基于神经网络的参量声源非线性建模及控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
参量声源是利用空气中声波的非线性传播效应产生指向性声束的新型声学系统。该系统要获得高质量的可听声源,一方面要充分利用空气的非线性传播效应,另一方面又要最大限度地减少非线性引起的失真。因此,深入认识并合理利用非线性是该领域要解决的关键问题之一。本文从理论和实验两方面研究了参量声源的非线性特性,完成的主要工作如下。
     根据非线性声学的基础理论,对参量声源的非线性进行了理论分析。结果表明现有理论不足以充分表达参量声源的非线性特性,而基于现有理论发展起来的参量声源信号处理方法在避免可听声非线性失真方面也有待完善。
     针对现有理论的不足,提出采用人工神经网络对参量声源进行非线性建模。通过神经网络模型,可以在不完全清楚非线性机理的情况下准确地拟合系统的输入输出关系,为参量声源的控制及性能优化提供条件。在解决了参量声源神经网络建模的几个基本问题的基础上,采用BP神经网络和RBF神经网络分别建立参量声源的非线性模型。并通过正弦信号激励和随机信号激励的仿真对模型的有效性进行了评估与对比。
     阐述了神经网络模型的评估方法,并重点对灵敏度以及泛化能力进行了分析。采用近似函数替代激活函数进行参量声源神经网络全局灵敏度计算的方法,并给出了理论推导。在分析影响神经网络模型泛化能力的因素的基础上,采用了几种方法来提高模型的泛化能力,并通过仿真证明了其效果。
     将神经网络逆控制的基本思想及方法应用于参量声源的控制中,用系统控制的理论与方法解决参量声源的非线性信号处理问题。设计了参量声源的神经网络直接逆控制系统以及PID复合逆控制系统。并通过仿真验证了神经网络逆控制方法对改善参量声源系统性能的效果。
     对参量声源自解调信号的非线性进行了实验测试,通过实验数据分析了自解调信号的非线性失真。并在相同条件下,用所建立的神经网络模型及PID复合神经网络逆控制模型对自解调信号的非线性进行了仿真。通过对比验证了基于神经网络的参量声源非线性建模及控制方法的效果,提出后续改进的方向。
The parametric sound source is a new type sound system which utilizs the nonlinearpropagation effect of the sound in the air to generate an audible sound beam withdirectivity. To obtain high quality audible sound, this acoustic system needs to make fulluse of nonlinear propagation effect of the sound. And on the other hand, the sounddistortion produced by nonlinear characters should be restrained as far as possible. Sodeep understanding and rational utilizing nonlinear character is a key problerm needs tobe solved in the field of the parametric sound source. This dissertation has studiedtheoretically and experimentally nonlinear characters of the parametric sound source.And the main research works and achievements are summarized as follows:
     According to the basic nonlinear acoustic theory, the nonlinear characters of theparametric sound source are analyzed theoretically. The analysis results show that thecurrent theories are not enough to understand and explore the nonlinear characters of theparametric sound source. And the signal processing methods developed from the currenttheories remain to be improved on reducing the nonlinear distortion of sound.
     The artificial neural network(ANN) is proposed to bulid the model of the parametricacoustic system. The mapping relationship between input and output of this system canbe fitted accurately by the ANN even if the nonlinear principle and mechanism is notclear. This provides necessary conditions for system contol and performanceoptimization of the parametric sound source. After solving many basic problems ofANN modeling, the back propagation(BP) neural network model and radial basisfunction(RBF) neural network model are built. These models are demonstrated andcompared through simulations under sinusoidal signal excitation and random signalexcitation.
     The evaluation methods of ANN model are described. The sensitivity andgeneralization ability of ANN model of the parametric sound source are analyzed in thisdissertation. The activation function substitution method is proposed to calculate theglobal sensitivity of the parametric sound source model, and the theoretical formula isderived. After analyzing the factors influencing generalization ability of ANN model, many methods are used to improve the generalization ability of ANN model of theparametric sound source. And the effects of these methods are demonstrated bysimulations.
     This dissertation applies the basic idea and method of ANN inverse control to buildthe nonlinear control system of parametric acoustic system. The ANN direct inversecontrol system and PID compound inverse control system are designed. And the systemperformance improvements through the ANN inverse control are verified by simulation.
     The experiments for testing the self-demodulated signal have been done tounderstand the nonlinear and sound distortion of the parametric sound source. Andunder the same conditions as experiments, with the ANN model and the PID compoundANN inverse control model established in aforementioned work, the MATLABsimulations for analyzing the nonlinear and sound distortion are implemented.Comparisions between experimental result and emulational result confirm that the ANNmodel and the PID compound ANN inverse control model are effective. From thesecomparisions, the improvement direction and breakthrough points are clear in nextresearch work.
引文
[1] L. Bjorno. Forty years of nonlinear ultrasound[J]. Ultrasonics,2002,40(1-8):11-17
    [2] L. Bjorno.40Years of nonlinear underwater acoustics[J]. Acta Acustica united with Acustica,2002,88(5):771-775
    [3] K. Naugolnykh.50years of nonlinear acoustics[J]. AIP Conference Proceedings,2008,1022(1):3-8
    [4]陈敏,徐利梅,黄大贵,张德银.声频定向扬声器的研究进展[J].电声技术,2006,11:17-22
    [5] I. Evan, Schwartz. The sound war[J]. Technology Review,2004,107(4):50-54
    [6] J. James, J. O. Norris. HSS white paper[J]. USA: American Technology Corporation,2005,5:10-16
    [7]陈敏.声频定向系统理论与关键技术研究[D].成都:电子科技大学,2008,1-20
    [8] W. S. Gan, J. Yang, T. Kamakura. A review of parametric acoustic array in air[J]. AppliedAcoustics,2012,73(12):1211-1219
    [9] P. Westervelt. Parametric acoustic array[J]. J. Acoust. Soc. Am.,1963,35(4):535-537
    [10] H.O.Berkay, Possible exploitation of non-linear acoustics in underwater transmittingapplications[J]. J. Sound Vib.,1965,2(4):435-461
    [11] Bennett, M. Beth, Blackstock, et al. Parametric array in air[J]. Journal of the AcousticalSociety of America, Mar,1975,57(3):562-568
    [12] T. Nakamura. Waveform variation of pulsed parametric source[C]. In Proceedings of the11thInternational Congress on Acoustics, France,1983,23-26
    [13] Masahide, Yoneyama. The audio spotlight: an application of nonlinear interaction of soundwaves to a new type of loudspeaker design[J]. Journal of the Acoustical Society of America,1983,73(5):1532-1536
    [14] M. Yoneyama. T. Kamakura, K. Ikegaya. Developments of parametric loudspeaker forpractical use[C]. In10th International Symposium on Nonlinear Acoustics, Kobe,1984,39-43
    [15] Kenicki, Aoki. A parametric loudspeaker applied examples[J]. Electronics andCommunications in Japan,1994,77(1):64-73
    [16] T. Kamakura, T. Yoneyama and K. Ikegaya. Studies for the realization of parametricloudspeaker[J]. Journal of Acoustic Society of Japan,1985,41(6):378–385
    [17] T. Kamakura, K. Aoki, Y. Kumamoto. Suitable modulation of the carrier ultrasound for aparametric loudspeaker[J]. Acustica,1991,73:215-217
    [18] K. Aoki, T. Kamakura, Y. Kumamoto. Parametric loudspeaker-characteristics of acousticfield and suitable modulation of carrier ultrasound[J]. Electronics and Communications inJapan, Part3,1991,74(9):76-80
    [19] T. Kamakura, M. Tani, Y. Kumamoto, et al. Parametric sound radiation from a rectangularaperture source[J]. Acustica,1994,80:332–338
    [20] M. Cervenka, M. Bednar k, P. Kon cek. Numerical simulation of parametric field patterns ofultrasonic transducer arrays[C].2009IEEE International Ultrasonic Symposium and ShortCoursed, California,2009,1969-2013
    [21] K. Aoki, T. Kamakura, Y. Kumamoto. Parametric loudspeaker-applied examples[J].Electronics and Communications in Japan, Part-A,1993,76(8):1127–1137
    [22] F. J. Pompei. The use of airborne ultrasonics for generating audible sound seams[C].Proceeding of the Audio Engineering Society105th Convention, AES, San Francisco,California, September,1998:26-29
    [23] F. J. Pompei. The use of airborne ultrasonics for generating audible sound seams [J]. Journalof Audio Engineering Society,1999,47(9):726-731
    [24] F. J. Pompei. Sound from ultrasound: the parametric array as an audible sound source[D].USA: Massachusettes Institute of Technology,2002,35-46
    [25] F. J. Pompei, S. C. Wooh. Phased array element shapes for suppressing grating lobes[J].Journal of the Acoustical Society of America,2002,111(5I):2040-2048
    [26]陈敏,徐利梅,黄大贵,等.基于MATLAB的换能器阵列指向性分析方法研究[J].电声技术,2006,28(5):25-28
    [27]陈敏,徐利梅,黄大贵,等.声束扬声器的声频定向换能器阵列指向性研究[J].压电与声光,2006,28(4):400-402
    [28]陈敏,徐利梅,黄大贵,等.声束扬声器的换能器方形阵列设计[J].电声技术,2006,1:26-29
    [29] E. A. Zabolotskaya, R. V. Khokhlov. Quasi-plane waves in the nonlinear acoustics of theconfined beams[J]. Soviet Physics-Acoustics,1969,15:35-40
    [30] V. P. Kuznetsov. Equations of nonlinear acoustics[J]. Soviet Physics-Acoustics,1971,16:467-470
    [31] Y.S. Lee, M. F. Hamilton. Time-domain modeling of pulsed finite-amplitude sound beams[J].J. Acoust. Soc. Amer.,1994,97:906-917
    [32] S. I. Aanonsen. Numerical computation of the nearfield of a finite amplitude sound beam[R].Tech. Rep.73. Norway: Department of Mathematics, University of Bergen,1983
    [33] S. I. Aanonsen, T. Barkve, J. N. Tjtta. Distortion and harmonic generation in the Nearfield of afinite amplitude sound beam[J]. J. Acoust. Soc. Amer.,1984,75:749-768
    [34] J. Berntsen, E. Vefring. Numerical computation of a finite amplitude sound beam[R]. Tech.Rep.81, Norway: Department of athematics, Unzversity of Bergen,1986
    [35] M. F. Hamilton, J. N. Tjotta, S. Tjotta. Nonlinear effects in the farfield of a directive soundsource[J]. J. Acoust. Soc. Amer.,1985,78:202-216
    [36] A. C. Baker, K. Anastasiadis, V. F. Humphrey. The nonlinear pressure field of a plane circularpiston: theory and experiment[J]. J. Acoust. Soc. Amer.,1988,84:1483-1487
    [37] T. Kamakura, M. Tani, Y. Kumamato. Harmonic generation in finite amplitude sound beamsfrom a rectangular aperture source[J]. J. Acoust. Soc. Amer.,1992,91:3144-3151
    [38] M. D. Cahill, A. C. Baker. Numerical simulation of the acoustic field of a phased-arraymedical ultrasound scanner[J]. J. Acoust. Soc. Amer.,1998,104:1274-1282
    [39] V. A. Voronin, T. N. Kutsenko, S. P. Tarasov. Formation of the directional pattern of aparametric array[J]. Acoustical Physics,2000,46(6):737-739
    [40] H. Nomura, C. M. Hedberg, T. Kamakura. Numerical simulation of parametric soundgeneration and its application to length-limited sound beam[J]. Applied Acoustics,2012,73(12):1231-1238
    [41]叶超,刘伟,吴鸣等.利用调幅和调频信号产生指向性可听声的研究[J].声学技术,2009,28(5):289-290
    [42] O. B. Rudenko. One exact analytical solution of KZK Equation[J]. Acoust. J.,1975,21:311-316
    [43] P. Miskinis. New exact solutions of Khokhlov-Zabolotskaya-Kuznetsov equation[J].Proceedings of Institute of Mathematics of NAS of Ukraine,2002,43:171-177
    [44] F. J. POMPEI. Ultrasonic transducer for parametric array[P]. USA Patent, No.6771785,2004
    [45] M. Tamura, T. Yamaguchi, T. Oyabe, et al. Electroacoustic transducers with piezoelectric highpolymer films[J]. Audio Eng. Soc.,1975,23(1):21-26
    [46] S. Edelman, A. S. DeReggi. Comments on electroacoustic transducers with piezoelectric highpolymer films[J]. J. Audio Eng. Soc.,1976,24(7):577-578
    [47] H. Naono, T. Gotoh, M. Matsumoto, et al. Design of an electro-acoustic transducer usingpiezoelectric polymer film[C]. Audio Eng. Soc. Prepr.58conv., New York,1977,120-128
    [48] Lerch. Electroacoustic transducers using piezoelectric polyvinylidene fluoride films[J]. J.Acoust. Soc. Amer.,1979,66(4):952-954
    [49] R. Lerch, G. M. Sesler. Microphones with rigidly supported piezopolymer membrane[J]. J.Acoust. Soc. Amer.,1980,67(4):1379-1381
    [50] J. S. Schoenwald, J. F. Martin. PVF2transducers for acoustic ranging and imaging in air[C].Proc.1983IEEE Ultrason, Symp,1983,577-580
    [51] A. S. Fiorillo, B. Allota, P. Dasio, et al. An ultrasonic range sensor for a robotic fingertip[J].Sens. Actuators,1988,12:103-106
    [52] I. Veit. The piezoelectric PVDF-film-Its properties and application in electroacoustictransducers[C]. The84th Conv. Audio Eng. Soc., Austrlia,1988,89-95
    [53] F. Harnisch, N. Kroemer, W. Manthey. Ultrasonic transducers with piezoelectric polymerfoil[J]. Sens. Actuators A,1991,25-27:549-552
    [54] A. S. Fiorillo. Design and characterization of a PVDF ultrasonic range sensor[J]. IEEE Trans.Ultrason., Ferroelect., Freq. Contr.,1992,30(6):688-692
    [55] W. Galbraith, G. Hayward. Development of a PVDF membrane hydrophone for use inair-coupled ultrasonic transducer calibration[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1998,45(6):1549-1558
    [56] H. Wang, M. Toda. Curved PVDF airborne transducer[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1999,46(6):1375-1386
    [57] M. Toda. Phase-matched air ultrasonic transducers using corrugated PVDF film with halfwavelength depth[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2001,48(6):1568-1574
    [58] M. Toda, M. Thompson. Temperature dependence of high frequency parameters of PVDF forlength mode ultrasonic air transducers sensors[J].2007IEEE,2007,28:484-487
    [59] F. S. Foster, K. A. Harasiewicz, M. D. Sherar. A history of medical and biological imagingwith polyvinylidene fluoride (PVDF) transducers[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2000,47(6):1363-1371
    [60]于洁,章东,刘晓宙,等.圆锥面PVDF聚焦换能器的非线性声场理论及实验研究[J].物理学报,2007,56(10):5909-5914
    [61]栾桂东,张金铎,李水,等.一种用于声学材料测量的PVDF薄膜水听器[J].声学与电子工程,1999,51(3):1-5
    [62]俞宏沛,黄进来,顾海仁,等.纵横换能器与PVDF压电薄膜复合换能器研究[J].声学与电子工程,1998,52(4):19-21
    [63] M. Samuel, J. H. Han, J. Bae, et al. Analysis of secondary source levels of a parametric arraytransducer[J].2008IEEE,2008,35:27-34
    [64]杨益,阎兆立,温周斌,等.超指向性扬声器的阵列设计与研究[J].声学技术,2008,27(3):433-438
    [65] Y. Je, H. Lee, J. Park, et al. A stepped-plate bi-frequency source for generating a differencefrequency sound with a parametric array[J]. Acoustical Society of America,2010,127(6):3494-3502
    [66] H. Lee, D. Kang, W. Moon. A micro-machined source transducer for a parametric array inair[J]. Acoustical Society of America,2009,125(4):1879-1893
    [67] Y. Je, H. Lee, W. Moon. The impact of micromachined ultrasonic radiators on the efficiency oftransducers in air[J]. Ultrasonics,2013,24:134-142
    [68]耿云龙.基于PZT材料的声频定向微型换能器建模与测试[D].成都:电子科技大学,2010,45-62
    [69]马腾.基于MEMS的压电超声微换能器的设计、仿真和实验[D].成都:电子科技大学,2009,23-29
    [70]李学生.微型声频定向系统理论及关键技术研究[D].成都:电子科技大学,2012,23-46
    [71] G.G.贝恩克,J.J.克罗夫特三世.参数扬声器的功率放大[P].中国,发明专利,01815224.4,2004年2月18日
    [72]张维,匡正,叶超,等.高指向性声频声源中PVDF膜换能器的阻抗匹配[J].电声技术,2010,34(4):30-32
    [73] B. Borgerson, Focused loudspeaker systems[J]. Sound&Video Contractor,2005,23(11):58-65
    [74]姜波,韩捷.扬声器三维指向性测量[J].电声技术,2011,35(1):80-83
    [75]周荣冠.参量阵扬声器系统的超声发射阵指向性研究[J].电声技术,2009,33(4):33-36
    [76]叶超,吴鸣,武帅兵,等.参量阵差频声波指向性的研究[C].2009年声频工程学术交流年会论文集,北京,2009,159-164
    [77] C. Shi, W. S. Gan. Product directivity models for parametric loudspeakers[J]. J. Acoust. Soc.Am,2012,131(3):1938-1945
    [78] C. Shi,W. S. Gan. Analysis and calibration of system errors in steerable parametricloudspeakers[J]. Applied Acoustics,2012,73(12):1263-1270
    [79] S. W, M. Wu, C. Huang. FPGA-based implementation of steerable parametric loudspeakerusing fractional delay filter[J]. Applied Acoustics,2012,73(12):1271-1281
    [80] W. S. Gan, J. Yang, K. S. Tan, et al. A digital beamsteerer for difference frequency in aparametric array[J]. IEEE Transactions on Audio, Speech and Language Processing,2006,14(3):1018-1024
    [81] K. S. Tan, W. S. Gan, J. Yang, et al. An efficient digital beamsteering system for differencefrequency in parametric Array[C]. IEEE International Conference on Acoustics, Speech andSignal Processing, Montreal, Que, Canada,2004: II193-II196
    [82] H. S. Ju, Y. H. Kim. Near-field characteristics of the parametric loudspeaker using ultrasonictransducers[J]. Applied Acoustics,2010,71(9):793-800
    [83]武帅兵,吴鸣,杨军.参量阵扬声器的相控实验研究[J].声学技术,2010,29(6):446-447
    [84] K. S. Tan, W. S. Gan, J. Yang, et al. Constant beamwidth beamformer for difference frequencyin parametric array[C]. ICASSP, IEEE International Conference on Acoustics, Speech andSignal Processing Proceedings, Hong Kong,2003,5:361-364
    [85] J. Yang, K. S. Tan, W. S. Gan, et al. Beamwidth control in parametric acoustic array[J].Japanese Journal of Applied Physics, Part1: Regular Papers and Short Notes and ReviewPapers,2005,44(9A):6817-6819
    [86] J. Huang, P. W. Que, J. H. Jin. A parametric study of beam control for ultrasonic linear phasedarray transducer[J]. Defektoskopiya,2004,4:46-53
    [87] J. Yang, W. S. Gan, K. S. Tan, et al. Acoustic beamforming of a parametric speaker comprisingultrasonic transducers[J]. Sensors and Actuators, A: Physical,2005,125(1):91-99
    [88]杨利维.基于声频定向系统的D类数字功率放大器[D].成都:电子科技大学,2008,54-67
    [89] C. Shi, W. S. Gan. Grating lobe elimination in steerable parametric loudspeaker[J]. IEEETransactions on Ultrasonics Ferroelectrics&Frequency Control,2011,58(2):437-450
    [90] M. Chen, L. Xu, Y. Cao. Research on an improved amplitude modulation method of audiodirectional loudspeaker[C].2008International Conference on Audio, Language and ImageProcessing, Proceedings, Beijin,2008,5-9
    [91] E. L. Tan, W. S. Gan, J. Yang. Preprocessing techniques for parametric loudspeakers[C].International Conference on Audio, Language and Image Processing, Beijing,2008,1204-1208
    [92]陈敏,徐利梅,黄大贵.声频定向扬声器谐波失真测试[J].仪器仪表学报,2009,30(8):1591-1597
    [93] P. Ji, E. L. Tan, W. S. Gan, et al. A comparative analysis of preprocessing methods for theparametric loudspeaker based on the Khokhlov-Zabolotskaya-Kuznetsov equation for speechreproduction[J]. IEEE Transactions on Audio, Speech and Language Processing,2011,19(4):937-946
    [94]张德银.参量扬声器DSB法的互调失真研究[J].声学技术,2009,28(4):495-497
    [95] M. Chen, X. Qin, L. Xu, et al. The distortion analysis of the single side band method forparametric loudspeaker based on orthogonal envelope detection[J]. Systems and Control inAerospace and Astronautics,2008,8:1-5
    [96] G. Garner, M. B. Steer. Third-order parametric array generated by distantly spaced primaryultrasonic tones[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.2012,59(4):776-784
    [97] G. Garner, M. B. Steer. A cascaded second-order approach to computing third-order scatteringof noncollinear acoustic beams[J]. Applied Acoustics,2012,73(12):1220-1230
    [98] W. Ji, W. S. Gan. Identification of a parametric loudspeaker system using an adaptive volterrafilter[J]. Applied Acoustics,2012,73:1251-1262
    [99] M. E.斯宾赛,J. J.克罗夫特三世.用于参量扬声器系统的调制器处理[P].中国,发明专利,00814170.3,2002年11月6日
    [100] K. C. M. Lee, W. S. Gan. Bandwidth-efficient recursive pth-order equalization for correctingbaseband distortion in parametric loudspeakers[J]. IEEE Transactions on Audio, Speech andLanguage Processing,2006,14(2):706-710
    [101] P. F. Ji, W. S. Gan, E. L. Tan, et al. Performance analysis on recursive single-sidebandamplitude modulation for parametric loudspeakers[C].2010IEEE International Conferenceon Multimedia and Expo(ICME), Wuhan,2010,748-753
    [102] E. L. Tan, P. F. Ji, W. S. Gan. On preprocessing techniques for band limited parametricloudspeakers[J]. Applied Acoustics,2010,71(5):486-492
    [103] E. L. Tan, W. S. Gan, J. Yang. Preprocessing techniques for parametric loudspeakers[J].Applied Acoustics,2010,71(5):486-492
    [104] J. Munir, U. Imtiaz. Comparative analysis of different distortion reduction techniques forparametric loudspeaker based on self-demodulation of amplitude modulated ultrasoundwaves[J]. Applied Acoustics,2010,71(5):486-492
    [105]吴鸣,叶超,黄晨曦,等.换能器频率响应对参量阵扬声器性能影响的研究[J].2009年声频工程学术交流年会论文集,2009,48-52.
    [106] S. Li. Pre-processing methods for parametric array to generate wideband difference frequencysignals[J]. IEEE Transactions on Microwave Theory&Techniques,2013,61(1):270-280
    [107] Sakai, Shinichi, Kamakura, et al. Dynamic single sideband modulation for realizingparametric loudspeaker[J]. AIP conference Proceedings,2008,1022(1):613-616
    [108] B. Castagnède, S. Sahraoui, V. Tournat, N. Tahani. Cuspidal caustic and focusing ofacoustical waves generated by a parametric array onto a concave reflecting surface[J].Comptes Rendus Mecanique,2009,337(9):693-702
    [109] B. Igor, E. Sergey, P. Tarasov. Parametric array Signal dispersion in Shallow water[C].Nonlinear Acoustics-Fundamentals and Applications (ISNA18),18th InternationalSymposium, Shanghai,2007,148-158
    [110] N. Tanaka, M. Tanaka. Mathematically trivial control of sound using a parametric beamfousing source[J]. Acoustical Society of America,2011,165-172
    [111]叶超,吴呜,杨军.利用参量阵扬声器进行有源噪声控制的研究[J].电声技术,2011,35(3):61-63
    [112] J. Park, Y. Je, H. Lee, et al. Design of an ultrasonic sensor for measuring distance anddetecting obstacles[J]. Ultrasonics,2010,50(3):340-346
    [113] G. Phanomchoeng, R. Rajamani, J. Hourdos. Directional sound for long-distance auditorywarnings from a highway construction work zone[J]. IEEE Transactions on VehicularThchonlogy,2010,59(5):2266-2276
    [114] P. Calicchia, S. D. Simone, L. D. Marcoberardino, et al. Near-to far-field characterization of aparametric loudspeaker and its application in non-destructive detection of detachments inpanel paintings[J]. Applied Acoustics,2012,73(12):1296-1302
    [115] H. J. Vos, D. E. Goertz. Parametric Array Technique for Microbubble Excitation. IEEETransactions on Ultrasonics[J]. Ferroelectrics and Frequency Control,2011,58(5):924-934
    [116] B. N. Kim, S. W. Yoon. Nonlinear parameter estimation in water-saturated sandy sedimentwith difference frequency acoustic wave[J]. Ultrasonics,2009,49(4):438-445
    [117] B. N. Kim, S. W. Yoon. Nonlinear parameter estimation in water-saturated sandy sedimentwith difference frequency acoustic wave[J]. Ultrasonics,2009,49(4):438-445
    [118] B. Castagnède, S. Sahraoui, V. Tournat, et al. Cuspidal caustic and focusing of acousticalwaves generated by a parametric array onto a concave reflecting surface[J]. Comptes RendusMecanique,2009,337(9):693-702
    [119] P. C. Hines, J. C. Osler, D. J. MacDougald. Acoustic backscatter measurements from littoralseabeds at shallow grazing angles at4and8kHz[J]. Journal of the Acoustical Society ofAmerica,2005,117(6):3504-3516
    [120] V. F. Humphrey, S. P. Robinson, J. D. Smith, et al. Acoustic characterization of panelmaterials under simulated ocean conditions using a parametric array source[J]. Journal of theAcoustical Society of America,2008,124(2):803-814
    [121] Y. Sugibayashi, S. Kurimoto, D. Ikefuji, et al. Three-dimensional acoustic sound fieldreproduction based on hybrid combination of multiple parametric loudspeakers and electrodynamic subwoofer[J]. Applied Acoustics,2012,73(12):1282-1288
    [122]刘军.声波定向发射技术及其在公安工作中的应用研究[J].中国人民公安大学学报(自然科学版),2008,58(4):51-55
    [123]宋朝晖,鲍可进.参量扬声器系统的探索与研究[J].电声技术,2005,5:28-30+34
    [124]周荣冠.参量阵扬声器的原理及应用[J].电声技术,2008,32(1):29-33
    [125] K. Sha, J. Yang, W. S. Gan. A Simple calculation method for the self-and mutual-radiationimpedance of flexible rectangular patches in a rigid infinite baffle[J]. Journal of Sound andVibration,2005,282(1-2):179-195
    [126]姬培锋.指向性声源的理论与实验研究[D].山东:山东科技大学,2005,23-58
    [127]朱海生.基于DSP的指向性声源的设计与实现[D].山东:山东科技大学,2007,12-34
    [128]杨益,温周斌,冯海泓,等.超指向性扬声器的系统设计与测试[J].声学技术,2008,27(1):66-70
    [129]纪鸣,吴亚锋,韩斌.声音定向传输中的失真分析[J].声学技术,2005,24(4):277-279
    [130]杜功焕,朱哲民,龚秀芬.声学基础(第2版)[M].南京:南京大学出版社,2001,344-362
    [131]许肖梅.声学基础[M].北京:科学出版社,2003,56-80
    [132] M. F. Hamilton, D. T. Blackstock. Nonlinear Acoustics[M]. Boston: Academic Press,1998,185-196
    [133] P. M. Morse, K. U. Ingard. Theoretical Acoustics[M]. New York: McGraw-Hill,1968,246-290
    [134] K. E. Frysa, J. N. Tjtta, S. Tjtta. Linear propagation of a pulsed sound beams from a plane orfocusing source[J]. J. Acoust. Soc. Am.,1993,93:80-92
    [135] A. Bateman, Iain Paterson-Stephens. DSP算法、应用与设计(陈健,陈伟,汪书宁)[M].北京:机械工业出版社,2004,56-78
    [136]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,2003,290-303
    [137] S. Haykin. Neural Networks[M].北京:机械工业出版社,2004,135-154
    [138]毛健,赵红东,姚婧婧.人工神经网络的发展及应用[J].电子设计工程,2005,19(24):62-65
    [139]王学武,谭得健.神经网络的应用与发展趋势[J].计算机工程与应用,2003,3:98-100
    [140]张剑湖,叶锋.人工神经网络的模型、特征及其发展方向[J].现代电子技术,2004,19:57-60
    [141]梁艳春,聂义勇.从科学研究方法论看人工神经网络研究的发展[J].吉林大学学报(信息科学版),2002,20(1):59-61
    [142]丁锋.系统辨识(1):辨识导引[J].南京信息工程大学学报(自然科学版),2011,3(1):1-22
    [143]周西峰.系统辨识与建模的一种新方法[J].信息与控制,2000,2:131-138
    [144]刘党辉,蔡远文,苏永芝,等.系统辨识方法及应用[M].北京:国防工业出版社,2010,102-120
    [145]徐丽娜.神经网络控制[M].北京:电子工业出版社,2009,101-155
    [146]徐崇刚,胡远满,常禹,等.生态模型的灵敏度分析[J].应用生态学报,2004,15(6):1056-1062
    [147] C. M, T. S. Uncertainty and sensitity analysis:Tools for GIS based model implementation [J].INT J Geogr inform Sci,2001,15(5):415-437
    [148] M. D. Mckay, R. J. Beckman, W. J. Conover. A comparison of three methods for selectingvalues of input variables in the analysis of output from a computer code[J]. Tech nometrics,1979,21:239-245
    [149] T. Homma, A. Saltelli. Importance measures in global sensitivity analysis of Nonlinearmodels[J]. Reliab Engin Syst Safety,1996,52:1-17
    [150] R. L. Iman, S. C. Hora. A robust measure of uncertainty importance for use in fault treesystem analysis[J]. Risk A na,1990,10:401-406
    [151] A. Saltelli, T. H. Anderes. Sensitivity anslysis of model output:An investigation of newtechniques[J]. Comput Statist Data Anal,1993,15:211-238
    [152] V. Vapnik. estimation of dependcies based on emperical data[M]. New York: Springer-Verlag,1982,88-120
    [153] V. Vapnik, A. Chervonenkis. On the uniform convergence of relative frequencies of events totheir probabilities[J]. Theory Prob. Appl.,1971,16(2):264-280
    [154] P. M. Williams. Bayesian regularization and pruming using a laplace prior[J]. NeuralComputation,1995,5:278-288
    [155] A. Atiya, C. Ji. How initial conditions affect generalization performance in large networlk[J].IEEE Trans. Nerual Network,1997,8:448-451
    [156]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2006,88-105
    [157]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996,36-50
    [158]戴先中,刘国海,张兴华.交流传动神经网络逆控制[M].北京:机械工业出版社,2007,60-95

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700