42 (7):1182~1189.
    [108]Kaiser F, Letzig D, Bohlen J, et al. Anisot ropic properties of magnesium sheet AZ31 [J]. Materials Science Forum,2003, Vols 419-422:315-320.
    [109]Wu S, Chou T S, Wang J Y. The deformation texture in an AZ31B magnesium alloy [J]. Materials Science Forum,2003, Vols 419-422:527~532.
    [110]Agnew Sean R, Duygulu ozgur. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. International Journal of Plasticity,2005,21:1161~1193
    [111]唐伟琴,张少睿,范晓慧,等.AZ31镁合金的织构对其力学性能的影响[J].中国有色金属学报,2010,20(5):371~377
    [112]Hiroyuki Watanabe, Akira Takara, Hidetoshi Somekawa, et al. Effect of texture on tensile properties at elevated temperatures in an AZ31 magnesium alloy [J]. Scripta Materialia, 2005,52:449~454.
    [113]Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing [J]. Scripta Materialia,2002,47(1): 39-44.
    [114]Jaap Schijve. Fatigue of Structures and Materials [M]. Second Edition with CD-Rom,2008.
    [1]余琨,黎文献,王日初,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277~288.
    [2]GB/T 6398-2000.金属材料疲劳裂纹扩展速率试验方法[S].北京:中国标准出版社,2000.
    [3]GB/T 4161-2007.金属材料平面应变断裂韧度KIC试验方法[S].北京:中国标准出版社,2007.
    [4]梁志德,徐家桢,王福.织构材料的三维取向分析术-ODF分析[M].沈阳:东北工学院出版社,1986.
    [5]王书明,王超群,樊志罡,等.织构分析在材料检测中的应用[J].理化检验-物理分册.2009,45(5):277~282.
    [6]Lin H K, Huang J C, Langdon T G. Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy Processed by ECAP [J]. Materials Science and Engineering A,2005,402:250~257.
    [7]毛卫民,杨平,陈冷.材料织构分析原理与检测技术[M].北京:冶金工业出版社,2007.
    [8]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1995.
    [9]Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Materials Chemistry and Physics,2003,81:11~26.
    [10]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工艺出版社,2005年
    [11]陶俊.织构和晶粒尺寸对变形镁合金AZ31力学性能的影响[D].南京:南京理工大学,2007.
    [1]Jaap Schijve. Fatigue of Structures and Materials. Second Edition with CD-Rom,2008.
    [2]GB3075-82.金属轴向疲劳试验方法.北京:中国标准出版社,1982.
    [3]GB/T 13816-92.焊接接头脉动拉伸疲劳试验方法.北京:中国标准出版社,1992.
    [4]陈振华,夏伟军,严红革,等.变形镁合金[M].北京:化学工艺出版社,2005..
    [5][美]Suresh S著,王光中等译.材料的疲劳[M].北京:国防工业出版社,1998.
    [6]余琨,黎文献,王日初.镁合金塑性变形机制.中国有色金属学报,2005,15(7):1081~1086.
    [7]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005,27(3):358~370.
    [8]许海生.铝合金焊接接头疲劳行为局部准则研究[D].天津:天津大学,2004.
    [9]慕伟.AZ31镁合金焊接接头疲劳性能及改善方法研究[D].太原:太原理工大学,2007.
    [10]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2005.
    [11]钟群鹏,赵子华,张峥.断口学的发展及微观断裂机理研究[J].机械强度,2005,27(3):358~370.
    [1]陈振华,夏伟军,程永奇,等.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1~11.
    [2]余琨,芮守泰,王日初,等.AZ31镁合金挤压薄板织构及力学各向异性[J].中国有色金属学报,2008,18(12):2127~2131.
    [3]Derek Hull著,李晓刚,董超芳,杜翠薇.等译.断口形貌学观察、测量和分析断口表面形貌的科学[M].北京:科学出版社,2009.
    [1]Hidetoshi Somekawa, Toshiji Mukai. Fracture toughness in a rolled AZ31 magnesium alloy [J]. Journal of Alloys and Compounds,2006,417:209~213.
    [2]杨继运,张行.材料断裂韧度与试样厚度关系研究[J].机械强度,2003,25(1):76~80
    [1]袁熙,李舜酩.疲劳寿命预测方法的研究现状与发展[J].航空制造技术,2005,(12):80~95
    [2]黄海华.工程结构的疲劳寿命预测问题[D].华南理工大学工学硕士学位论文,2007年
    [3]霍立兴.焊接结构的断裂行为及评定[M].北京:机械工业出版社,2000.
    [4]Taylor D, Barrett N, Lucano G. Some new methods for predicting fatigue in welded joints [J]. International Journal of Fatigue,2002,24:509~518.
    [5]Radaj D, Sonsino C M, Fricke W. Recent developments in local concepts of fatigue assessment of welded joints [J]. International Journal of Fatigue,2009,31:2-11.
    [6]Taylor D, Hoey D. High cycle fatigue of welded joints:the TCD experience [J]. International Journal of Fatigue,2009,31:20~27.
    [7]Ostash O P, Panasyuk V V. Fatigue process zone at notches [J]. International Journal of Fatigue,2001,23:627~636.
    [8]Taylor D. The theory of critical distances [J]. Engineering Fracture Mechanics,2008,75: 1696~1705.
    [9]贾法勇,霍立兴,吴冰,等.双向不锈钢焊接接头疲劳强度[J].焊接学报,2004,25(2):31~34.
    [10]Hobbacher A.F. The new IIW recommendations for fatigue assessment of welded joints and components-A comprehensive code recently updated [J]. International Journal of Fatigue, 2009(31):50~58.
    [11][德]D拉达伊著,郑朝云,张式程译.焊接结构疲劳强度[M].北京:机械工业出版社,1994.
    [12]Hobbacher A. Recommendations for fatigue design of welded joints and components [C]. IIW document Ⅻ-1965-03/ⅩⅤ-1127-03, Update June 2005:25~33.
    [13]Niemi E. Structural stress approach to fatigue analysis of welded components [C]. IIW document Ⅻ-1819-00/ⅩⅤ-1090-01/Ⅻ-WG3-06-99, Last Modified August 11,2001:4-10.
    [1]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [2]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [3]杨平.电子背散射衍射技术及其应用[M].北京:冶金工业出版社,2007.
    [4]Chang L L, Shang E F, Wang Y N, et al. Texture and microstructure evolution in cold rolled AZ31 magnesium alloy. Materials characteriz ation,2009,60:480~491.
    [5]马全仓,赵靖宇,毛卫民,李向宇.镁合金冷轧板材织构不均匀性分析[J].轻合金加工技术,2008.36(8):26~28.
    [6]陶俊.织构和晶粒尺寸对变形镁合金AZ31力学性能的影响[D].南京理工大学,2007.
    [7]Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Chemistry and Physics, 2003,81:11-26.
    [8]毛燕,蔡庆伍,魏松波.变形参数对AZ31镁合金板材织构的影响.塑性工程学报,2008,15(6):4-7.
    [9]程靳,赵树.断裂力学[M].北京:科学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700